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Abstract. Geostatistics as a subfield of statistics accounts for
the spatial correlations encountered in many applications of,
for example, earth sciences. Valuable information can be ex-
tracted from these correlations, also helping to address the
often encountered burden of data scarcity. Despite the value
of additional data, the use of geostatistics still falls short of its
potential. This problem is often connected to the lack of user-
friendly software hampering the use and application of geo-
statistics. We therefore present GSTools, a Python-based
software suite for solving a wide range of geostatistical prob-
lems. We chose Python due to its unique balance between
usability, flexibility, and efficiency and due to its adoption
in the scientific community. GSTools provides methods for
generating random fields; it can perform kriging, variogram
estimation and much more. We demonstrate its abilities by
virtue of a series of example applications detailing their use.

1 Introduction

Geostatistics emerged as a distinct branch of statistics in the
early 1950s through the pioneering work by Krige (1951).
Krige’s goal of estimating the abundance of mineral re-
sources led him to develop some of the first methods, but it
was the French mathematician Georges Matheron who devel-
oped the mathematical foundations (Matheron, 1962). Today,
geostatistics is applied in fields like geology (Hohn, 1999),
hydrogeology (Kitanidis, 2008), hydrology or soil sciences
(Goovaerts, 1999), meteorology (Cecinati et al., 2017), ecol-
ogy (Rossi et al., 1992; Sales et al., 2007), oceanography
(Monestiez et al., 2004), and epidemiology (Schüler et al.,
2021), and a large number of textbooks make the theory

available to practitioners (Pyrcz and Deutsch, 2014; Rubin,
2003; Diggle and Ribeiro, 2007; Kitanidis, 2008; Banerjee
et al., 2014).

Yet, the rate of adoption of geostatistics by practitioners
has been slow and uneven (Zhang and Zhang, 2004; Ra-
jaram, 2016). One reason is the perceived lack of ready-made
geostatistical software (Zhang and Zhang, 2004; Neuman,
2004; Winter, 2004; Rajaram, 2016; Cirpka and Valocchi,
2016; Fiori et al., 2016). Although a decent number of geo-
statistical software solutions are available (Bellin and Rubin,
1996; Deutsch and Journel, 1997; Brouste et al., 2008; Rubin
et al., 2010; Pebesma, 2004; Savoy et al., 2017; Heße et al.,
2014; Vrugt, 2016), user-friendliness and licensing can ham-
per their adoption as pointed out by Rubin et al. (2018).

Addressing these challenges, we present GSTools – an
extensive Python package for geostatistical analysis (Müller
and Schüler, 2021). To the best of our knowledge, no open-
source Python package that provides such a comprehensive
collection of random field generation, forward modelling,
kriging and data analysis currently exists.

We believe that the choice of Python has the potential to
address several of the challenges for geostatistical applica-
tions. First, a script language like Python allows for striking
a balance between ease of use (as provided by graphical user
interfaces) and flexibility (as provided by command-line-
based tools). The presence of a graphical user interface (GUI)
is sometimes seen as an indication of usability (Remy, 2005;
Rubin et al., 2018). However, a GUI does not necessarily
make software more user-friendly, almost always limits flex-
ibility, increases the programming effort, and makes repro-
ducibility of results and workflows harder or even unfeasible
(Queiroz et al., 2017). Also note that in recent years pow-
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erful tools emerged in data science to represent data along
with code snippets, documentation and results in interactive
computational notebooks provided by Jupyter (Perkel, 2018;
Beg et al., 2021). Second, Python is known as a glue lan-
guage, being able to combine independent software solutions
to achieve complex workflows. This is particularly impor-
tant since geostatistics often relies on ready-made solvers
for data generation or partial differential equation (PDE)-
based model solvers. Third, Python is a simple yet powerful
language with an increasing user base and community sup-
port for scientific computing and data analysis. It thus has
a wide appeal and excellent prospects for the foreseeable fu-
ture. This guarantees that engineers and scientists with only a
moderate background in computer science are able to apply
the toolbox and to make the necessary application-specific
adjustments. Finally, the licensing should be as permissive as
possible to guarantee adoption and even further development
by interested users.

