Articles | Volume 15, issue 7
https://doi.org/10.5194/gmd-15-3161-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/gmd-15-3161-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
GSTools v1.3: a toolbox for geostatistical modelling in Python
Sebastian Müller
CORRESPONDING AUTHOR
Department of Computational Hydrosystems, UFZ – Helmholtz Centre for Environmental Research, Leipzig, Germany
Institute of Earth and Environmental Sciences, University of Potsdam, Potsdam, Germany
Lennart Schüler
Institute of Earth and Environmental Sciences, University of Potsdam, Potsdam, Germany
Department of Computational Hydrosystems, UFZ – Helmholtz Centre for Environmental Research, Leipzig, Germany
Center for Advanced Systems Understanding (CASUS), Görlitz, Germany
Alraune Zech
Department of Earth Sciences, Utrecht University, Utrecht, the Netherlands
Department of Computational Hydrosystems, UFZ – Helmholtz Centre for Environmental Research, Leipzig, Germany
Falk Heße
Institute of Earth and Environmental Sciences, University of Potsdam, Potsdam, Germany
Department of Computational Hydrosystems, UFZ – Helmholtz Centre for Environmental Research, Leipzig, Germany
Related authors
Francisco J. Doblas-Reyes, Jenni Kontkanen, Irina Sandu, Mario Acosta, Mohammed Hussam Al Turjmam, Ivan Alsina-Ferrer, Miguel Andrés-Martínez, Leo Arriola, Marvin Axness, Marc Batlle Martín, Peter Bauer, Tobias Becker, Daniel Beltrán, Sebastian Beyer, Hendryk Bockelmann, Pierre-Antoine Bretonnière, Sebastien Cabaniols, Silvia Caprioli, Miguel Castrillo, Aparna Chandrasekar, Suvarchal Cheedela, Victor Correal, Emanuele Danovaro, Paolo Davini, Jussi Enkovaara, Claudia Frauen, Barbara Früh, Aina Gaya Àvila, Paolo Ghinassi, Rohit Ghosh, Supriyo Ghosh, Iker González, Katherine Grayson, Matthew Griffith, Ioan Hadade, Christopher Haine, Carl Hartick, Utz-Uwe Haus, Shane Hearne, Heikki Järvinen, Bernat Jiménez, Amal John, Marlin Juchem, Thomas Jung, Jessica Kegel, Matthias Kelbling, Kai Keller, Bruno Kinoshita, Theresa Kiszler, Daniel Klocke, Lukas Kluft, Nikolay Koldunov, Tobias Kölling, Joonas Kolstela, Luis Kornblueh, Sergey Kosukhin, Aleksander Lacima-Nadolnik, Jeisson Javier Leal Rojas, Jonni Lehtiranta, Tuomas Lunttila, Anna Luoma, Pekka Manninen, Alexey Medvedev, Sebastian Milinski, Ali Omar Abdelazim Mohammed, Sebastian Müller, Devaraju Naryanappa, Natalia Nazarova, Sami Niemelä, Bimochan Niraula, Henrik Nortamo, Aleksi Nummelin, Matteo Nurisso, Pablo Ortega, Stella Paronuzzi, Xabier Pedruzo Bagazgoitia, Charles Pelletier, Carlos Peña, Suraj Polade, Himansu Pradhan, Rommel Quintanilla, Tiago Quintino, Thomas Rackow, Jouni Räisänen, Maqsood Mubarak Rajput, René Redler, Balthasar Reuter, Nuno Rocha Monteiro, Francesc Roura-Adserias, Silva Ruppert, Susan Sayed, Reiner Schnur, Tanvi Sharma, Dmitry Sidorenko, Outi Sievi-Korte, Albert Soret, Christian Steger, Bjorn Stevens, Jan Streffing, Jaleena Sunny, Luiggi Tenorio, Stephan Thober, Ulf Tigerstedt, Oriol Tinto, Juha Tonttila, Heikki Tuomenvirta, Lauri Tuppi, Ginka Van Thielen, Emanuele Vitali, Jost von Hardenberg, Ingo Wagner, Nils Wedi, Jan Wehner, Sven Willner, Xavier Yepes-Arbós, Florian Ziemen, and Janos Zimmermann
EGUsphere, https://doi.org/10.5194/egusphere-2025-2198, https://doi.org/10.5194/egusphere-2025-2198, 2025
This preprint is open for discussion and under review for Geoscientific Model Development (GMD).
Short summary
Short summary
The Climate Change Adaptation Digital Twin (Climate DT) pioneers the operationalisation of climate projections. The system produces global simulations with local granularity for adaptation decision-making. Applications are embedded to generate tailored indicators. A unified workflow orchestrates all components in several supercomputers. Data management ensures consistency and streaming enables real-time use. It is a complementary innovation to initiatives like CMIP, CORDEX, and climate services.
