Articles | Volume 15, issue 7
https://doi.org/10.5194/gmd-15-3161-2022
https://doi.org/10.5194/gmd-15-3161-2022
Model description paper
 | 
12 Apr 2022
Model description paper |  | 12 Apr 2022

GSTools v1.3: a toolbox for geostatistical modelling in Python

Sebastian Müller, Lennart Schüler, Alraune Zech, and Falk Heße

Related authors

FINAM – is not a model (v1.0): a new Python-based model coupling framework
Sebastian Müller, Martin Lange, Thomas Fischer, Sara König, Matthias Kelbling, Jeisson Javier Leal Rojas, and Stephan Thober
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2024-144,https://doi.org/10.5194/gmd-2024-144, 2024
Revised manuscript under review for GMD
Short summary
Data-driven estimates for the geostatistical characterization of subsurface hydraulic properties
Falk Heße, Sebastian Müller, and Sabine Attinger
Hydrol. Earth Syst. Sci., 28, 357–374, https://doi.org/10.5194/hess-28-357-2024,https://doi.org/10.5194/hess-28-357-2024, 2024
Short summary
High-resolution drought simulations and comparison to soil moisture observations in Germany
Friedrich Boeing, Oldrich Rakovec, Rohini Kumar, Luis Samaniego, Martin Schrön, Anke Hildebrandt, Corinna Rebmann, Stephan Thober, Sebastian Müller, Steffen Zacharias, Heye Bogena, Katrin Schneider, Ralf Kiese, Sabine Attinger, and Andreas Marx
Hydrol. Earth Syst. Sci., 26, 5137–5161, https://doi.org/10.5194/hess-26-5137-2022,https://doi.org/10.5194/hess-26-5137-2022, 2022
Short summary
MPR 1.0: a stand-alone multiscale parameter regionalization tool for improved parameter estimation of land surface models
Robert Schweppe, Stephan Thober, Sebastian Müller, Matthias Kelbling, Rohini Kumar, Sabine Attinger, and Luis Samaniego
Geosci. Model Dev., 15, 859–882, https://doi.org/10.5194/gmd-15-859-2022,https://doi.org/10.5194/gmd-15-859-2022, 2022
Short summary

Related subject area

Hydrology
The global water resources and use model WaterGAP v2.2e: description and evaluation of modifications and new features
Hannes Müller Schmied, Tim Trautmann, Sebastian Ackermann, Denise Cáceres, Martina Flörke, Helena Gerdener, Ellen Kynast, Thedini Asali Peiris, Leonie Schiebener, Maike Schumacher, and Petra Döll
Geosci. Model Dev., 17, 8817–8852, https://doi.org/10.5194/gmd-17-8817-2024,https://doi.org/10.5194/gmd-17-8817-2024, 2024
Short summary
Generalised drought index: a novel multi-scale daily approach for drought assessment
João António Martins Careto, Rita Margarida Cardoso, Ana Russo, Daniela Catarina André Lima, and Pedro Miguel Matos Soares
Geosci. Model Dev., 17, 8115–8139, https://doi.org/10.5194/gmd-17-8115-2024,https://doi.org/10.5194/gmd-17-8115-2024, 2024
Short summary
Development and performance of a high-resolution surface wave and storm surge forecast model: application to a large lake
Laura L. Swatridge, Ryan P. Mulligan, Leon Boegman, and Shiliang Shan
Geosci. Model Dev., 17, 7751–7766, https://doi.org/10.5194/gmd-17-7751-2024,https://doi.org/10.5194/gmd-17-7751-2024, 2024
Short summary
Deep dive into hydrologic simulations at global scale: harnessing the power of deep learning and physics-informed differentiable models (δHBV-globe1.0-hydroDL)
Dapeng Feng, Hylke Beck, Jens de Bruijn, Reetik Kumar Sahu, Yusuke Satoh, Yoshihide Wada, Jiangtao Liu, Ming Pan, Kathryn Lawson, and Chaopeng Shen
Geosci. Model Dev., 17, 7181–7198, https://doi.org/10.5194/gmd-17-7181-2024,https://doi.org/10.5194/gmd-17-7181-2024, 2024
Short summary
PyEt v1.3.1: a Python package for the estimation of potential evapotranspiration
Matevž Vremec, Raoul A. Collenteur, and Steffen Birk
Geosci. Model Dev., 17, 7083–7103, https://doi.org/10.5194/gmd-17-7083-2024,https://doi.org/10.5194/gmd-17-7083-2024, 2024
Short summary

Cited articles

Abramowitz, M., and Stegun, I. A.​​​​​​​: Handbook of mathematical functions, 10th edn., Dover Publications, New York, ISBN 978-0-486-61272-0, 1972. a
Attinger, S.: Generalized coarse graining procedures for flow in porous media, Computat. Geosci., 7, 253–273, https://doi.org/10.1023/B:COMG.0000005243.73381.e3, 2003. a
Banerjee, S., Carlin, B. P., and Gelfand, A. E.: Hierarchical Modeling and Analysis for Spatial Data, 2 edn., Chapman and Hall/CRC, Boca Raton, https://doi.org/10.1201/b17115, 2014. a
Bayer, P., Huggenberger, P., Renard, P., and Comunian, A.: Three-dimensional high resolution fluvio-glacial aquifer analog: Part 1: Field study, J. Hydrol., 405, 1–9​​​​​​​, https://doi.org/10.1016/j.jhydrol.2011.03.038, 2011. a
Beg, M., Taka, J., Kluyver, T., Konovalov, A., Ragan-Kelley, M., Thiéry, N. M., and Fangohr, H.: Using Jupyter for Reproducible Scientific Workflows, in: Computing in Science Engineering, Computing in Science Engineering, 23, 36–46, https://doi.org/10.1109/MCSE.2021.3052101, 2021. a
Download
Short summary
The GSTools package provides a Python-based platform for geoostatistical applications. Salient features of GSTools are its random field generation, its kriging capabilities and its versatile covariance model. It is furthermore integrated with other Python packages, like PyKrige, ogs5py or scikit-gstat, and provides interfaces to meshio and PyVista. Four presented workflows showcase the abilities of GSTools.