We introduce GSTools and present its main features with
a general overview of its functionality and abilities in Sect. 2.
We focus on the covariance model, field generation kriging
and variogram estimation. In Sect. 3, we discuss the wider
context of GSTools, namely a number of Python packages
connected with GSTools which can be used to seamlessly
model geostatistical workflows. Section 4 presents a num-
ber of workflows to showcase the abilities of GSTools and
demonstrate its usage. We close out with a short summary of
the main advantages of GSTools and concluding remarks.

2 GSTools features

2.1 Covariance models and variography

The powerful CovModel class represents covariance and
variogram models. Methods provided by this class are the
basis for most of the functionality of GSTools, such as var-
iography, spatial random field generation and kriging.

2.1.1 Covariance models

GSTools implements a CovModel class to define covari-
ance models of weakly stationary (spatial) processes. Here,
weak stationarity means that the associated semi-variogram
is bounded, since we assume a constant mean and a finite
variance. To approximate unbounded variograms such as
the power-law model (Webster and Oliver, 2007), we pro-
vide a set of truncated power-law models following Di Fed-
erico and Neuman (1997). The internal representation of a
(semi-)variogram γ is given by

γ (r)= σ 2
·

(
1− cor

(
s ·
r

`

))
+ n , (1)

where r is the (isotropic) lag distance, ` is the (main) cor-
relation length, s is a rescaling factor to adjust model repre-
sentation (default is 1), σ 2 is the variance or partial sill, n

is the nugget or sub-scale variance, and cor(h) is the model-
defining, normalized correlation function depending on the
non-dimensional distance h= s · r

`
.

The associated covariance and correlation functions are
given by the following:

C(r)= σ 2
· cor

(
s ·
r

`

)
, (2)

ρ(r)= cor
(
s ·
r

`

)
. (3)

Note that covariance and correlation are neglecting the
nugget effect at the origin. Thus, the variance is interpreted as
the variation above the nugget, which is sometimes referred
to as the partial sill of the semi-variogram or the correlated
variability (Rubin, 2003). Consequently, the sill or limit of
the semi-variogram is calculated as the sum of variance and
nugget.

The (semi-)variogram, covariance and correla-
tion functions of a model are accessible through
model.variogram, model.covariance and
model.correlation, respectively. Every covari-
ance model is defined by at least six parameters: dimension
dim, variance var, main length scale len_scale, rescale
factor rescale, anisotropy ratios anis and rotation angles
angles, with the last two being dimension dependent. Fig-
ure 1 shows an example code for instantiating an exponential
model and the resulting model functions exemplifying the
parameters. Table 1 provides an overview of the predefined
models in GSTools.

In addition to the predefined covariance models, users can
specify their own model functions by providing a normalized
correlation function. Figure 2 shows a reimplementation of
the exponential model in only three lines of code.

The dimension-dependent spectrum of an isotropic covari-
ance model can be called with model.spectrum. It is di-
rectly calculated from the covariance function by the follow-
ing:

S (k)=

(
1

2π

)d
·

∫
Rd

C(|r|) · ei·k·rdr

=
|k|

(2π |k|)
d
2
·H d

2−1

{
r
d
2−1C (·)

}
(|k|). (4)

Here, r = |r| and k = |k| are the norms of the correspond-
ing vectors, and H is the Hankel transform, which provides
a mathematically self-contained and numerically robust for-
mulation of the radially symmetric Fourier transformation.
GSTools makes use of an implementation of H provided
by the Python package hankel (Murray and Poulin, 2019;
Ogata, 2005). For models with a known analytical solution,
GSTools uses them for improved computations.

A prerequisite for kriging or random field genera-
tion is that the applied covariance function is positive
(semi-)definite. That can be checked through the spectral
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Figure 1. Initialization of an exponential covariance model given by cor(h)= exp(−h) (Rubin, 2003). Note that the rescaling factor is 1
by default. The right panel shows the plot of the variogram, covariance and correlation functions of the model, which can be created with
convenience plotting methods.

Table 1. Predefined covariance models in GSTools.