Sebastian Müller, Martin Lange, Thomas Fischer, Sara König, Matthias Kelbling, Jeisson Javier Leal Rojas, and Stephan Thober
Geosci. Model Dev., 18, 4483–4498, https://doi.org/10.5194/gmd-18-4483-2025, https://doi.org/10.5194/gmd-18-4483-2025, 2025
Short summary
Short summary
This study presents FINAM (
FINAM is not a model), a new coupling framework written in Python to dynamically connect independently developed models. Python, as the ultimate glue language, enables the use of codes from nearly any programming language like Fortran, C++, Rust, and others. FINAM is designed to simplify the integration of various models with minimal effort, as demonstrated through various examples ranging from simple to complex systems.
Falk Heße, Sebastian Müller, and Sabine Attinger
Hydrol. Earth Syst. Sci., 28, 357–374, https://doi.org/10.5194/hess-28-357-2024, https://doi.org/10.5194/hess-28-357-2024, 2024
Short summary
Short summary
In this study, we have presented two different advances for the field of subsurface geostatistics. First, we present data of variogram functions from a variety of different locations around the world. Second, we present a series of geostatistical analyses aimed at examining some of the statistical properties of such variogram functions and their relationship to a number of widely used variogram model functions.
Friedrich Boeing, Oldrich Rakovec, Rohini Kumar, Luis Samaniego, Martin Schrön, Anke Hildebrandt, Corinna Rebmann, Stephan Thober, Sebastian Müller, Steffen Zacharias, Heye Bogena, Katrin Schneider, Ralf Kiese, Sabine Attinger, and Andreas Marx
Hydrol. Earth Syst. Sci., 26, 5137–5161, https://doi.org/10.5194/hess-26-5137-2022, https://doi.org/10.5194/hess-26-5137-2022, 2022
Short summary
Short summary
In this paper, we deliver an evaluation of the second generation operational German drought monitor (https://www.ufz.de/duerremonitor) with a state-of-the-art compilation of observed soil moisture data from 40 locations and four different measurement methods in Germany. We show that the expressed stakeholder needs for higher resolution drought information at the one-kilometer scale can be met and that the agreement of simulated and observed soil moisture dynamics can be moderately improved.
Robert Schweppe, Stephan Thober, Sebastian Müller, Matthias Kelbling, Rohini Kumar, Sabine Attinger, and Luis Samaniego
Geosci. Model Dev., 15, 859–882, https://doi.org/10.5194/gmd-15-859-2022, https://doi.org/10.5194/gmd-15-859-2022, 2022
Short summary
Short summary
The recently released multiscale parameter regionalization (MPR) tool enables
environmental modelers to efficiently use extensive datasets for model setups.
It flexibly ingests the datasets using user-defined data–parameter relationships
and rescales parameter fields to given model resolutions. Modern
land surface models especially benefit from MPR through increased transparency and
flexibility in modeling decisions. Thus, MPR empowers more sound and robust
simulations of the Earth system.
Francisco J. Doblas-Reyes, Jenni Kontkanen, Irina Sandu, Mario Acosta, Mohammed Hussam Al Turjmam, Ivan Alsina-Ferrer, Miguel Andrés-Martínez, Leo Arriola, Marvin Axness, Marc Batlle Martín, Peter Bauer, Tobias Becker, Daniel Beltrán, Sebastian Beyer, Hendryk Bockelmann, Pierre-Antoine Bretonnière, Sebastien Cabaniols, Silvia Caprioli, Miguel Castrillo, Aparna Chandrasekar, Suvarchal Cheedela, Victor Correal, Emanuele Danovaro, Paolo Davini, Jussi Enkovaara, Claudia Frauen, Barbara Früh, Aina Gaya Àvila, Paolo Ghinassi, Rohit Ghosh, Supriyo Ghosh, Iker González, Katherine Grayson, Matthew Griffith, Ioan Hadade, Christopher Haine, Carl Hartick, Utz-Uwe Haus, Shane Hearne, Heikki Järvinen, Bernat Jiménez, Amal John, Marlin Juchem, Thomas Jung, Jessica Kegel, Matthias Kelbling, Kai Keller, Bruno Kinoshita, Theresa Kiszler, Daniel Klocke, Lukas Kluft, Nikolay Koldunov, Tobias Kölling, Joonas Kolstela, Luis Kornblueh, Sergey Kosukhin, Aleksander Lacima-Nadolnik, Jeisson Javier Leal Rojas, Jonni Lehtiranta, Tuomas Lunttila, Anna Luoma, Pekka Manninen, Alexey Medvedev, Sebastian Milinski, Ali Omar Abdelazim Mohammed, Sebastian Müller, Devaraju Naryanappa, Natalia Nazarova, Sami Niemelä, Bimochan Niraula, Henrik Nortamo, Aleksi Nummelin, Matteo Nurisso, Pablo Ortega, Stella Paronuzzi, Xabier Pedruzo Bagazgoitia, Charles Pelletier, Carlos Peña, Suraj Polade, Himansu Pradhan, Rommel Quintanilla, Tiago Quintino, Thomas Rackow, Jouni Räisänen, Maqsood Mubarak Rajput, René Redler, Balthasar Reuter, Nuno Rocha Monteiro, Francesc Roura-Adserias, Silva Ruppert, Susan Sayed, Reiner Schnur, Tanvi Sharma, Dmitry Sidorenko, Outi Sievi-Korte, Albert Soret, Christian Steger, Bjorn Stevens, Jan Streffing, Jaleena Sunny, Luiggi Tenorio, Stephan Thober, Ulf Tigerstedt, Oriol Tinto, Juha Tonttila, Heikki Tuomenvirta, Lauri Tuppi, Ginka Van Thielen, Emanuele Vitali, Jost von Hardenberg, Ingo Wagner, Nils Wedi, Jan Wehner, Sven Willner, Xavier Yepes-Arbós, Florian Ziemen, and Janos Zimmermann
EGUsphere, https://doi.org/10.5194/egusphere-2025-2198, https://doi.org/10.5194/egusphere-2025-2198, 2025
This preprint is open for discussion and under review for Geoscientific Model Development (GMD).