Model cor(h) Source

Gaussian exp
(
−h2

)
Webster and Oliver (2007)

Exponential exp(−h) Webster and Oliver (2007)

Stable exp
(
−hα

)
Wackernagel (2003)

Matern 21−ν

0(ν)
·
(√
ν ·h

)ν
·Kν

(√
ν ·h

)
Rasmussen and Williams (2005)

Rational
(

1+ h2

α

)−α
Rasmussen and Williams (2005)

Cubic (1− 7h2
+

35
4 h

3
−

7
2h

5
+

3
4h

7) (h<1) Chilès and Delfiner (2012)

Linear (1−h) (h<1) Webster and Oliver (2007)

Circular 2
π ·

(
cos−1 (h)−h ·

√
1−h2

)
(h<1) Webster and Oliver (2007)

Spherical (1− 3
2 ·h+

1
2 ·h

3) (h<1) Webster and Oliver (2007)

HyperSpherical

(
1−h ·

2F1

(
1
2 ,−

d−1
2 , 3

2 ,h
2
)

2F1

(
1
2 ,−

d−1
2 , 3

2 ,1
) ) (h<1) Matérn (1960)

SuperSpherical

(
1−h ·

2F1

(
1
2 ,−ν,

3
2 ,h

2
)

2F1

(
1
2 ,−ν,

3
2 ,1
) ) (h<1) Matérn (1960)

JBessel 0(ν+ 1) ·
(
h
2

)−ν
· Jν(h) Chilès and Delfiner (2012)

TPLSimple (1−h)ν (h<1) Wendland (1995)

TPLGaussian H ·E1+H

(
h2
)

Di Federico and Neuman (1997)

TPLExponential 2H ·E1+2H (h) Di Federico and Neuman (1997)

TPLStable 2H
α ·E1+ 2H

α

(
hα
)

Müller et al. (2021a)

Formulas including the subscript (h < 1) are piecewise-defined functions being constantly zero for h≥ 1. Here, h is the
non-dimensional distance, d is the dimension, 0(x) is the gamma function, Kν (x) is the modified Bessel function of the second kind,
Jν (x) is the Bessel function of the first kind, 2F1(a,b,c,x) is the ordinary hyper-geometric function and Eν (x) is the exponential
integral function (Abramowitz et al., 1972). All other variables are shape parameters of the respective models.
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Figure 2. Initialization of a user-defined exponential covariance model. The only thing that needs to be defined is the normalized correlation
function cor.

Figure 3. Spatial covariance structure of an anisotropic exponential model in 3D plotted with the built-in interactive routines of GSTools.
The example shows an eighth turn on the xy plane with anisotropy factors (1/2,1/4). Rotation angles are given in radians.

density which is derived by the following (note that S only
depends on the norm of k):

E(k)=
S(k)

σ 2 = k(2πk)
−
d
2 ·H d

2−1

{
r
d
2−1ρ (·)

}
(k) . (5)

From Bochner’s theorem (Rudin, 1990), it follows that
the spectral density is a probability density function if
and only if the underlying covariance function is positive
(semi-)definite, which all predefined models in GSTools
satisfy. As a consequence, the error variance during kriging
is always non-negative.

2.1.2 Anisotropy and rotation

Variograms are typically defined based on the lag distance r ,
resulting in an isotropic model. However, many natural pro-
cesses involve anisotropy with varying correlation ranges in
different (orthogonal) directions. An example is hydraulic
conductivity, where anisotropy typically arises from the ge-
ologic stratification. The implementation of anisotropy in
GSTools is based on the non-dimensional distance (Rubin,

2003):

h=

√√√√ d∑
i=1

(
ri

`i

)2

=
s

`

√√√√ d∑
i=1

(
ri

ei

)2

= s ·
r̃

`
, (6)

where `= s · `1 is the main length scale incorporating the
rescale factor s, ei = `i

`1
represents the anisotropy ratios and

r = (r1, r2, . . .) represents the distances along the main axis
of correlation resulting in the isotropic distance r̃ . Con-
sequently, GSTools uses a main length scale, a set of
anisotropy ratios and a set of rotation angles to fully describe
an anisotropic model.

In practice, the main directions of correlation do not neces-
sarily follow the principal axis. The CovModel accounts for
rotation through rotation angles, where their number m de-
pends on the dimension d: m= d·(d−1)

2 . In two dimensions,
rotation is fully described by a single angle for rotation in the
xy plane, and in three dimensions three angles are applied to
the xy plane, xz plane and yz plane, respectively. In three
dimensions these are often referred to as Tait–Bryan angles
yaw, pitch and roll (Goldstein, 1980); see Fig. 3 for an exam-
ple.
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Figure 4. Initialization of a Yadrenko covariance model. We use the Earth’s radius as the rescaling factor to have a meaningful length scale.
The routine vario_yadrenko still depends on the central angle given in radians.