Short summary
Short summary
The Climate Change Adaptation Digital Twin (Climate DT) pioneers the operationalisation of climate projections. The system produces global simulations with local granularity for adaptation decision-making. Applications are embedded to generate tailored indicators. A unified workflow orchestrates all components in several supercomputers. Data management ensures consistency and streaming enables real-time use. It is a complementary innovation to initiatives like CMIP, CORDEX, and climate services.
Sebastian Müller, Martin Lange, Thomas Fischer, Sara König, Matthias Kelbling, Jeisson Javier Leal Rojas, and Stephan Thober
Geosci. Model Dev., 18, 4483–4498, https://doi.org/10.5194/gmd-18-4483-2025, https://doi.org/10.5194/gmd-18-4483-2025, 2025
Short summary
Short summary
This study presents FINAM (
FINAM is not a model), a new coupling framework written in Python to dynamically connect independently developed models. Python, as the ultimate glue language, enables the use of codes from nearly any programming language like Fortran, C++, Rust, and others. FINAM is designed to simplify the integration of various models with minimal effort, as demonstrated through various examples ranging from simple to complex systems.
Falk Heße, Sebastian Müller, and Sabine Attinger
Hydrol. Earth Syst. Sci., 28, 357–374, https://doi.org/10.5194/hess-28-357-2024, https://doi.org/10.5194/hess-28-357-2024, 2024
Short summary
Short summary
In this study, we have presented two different advances for the field of subsurface geostatistics. First, we present data of variogram functions from a variety of different locations around the world. Second, we present a series of geostatistical analyses aimed at examining some of the statistical properties of such variogram functions and their relationship to a number of widely used variogram model functions.
Friedrich Boeing, Oldrich Rakovec, Rohini Kumar, Luis Samaniego, Martin Schrön, Anke Hildebrandt, Corinna Rebmann, Stephan Thober, Sebastian Müller, Steffen Zacharias, Heye Bogena, Katrin Schneider, Ralf Kiese, Sabine Attinger, and Andreas Marx
Hydrol. Earth Syst. Sci., 26, 5137–5161, https://doi.org/10.5194/hess-26-5137-2022, https://doi.org/10.5194/hess-26-5137-2022, 2022
Short summary
Short summary
In this paper, we deliver an evaluation of the second generation operational German drought monitor (https://www.ufz.de/duerremonitor) with a state-of-the-art compilation of observed soil moisture data from 40 locations and four different measurement methods in Germany. We show that the expressed stakeholder needs for higher resolution drought information at the one-kilometer scale can be met and that the agreement of simulated and observed soil moisture dynamics can be moderately improved.
Adam Mertel, Lennart Schüler, Wildan Abdussalam, Weronika Schlechte-Wełnicz, and Justin M. Calabrese
Abstr. Int. Cartogr. Assoc., 5, 131, https://doi.org/10.5194/ica-abs-5-131-2022, https://doi.org/10.5194/ica-abs-5-131-2022, 2022
Swamini Khurana, Falk Heße, Anke Hildebrandt, and Martin Thullner
Biogeosciences, 19, 665–688, https://doi.org/10.5194/bg-19-665-2022, https://doi.org/10.5194/bg-19-665-2022, 2022
Short summary
Short summary
In this study, we concluded that the residence times of solutes and the Damköhler number (Da) of the biogeochemical reactions in the domain are governing factors for evaluating the impact of spatial heterogeneity of the domain on chemical (such as carbon and nitrogen compounds) removal. We thus proposed a relationship to scale this impact governed by Da. This relationship may be applied in larger domains, thereby resulting in more accurate modelling outcomes of nutrient removal in groundwater.