Figure 5. Estimating an empirical variogram of synthetic unstructured data and fitting an exponential model. The number of bins was
calculated to be 21 with a maximum bin distance of ca. 45.

One unique feature of GSTools is the support of arbi-
trary dimensionality in all provided routines. For rotation
in higher dimensions, we apply the following scheme: the
first angles coincide with those of the next lower dimension,
and the added d − 1 angles describe rotations in the planes
of the added dimension (in 3D: xz and yz). Thus, there are
6 rotation angles in 4D, 10 in 5D, etc. Rotation in higher
dimensions is only relevant for spatio-temporal modelling
with three spatial dimensions and application to other fields
of research with high-dimension data. The scheme was cho-
sen for metric spatio-temporal models to account for spatial
anisotropy in a similar way as a simple spatial model.

Rotation in the xixj plane is described by the matrix
G(α, [i,j ]) ∈ Rd×d .

G(α, [i,j ])kl =



cosθ k = l = i,j

sinθ k = i, l = j

−sinθ k = j, l = i

1 k = l 6= i,j

0 else

(7)

The order of rotating planes is determined by the described
scheme, i.e. I1 = [1,2] (xy plane), I2 = [1,3], (xz plane)

I3 = [2,3] (yz plane), etc. These values define a rotation ma-
trix Rot to transform principal axes to the directions of cor-
relation and the back-rotation matrix DeRot= Rot−1 for the
inverse:

Rot=

x
m∏
i=1

G((−1)i−1αi,Ii)

=G((−1)m−1αm,Im) · . . . ·G(α1,I1). (8)

The alternating signs of the rotation angles (−1)i−1αi were
chosen to match Tait–Bryan angles in 3D.

For applying or removing anisotropy, we define the
isotropify matrix Iso= diag(e−1

1 ,e−1
2 , . . .) and anisotropify

matrix AnIso= Iso−1. Combining these two types of matri-
ces allows us to isometrize (i.e. isotropify and derotate) and
anisometrize (i.e. rotate and anisotropify) spatial points via
the following:

Isom= Iso ·DeRot, (9)
AnIsom= Rot ·AnIso. (10)

GSTools provides the routine CovModel.isometrize
to convert spatial positions to their derotated and isotropic
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Figure 6. Estimation of directional variograms for given main axes: the code snippet shows the setup for estimating and fitting the variogram
to an anisotropic field. The graphs show the main axes of the rotated model and the fitting results. Plotting commands have been omitted.

Figure 7. Estimating an empirical variogram (bottom left) of synthetic unstructured data (top left) after Box–Cox normalization of skewed
input values. Panels on the right show the histogram of the data values before (top) and after (bottom) the normalization. For demonstration
purposes, a Matern model was fitted to the empirical variogram. Plotting commands have been omitted.

counterparts as required by Eq. (6) and the routine
CovModel.anisometrize to invert this:

xisom = Isom · x, (11)
xanisom = AnIsom · x. (12)

2.1.3 Geographical coordinates

Earth’s surface is a non-Euclidean manifold, and all large-
scale, geographically referenced data will necessarily reflect
that. We deal with the non-Euclidean nature of this kind
of data by assuming the Earth to be a perfect sphere and
then using the fact that the distance between two points

p1 = (φ1,λ1) and p2 = (φ2,λ2) is given by their latitude (φ)
and longitude (λ) and can be described by a central angle
calculated from the great circle distance:

ζ(p1,p2)= arccos(sinφ1 sinφ2+ cosφ1 cosφ2 cos(1λ)) (13)

A huge family of valid models on the sphere can be derived
from 3D models by inserting the chordal distance which re-
sults in the associated Yadrenko covariance model CY (Lan-
tuéjoul et al., 2019):

CY(ζ )= C3D

(
2 · sin

(
ζ

2

))
. (14)

The underlying manifold introduces new restrictions for
covariance models to be positive definite. The manifold
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Figure 8. Comparison of parametric normalizers in GSTools.

structure of the sphere only allows for isotropic models. For
small-scale applications, it is valid to assume anisotropy. An
appropriate adaption is the use of a 2D projection like Gauss–
Krüger coordinates. We provide Yadrenko models as a uni-
fied representation for non-Euclidian coordinates since they
facilitate all presented models to be used with geographical
coordinates as demonstrated in Fig. 4.