Robert Schweppe, Stephan Thober, Sebastian Müller, Matthias Kelbling, Rohini Kumar, Sabine Attinger, and Luis Samaniego
Geosci. Model Dev., 15, 859–882, https://doi.org/10.5194/gmd-15-859-2022, https://doi.org/10.5194/gmd-15-859-2022, 2022
Short summary
Short summary
The recently released multiscale parameter regionalization (MPR) tool enables
environmental modelers to efficiently use extensive datasets for model setups.
It flexibly ingests the datasets using user-defined data–parameter relationships
and rescales parameter fields to given model resolutions. Modern
land surface models especially benefit from MPR through increased transparency and
flexibility in modeling decisions. Thus, MPR empowers more sound and robust
simulations of the Earth system.
Alraune Zech, Peter Dietrich, Sabine Attinger, and Georg Teutsch
Hydrol. Earth Syst. Sci., 25, 1–15, https://doi.org/10.5194/hess-25-1-2021, https://doi.org/10.5194/hess-25-1-2021, 2021
Cited articles
Abramowitz, M., and Stegun, I. A.: Handbook of mathematical
functions, 10th edn., Dover Publications, New York, ISBN 978-0-486-61272-0, 1972. a
Attinger, S.: Generalized coarse graining procedures for flow in porous media,
Computat. Geosci., 7, 253–273,
https://doi.org/10.1023/B:COMG.0000005243.73381.e3, 2003. a
Banerjee, S., Carlin, B. P., and Gelfand, A. E.: Hierarchical Modeling and
Analysis for Spatial Data, 2 edn., Chapman and Hall/CRC, Boca Raton, https://doi.org/10.1201/b17115,
2014. a
Bayer, P., Huggenberger, P., Renard, P., and Comunian, A.: Three-dimensional
high resolution fluvio-glacial aquifer analog: Part 1: Field study, J.
Hydrol., 405, 1–9, https://doi.org/10.1016/j.jhydrol.2011.03.038, 2011. a
Beg, M., Taka, J., Kluyver, T., Konovalov, A., Ragan-Kelley, M., Thiéry,
N. M., and Fangohr, H.: Using Jupyter for Reproducible Scientific
Workflows, in: Computing in Science
Engineering, Computing in Science Engineering, 23, 36–46,
https://doi.org/10.1109/MCSE.2021.3052101, 2021. a
Behnel, S., Bradshaw, R., Citro, C., Dalcin, L., Seljebotn, D. S., and Smith,
K.: Cython: The Best of Both Worlds, in: Computing in Science Engineering, Computing in Science
Engineering, 13, 31–39, https://doi.org/10.1109/MCSE.2010.118, 2011. a
Bellin, A. and Rubin, Y.: HYDRO_GEN: A spatially distributed random field
generator for correlated properties, Stoch. Hydrol. Hydraul., 10,
253–278, https://doi.org/10.1007/BF01581869,
1996. a
Box, G. E. P. and Cox, D. R.: An Analysis of Transformations, J.
Roy. Stat. Soc. B, 26, 211–243,
https://doi.org/10.1111/j.2517-6161.1964.tb00553.x, 1964. a, b
Brouste, A., Istas, J., and Lambert-Lacroix, S.: On Fractional Gaussian
Random Fields Simulations, J. Stat. Softw., 23, 1–23,
https://doi.org/10.18637/jss.v023.i01, 2008. a
Carle, S. F.: T-PROGS: Transition probability geostatistical software,
version 2.1, Tech. Rep., University of California, Davis, http://gmsdocs.aquaveo.com/t-progs.pdf (last access: 31 March 2022), 1999. a
Cecinati, F., Wani, O., and Rico-Ramirez, M. A.: Comparing Approaches to
Deal With Non-Gaussianity of Rainfall Data in Kriging-Based
Radar-Gauge Rainfall Merging, Water Resour. Res., 53,
8999–9018, https://doi.org/10.1002/2016WR020330, 2017. a, b
Chilès, J.-P. and Delfiner, P.: Geostatistics: Modeling Spatial
Uncertainty, second edn., Wiley Series in Probability and
Statistics, edited by: Balding, D. J., Cressie, N. A. C.,
Fitzmaurice, G. M., Goldstein, H., Johnstone, I. M., Molenberghs, G.,
Scott, D. W., Smith, A. F. M., Tsay, R. S., and Weisberg, S., John Wiley & Sons, https://doi.org/10.1002/9781118136188, 2012. a, b
Cirpka, O. A. and Valocchi, A. J.: Debates – Stochastic subsurface
hydrology from theory to practice: Does stochastic subsurface hydrology
help solving practical problems of contaminant hydrogeology?, Water Resour.