2.1.4 Empirical variogram, data preparation and
model fitting

The empirical variogram is an important tool for analysing
spatially correlated data. It is estimated with the subpackage
gstools.variogram, which provides two estimators for
the empirical variogram: Matheron and Cressie (Webster and
Oliver, 2007). The default Matheron’s estimator for a vari-
ogram γ of a spatial random field U is given by

γ (r)=
1
2
· |M(r)|−1

∑
M(r)

(
U(xi)−U(xj )

)2
, (15)

where M(r) is the set of all pairwise spatial random field
points, separated by the distance r and a certain tolerance
ε > 0.

Cressie’s estimator, which is more robust to outliers, is
given by

γ (r)=

1
2 ·
(
|M(r)|−1∑

M(r)

√
|U(xi)−U(xj )|

)4

0.457+ 0.494/|M(r)| + 0.045/|M(r)|2
. (16)

Both estimators require predefined binsM(r) to group the
pairwise point distances of the given field. GSTools pro-
vides a standard binning routine, where the maximal bin
width is set to one-third of the diameter of the containing
box of the field, the number of bins is determined by Sturges’
rule (Sturges, 1926) and all bins have equal width. Figure 5
provides an example of the variogram estimation of an un-
structured spatial random field with automatic binning.
GSTools accounts for anisotropy by providing estimat-

ing routines for directional variograms along a specified di-
rection with a certain angle tolerance and bandwidth. When
providing orthogonal axes, it is possible to fit a theoretical
model and its anisotropy ratios as shown in Fig. 6. Determin-
ing the main rotation axes from given data, however, is up
to the user and beyond the scope of the presented GSTools
version.

Field data often do not follow a normal distribution,
which is a crucial assumption for variogram estimation.
For example, transmissivity is usually assumed to be log-
normally distributed (Dagan, 1989), while rainfall data are
normalized by applying the Box–Cox transformation (Ce-
cinati et al., 2017). GSTools provides a set of normal-
izers based on power transforms, which can be fitted to a
given data set using a maximum likelihood approach (Elia-
son, 1993): LogNormal, BoxCox (Box and Cox, 1964),
YeoJohnson (Yeo and Johnson, 2000), Modulus (John
and Draper, 1980) and Manly (Manly, 1976). An example
application is shown in Fig. 7, and a comparison of all pro-
vided normalizers can be seen in Fig. 8.
GSTools also provides routines to detrend data. For ex-

ample, temperature could decrease with elevation or con-
ductivity could decrease with depth. Another application is
analysing spatial correlation of residuals after application of
a regression model to the data. All routines dealing with data
have the keywords trend, normalizer and mean, where
the last keyword describes the mean of the normalized data.

2.2 Kriging, random fields and conditioned random
fields

2.2.1 Kriging

The subpackage gstools.krige provides routines for
Gaussian process regression, also known as kriging, which
is a method of data interpolation based on predefined covari-
ance models (Wackernagel, 2003). Kriging aims to derive the
value of a field z at some point x0, when there are fixed
conditioning values z(x1). . .z(xn) at given points x1. . .xn.
The resulting value z0 at x0 is calculated as a weighted mean
z0 =

∑n
i=1wi · zi , where the weights, w = (w1, . . .,wn), are

determined by the specific kriging routine.
We provide multiple kriging routines derived from the

Krige class. (i) Simple: the data are interpolated with a
given mean value for the kriging field. (ii) Ordinary: the
mean of the resulting field is unknown and estimated along-
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Figure 9. Comparison of simple, ordinary and universal kriging. All three routines have a similar setup, where simple kriging needs an
estimated mean and where universal kriging needs additional drift functions. Plotting commands have been omitted.

Figure 10. A simple setup for linear regression kriging. Although the interpolation coincides with a piecewise linear function, we gain
information about the error variances between the conditioning points as shown in the right plot.

side the interpolation (unbiasedness). (iii) Universal: in
addition to ordinary kriging, one can provide drift functions
f1, . . .,fk. (iv) ExtDrift: like universal kriging but the
drift is provided by an external source.

The advantage of using the general Krige class is the
combination of all described features, such as for instance
using universal kriging with a functional drift together with
additional external drifts. A typical scenario is a temperature
interpolation with an assumed north–south drift (functional
drift) and a linear correlation to altitude (external drift).