Res., 52, 9218–9227, https://doi.org/10.1002/2016WR019087, 2016. a
conda-forge community: The conda-forge Project: Community-based Software
Distribution Built on the conda Package Format and Ecosystem,
Zenodo [software], https://doi.org/10.5281/zenodo.4774217, 2015. a
Cressie, N. and Wikle, C. K.: Statistics for spatio-temporal data, Wiley
Series in Probability and Statistics, 1st edn., John Wiley & Sons, Hoboken, New
Jersey, ISBN 978-0-471-69274-4, 2011. a
Dagan, G.: Flow and Transport in Porous Formations, 1st edn., Springer, Berlin,
Heidelberg, https://doi.org/10.1007/978-3-642-75015-1, 1989. a
Di Federico, V. and Neuman, S. P.: Scaling of random fields by means of
truncated power variograms and associated spectra, Water Resour. Res.,
33, 1075–1085, https://doi.org/10.1029/97WR00299, 1997. a, b, c
Diggle, P. and Ribeiro, P. J.: Model-based Geostatistics, Springer Series
in Statistics, 1st edn., Springer-Verlag, New York, https://doi.org/10.1007/978-0-387-48536-2,
2007. a
Eliason, S. R.: Maximum likelihood estimation: Logic and practice, Sage
Publications, 1st edn., Thousand Oaks, CA, US, ISBN 9781506315904, 1993. a
Emery, X.: Testing the correctness of the sequential algorithm for simulating
Gaussian random fields, Stoch. Env. Res. Risk
A., 18, 401–413, https://doi.org/10.1007/s00477-004-0211-7, 2004. a
Fiori, A., Cvetkovic, V., Dagan, G., Attinger, S., Bellin, A., Dietrich, P.,
Zech, A., and Teutsch, G.: Debates – Stochastic subsurface hydrology from
theory to practice: The relevance of stochastic subsurface hydrology to
practical problems of contaminant transport and remediation. What is
characterization and stochastic theory good for?, Water Resour. Res.,
52, 9228–9234, https://doi.org/10.1002/2015WR017525, 2016. a
Foreman-Mackey, D., Hogg, D. W., Lang, D., and Goodman, J.: emcee: The MCMC
Hammer, Publ. Astron. Soc. Pac., 125,
306–312, https://doi.org/10.1086/670067, 2013. a
Goldstein, H.: Classical mechanics, 2nd edn., Addison-Wesley, ISBN 9780201029185, 1980. a
Gong, R., Haslauer, C. P., Chen, Y., and Luo, J.: Analytical relationship
between Gaussian and transformed-Gaussian spatially distributed fields,
Water Resour. Res., 49, 1735–1740, https://doi.org/10.1002/wrcr.20143, 2013. a
Goovaerts, P.: Geostatistics in soil science: state-of-the-art and
perspectives, Geoderma, 89, 1–45, https://doi.org/10.1016/S0016-7061(98)00078-0, 1999. a
Gutzmann, B., Motl, A., Lassahn, D., Kamenshchikov, I., Bachmann, M., and
Schrammel, M.: earthobservations/wetterdienst: v0.18.0, Zenodo [software],
https://doi.org/10.5281/zenodo.4737739, 2021. a
Harris, C. R., Millman, K. J., van der Walt, S. J., Gommers, R., Virtanen, P.,
Cournapeau, D., Wieser, E., Taylor, J., Berg, S., Smith, N. J., Kern, R.,
Picus, M., Hoyer, S., van Kerkwijk, M. H., Brett, M., Haldane, A.,
Fernández del Río, J., Wiebe, M., Peterson, P., Gérard-Marchant, P.,
Sheppard, K., Reddy, T., Weckesser, W., Abbasi, H., Gohlke, C., and Oliphant,
T. E.: Array programming with NumPy, Nature, 585, 357–362,
https://doi.org/10.1038/s41586-020-2649-2, 2020. a
Heße, F., Prykhodko, V., Schlüter, S., and Attinger, S.: Generating random
fields with a truncated power-law variogram: A comparison of several
numerical methods, Environ. Modell. Softw., 55, 32–48,
https://doi.org/10.1016/j.envsoft.2014.01.013, 2014. a, b, c
Hohn, M.: Geostatistics and Petroleum Geology, Computer Methods in the
Geosciences, 2 edn., Springer Netherlands, https://doi.org/10.1007/978-94-011-4425-4,
1999. a
John, J. A. and Draper, N. R.: An Alternative Family of Transformations,
J. Roy. Stat. Soc. C-App., 29,
190–197, https://doi.org/10.2307/2986305, 1980. a
Kolditz, O., Bauer, S., Bilke, L., Böttcher, N., Delfs, J.-O., Fischer, T.,
Görke, U. J., Kalbacher, T., Kosakowski, G., McDermott, C. I., Park, C. H.,
Radu, F., Rink, K., Shao, H., Shao, H. B., Sun, F., Sun, Y. Y., Singh, A. K.,
Taron, J., Walther, M., Wang, W., Watanabe, N., Wu, Y., Xie, M., Xu, W., and
Zehner, B.: OpenGeoSys: An open-source initiative for numerical
simulation of thermo-hydro-mechanical/chemical (THM/C) processes in
porous media, Environ. Earth Sci., 67, 589–599,
https://doi.org/10.1007/s12665-012-1546-x, 2012. a
Kraichnan, R.: Diffusion by a Random Velocity Field, Phys. Fluids, 13,
22–31, https://doi.org/10.1063/1.1692799, 1970. a, b, c
Krige, D. G.: A statistical approach to some basic mine valuation problems on
the Witwatersrand, J. S. Afr. I. Min.
Metall., 52, 119–139, 1951. a
Lantuéjoul, C., Freulon, X., and Renard, D.: Spectral Simulation of
Isotropic Gaussian Random Fields on a Sphere, Math.
Geosci., 51, 999–1020, https://doi.org/10.1007/s11004-019-09799-4, 2019. a
Mälicke, M.: SciKit-GStat 1.0: a SciPy-flavored geostatistical variogram estimation toolbox written in Python, Geosci. Model Dev., 15, 2505–2532, https://doi.org/10.5194/gmd-15-2505-2022, 2022. a, b
Manly, B. F. J.: Exponential Data Transformations, J. Roy.
Stat. Soc. D-Sta., 25, 37–42,
https://doi.org/10.2307/2988129, 1976. a
Matheron, G.: Traité de géostatistique appliquée, no. 14 in Mémoires du
BRGM, Editions Technip, Tome II: le krigeage, no 24, Editions BRGM, Paris, 1962. a
Mohammadi, H., Riche, R. L., Durrande, N., Touboul, E., and Bay, X.: An
analytic comparison of regularization methods for Gaussian Processes, arXiv [preprint], arXiv:1602.00853, 5 May 2017. a
Monestiez, P., Petrenko, A., Leredde, Y., and Ongari, B.: Geostatistical
analysis of three dimensional current patterns in coastal oceanography:
Application to the gulf of lions (NW mediterranean sea), in: geoENV
IV – Geostatistics for environmental applications, edited by:
Sanchez-Vila, X., Carrera, J., and Gómez-Hernández, J. J., pp. 367–378,
Springer Netherlands, Dordrecht, https://doi.org/10.1007/1-4020-2115-1_31, 2004. a
Müller, S.: GeoStat – Examples/gstools-temperature-trend: v1.0, Zenodo [data set],
https://doi.org/10.5281/zenodo.5159728, 2021. a, b, c
Müller, S. and Schüler, L.: GeoStat – Framework/GSTools: v1.3.5 “Pure
Pink”, Zenodo [code], https://doi.org/10.5281/zenodo.5883346, 2021. a, b
Müller, S. and Zech, A.:
GeoStat – Examples/gstools-connectivity-and-transport: v1.0, Zenodo [data set],
https://doi.org/10.5281/zenodo.5159578, 2021a. a, b, c
Müller, S. and Zech, A.: GeoStat – Examples/gstools-pumping-test-ensemble:
v1.0, Zenodo [data set], https://doi.org/10.5281/zenodo.4891875, 2021b. a, b, c
Müller, S., Zech, A., and Heße, F.: ogs5py: A Python – API for the
OpenGeoSys 5 Scientific Modeling Package, Groundwater, 59, 117–122,
https://doi.org/10.1111/gwat.13017, 2020. a, b, c
Müller, S., Heße, F., Attinger, S., and Zech, A.: The extended generalized radial flow model and effective
conductivity for truncated power law variograms, Adv. Water Resour., 156, 104027, https://doi.org/10.1016/j.advwatres.2021.104027,
2021a. a, b
Müller, S., Leven, C., Dietrich, P., Attinger, S., and Zech, A.: How to Find
Aquifer Statistics Utilizing Pumping Tests? Two Field Studies
Using welltestpy, Groundwater, 60, 137–144, https://doi.org/10.1111/gwat.13121,
2021b. a
Murphy, B., Müller, S., and Yurchak, R.: GeoStat-Framework/PyKrige:
v1.6.0, Zenodo [code], https://doi.org/10.5281/zenodo.4661732, 2021. a, b
Murray, S. G. and Poulin, F. J.: hankel: A Python library for performing
simple and accurate Hankel transformations, The Journal of Open Source
Software, 4, 1397, https://doi.org/10.21105/joss.01397, 2019. a
Neuman, S. P.: Stochastic groundwater models in practice, Stoch.
Env. Res. Risk A., 18, 268–270,
https://doi.org/10.1007/s00477-004-0192-6,
2004. a
Ogata, H.: A Numerical Integration Formula Based on the Bessel
Functions, Publ. Res. I. Math.
Sci., 41, 949–970, https://doi.org/10.2977/prims/1145474602, 2005. a
Pebesma, E. J.: Multivariable geostatistics in S: the gstat package,
Comput. Geosci., 30, 683–691, https://doi.org/10.1016/j.cageo.2004.03.012,
2004. a
Perkel, J. M.: Why Jupyter is data scientists’ computational notebook of
choice, Nature, 563, 145–146, https://doi.org/10.1038/d41586-018-07196-1,
2018. a
Pyrcz, M. J. and Deutsch, C. V.: Geostatistical Reservoir Modeling, 2 edn., Oxford
University Press, Oxford, ISBN 978-0199731442, 2014. a
Queiroz, F., Silva, R., Miller, J., Brockhauser, S., and Fangohr, H.: Track 1
Paper: Good Usability Practices in Scientific Software
Development, Figshare, https://doi.org/10.6084/m9.figshare.5331814.v3, 2017. a
Rajaram, H.: Debates – Stochastic subsurface hydrology from theory to
practice: Introduction, Water Resour. Res., 52, 9215–9217,
https://doi.org/10.1002/2016WR020066, 2016. a, b
Rasmussen, C. E. and Williams, C. K. I.: Gaussian Processes for Machine
Learning, 1st edn., The MIT Press, ISBN 9780262256834, https://doi.org/10.7551/mitpress/3206.001.0001, 2005. a, b
Remy, N.: S-GeMS: The Stanford Geostatistical Modeling Software:
A Tool for New Algorithms Development, in: Quantitative Geology and Geostatistics, Geostatistics Banff 2004, 14,
865–871, https://doi.org/10.1007/978-1-4020-3610-1_89, 2005. a, b
Rossi, R. E., Mulla, D. J., Journel, A. G., and Franz, E. H.: Geostatistical
tools for modeling and interpreting ecological spatial dependence, Ecol.
Monogr., 62, 277–314, https://doi.org/10.2307/2937096, 1992. a
Rubin, Y.: Applied Stochastic Hydrogeology, 1st edn., Oxford University Press, New
York, ISBN 9780195138047, https://doi.org/10.1093/oso/9780195138047.001.0001, 2003. a, b, c, d
Rubin, Y., Chen, X., Murakami, H., and Hahn, M.: A Bayesian approach for
inverse modeling, data assimilation, and conditional simulation of spatial
random fields, Water Resour. Res., 46, W10523,
https://doi.org/10.1029/2009WR008799, 2010. a
Rubin, Y., Chang, C.-F., Chen, J., Cucchi, K., Harken, B., Heße, F., and Savoy, H.: Stochastic hydrogeology's biggest hurdles analyzed and its big blind spot, Hydrol. Earth Syst. Sci., 22, 5675–5695, https://doi.org/10.5194/hess-22-5675-2018, 2018. a, b
Rudin, W.: Fourier Analysis on Groups, 1st edn., Wiley‐Interscience, John Wiley
& Sons, ISBN 9780470744819, https://doi.org/10.1002/9781118165621, 1990. a
Sales, M. H., Souza, C. M., Kyriakidis, P. C., Roberts, D. A., and Vidal, E.:
Improving spatial distribution estimation of forest biomass with
geostatistics: A case study for Rondônia, Brazil, Ecol.
Model., 205, 221–230,
https://doi.org/10.1016/j.ecolmodel.2007.02.033, 2007. a
Savoy, H., Heße, F., and Rubin, Y.: anchoredDistr: a Package for the
Bayesian Inversion of Geostatistical Parameters with Multi-type and
Multi-scale Data, R Journal, 9, 6–17, https://doi.org/10.32614/RJ-2017-034,
2017. a
Schlömer, N., McBain, G. D., Luu, K., christos, Li, T., Hochsteger, M.,
Keilegavlen, E., Ferrándiz, V. M., Barnes, C., Lukeš, V., Dalcin, L.,
Jansen, M., Wagner, N., Gupta, A., Müller, S., Woodsend, B., Andersen, K.,
Schwarz, L., Blechta, J., Christovasilis, I. P., Coutinho, C., Beurle, D.,
ffilotto, Dokken, J. S., blacheref, so1291, Cervone, A., Shrimali, B., Bill,
and Jones, D.: nschloe/meshio: None, Zenodo [code], https://doi.org/10.5281/zenodo.4900671, 2021. a, b
Schüler, L. and Müller, S.: GeoStat – Examples/gstools-herten-example:
v1.0, Zenodo [data set], https://doi.org/10.5281/zenodo.5159658, 2021. a, b, c
Schüler, L., Suciu, N., Knabner, P., and Attinger, S.: A time dependent mixing
model to close PDF equations for transport in heterogeneous aquifers,
Adv. Water Resour., 96, 55–67,
https://doi.org/10.1016/j.advwatres.2016.06.012, 2016. a
Schüler, L., Calabrese, J. M., and Attinger, S.: Data driven high resolution
modeling and spatial analyses of the COVID-19 pandemic in Germany, PLOS
ONE, 16, 1–14, https://doi.org/10.1371/journal.pone.0254660, 2021. a
Sturges, H. A.: The Choice of a Class Interval, J. Am.
Stat. Assoc., 21, 65–66, https://doi.org/10.1080/01621459.1926.10502161, 1926. a
Sullivan, C. B. and Kaszynski, A. A.: PyVista: 3D plotting and mesh
analysis through a streamlined interface for the Visualization Toolkit
(VTK), Journal of Open Source Software, 4, 1450, https://doi.org/10.21105/joss.01450,
2019. a, b
Uieda, L.: Verde: Processing and gridding spatial data using Green’s
functions, Journal of Open Source Software, 3, 957,
https://doi.org/10.21105/joss.00957, 2018.
a
Virtanen, P., Gommers, R., Oliphant, T. E., Haberland, M., Reddy, T.,
Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J.,
van der Walt, S. J., Brett, M., Wilson, J., Millman, K. J., Mayorov, N.,
Nelson, A. R. J., Jones, E., Kern, R., Larson, E., Carey, C. J., Polat, i.,
Feng, Y., Moore, E. W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman,
R., Henriksen, I., Quintero, E. A., Harris, C. R., Archibald, A. M., Ribeiro,
A. H., Pedregosa, F., van Mulbregt, P., and SciPy 1.0 Contributors: SciPy
1.0: Fundamental algorithms for scientific computing in python, Nat.
Methods, 17, 261–272, https://doi.org/10.1038/s41592-019-0686-2, 2020. a
Vrugt, J. A.: Markov chain Monte Carlo simulation using the DREAM
software package: Theory, concepts, and MATLAB implementation,
Environ. Modell. Softw., 75, 273–316,
https://doi.org/10.1016/j.envsoft.2015.08.013, 2016. a
Wackernagel, H.: Multivariate Geostatistics: An Introduction with
Applications, 3 edn., Springer-Verlag, Berlin Heidelberg, ISBN 978-3-540-44142-7,
https://doi.org/10.1007/978-3-662-05294-5, 2003. a, b, c, d
Wendland, H.: Piecewise polynomial, positive definite and compactly supported
radial functions of minimal degree, Adv. Comput. Math., 4,
389–396, https://doi.org/10.1007/BF02123482, 1995. a
Winter, C. L.: Stochastic hydrology: practical alternatives exist, Stoch.
Env. Res. Risk A., 18, 271–273,
https://doi.org/10.1007/s00477-004-0198-0,
2004. a
Yeo, I. and Johnson, R. A.: A new family of power transformations to improve
normality or symmetry, Biometrika, 87, 954–959,
https://doi.org/10.1093/biomet/87.4.954, 2000. a
Zech, A., Schneider, C. L., and Attinger, S.: The extended Thiem's solution –
Including the impact of heterogeneity, Water Resour. Res., 48,
W10535, https://doi.org/10.1029/2012WR011852, 2012. a
Zech, A., Müller, S., Mai, J., Heße, F., and Attinger, S.: Extending Theis'
solution: Using transient pumping tests to estimate parameters of aquifer
heterogeneity, Water Resour. Res., 52, 6156–6170,
https://doi.org/10.1002/2015WR018509, 2016. a, b, c
Zhang, Y.-K. and Zhang, D.: Forum: The state of stochastic hydrology,
Stoch. Env. Res. Risk A., 18, 265,
https://doi.org/10.1007/s00477-004-0190-8, 2004. a, b
Zinn, B. and Harvey, C. F.: When good statistical models of aquifer
heterogeneity go bad: A comparison of flow, dispersion, and mass transfer
in connected and multivariate Gaussian hydraulic conductivity fields, Water
Resour. Res., 39, 1051, https://doi.org/10.1029/2001WR001146, 2003. a, b, c, d
Short summary
The GSTools package provides a Python-based platform for geoostatistical applications. Salient features of GSTools are its random field generation, its kriging capabilities and its versatile covariance model. It is furthermore integrated with other Python packages, like PyKrige, ogs5py or scikit-gstat, and provides interfaces to meshio and PyVista. Four presented workflows showcase the abilities of GSTools.
The GSTools package provides a Python-based platform for geoostatistical applications. Salient...