Since all variogram models in GSTools assume weak
stationarity, the kriging system is always built on the asso-

ciated covariance function:

(17)

with C= (C(xi,xj ))ij=1...n being the covariance matrix, de-
pending on the conditioning points and the given model.
C0 = (C(xi,x0))

T
i=1...n is the covariance vector for the target

point x0. F= (fj (xi))i=1...n,j=1...k is a submatrix contain-
ing the functional drift values at the conditioning points and
F0 = (fi(x0))

T
i=1...k at the target point, where k is the num-

ber of functional drifts. E= (eij )i=1...n,j=1...l is a submatrix
containing the external drift values at the conditioning points

Geosci. Model Dev., 15, 3161–3182, 2022 https://doi.org/10.5194/gmd-15-3161-2022
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Figure 11. Generation of a structured random field following a Gaussian variogram.

Figure 12. An example for an ensemble of 1D random fields conditioned to five measurements (dots). Plotting commands have been omitted.

and E0 = (ei0)
T
i=1...l at the target point, where l is the num-

ber of external drifts. The parameters µ, φ = (φ1, . . .,φk)
T

and ψ = (ψ1, . . .,ψl)
T are Lagrange multipliers for the un-

biased condition, the functional drifts and the external drifts,
respectively. The vector 1 and its Lagrange multiplier µ are
given in brackets since their appearance depends on whether
the system should be unbiased or not (ordinary vs. simple
kriging). Note that the number of functional drifts k and ex-
ternal drifts l can be zero, depending on whether they are
given or not.
GSTools also provides the possibility to incorporate

measurement errors variances σ 2
i for each conditioning point

by adjusting the covariance matrix (Wackernagel, 2003):

C̃= C+ diag(σ 2
1 , . . .,σ

2
n )

=

 C(x1,x1)+ σ
2
1 . . . C(x1,xn)

...
. . .

...

C(xn,x1) . . . C(xn,xn)+ σ
2
n

 . (18)

By default, the measurement error variances, σ 2
i , are set to

the model nugget. In order to get numerically stable results,
we solve the kriging system with the pseudo-inverse matrix,
which has the advantage that redundant data or multiple mea-

surements at the same location are averaged out in the result-
ing field (Mohammadi et al., 2017).

One last feature is the capability of kriging the mean
(Wackernagel, 2003), which allows for deriving the mean
value estimated during ordinary kriging or estimating the
mean drift determined from given functional and/or exter-
nal drift terms as shown in Fig. 9. A minimal example for
regression kriging is shown in Fig. 10.

2.2.2 Random fields

A core element of GSTools is the spatial random field gen-
erator class SRF. A covariance model (Sect. 2.1) is needed to
instantiate a spatial random field. We provide two ways for
field generation: structured or unstructured. In both cases, the
positions at which the field will be evaluated are given by a
pos argument. In the structured case, pos contains one tu-
ple per dimension, each defining the subdivision of the cor-
responding axis resulting in a rectilinear grid. For unstruc-
tured grids, the pos tuple contains the x, y and z coordi-
nates of every evaluation point. SRF allows for controlling
the underlying pseudo-random number generation by a seed
to reproduce field generation. A code example is given in

https://doi.org/10.5194/gmd-15-3161-2022 Geosci. Model Dev., 15, 3161–3182, 2022
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Figure 13. Generation of a structured incompressible random vector field with exponential variogram.

Figure 14. Example of a log-transformed binary field with the low values being connected by applying the zinnharvey, binary and
lognormal transformations successively.

Fig. 11. Field generation is performed through the random-
ization method (Kraichnan, 1970; Heße et al., 2014), which
utilizes the spectral density (Eq. 5) of the variogram model
to approximate a Wiener process in Fourier space by

U (x)=

√
σ 2

N
·

N∑
i=1

(
Z1,i · cos(ki · x)+Z2,i · sin(ki · x)

)
, (19)

where N is the number of Fourier modes of the approxima-
tion. The random variables Z1,i,Z2,i ∼N (0,1) are mutually
independent and are drawn from a standard normal distribu-
tion. The ki values are mutually independent random sam-
ples, which are drawn from the spectral density with the aid
of emcee, a Python package for Markov chain Monte Carlo
sampling (Foreman-Mackey et al., 2013).

The randomization method is implemented in the
RandMeth class and used by default. The RandMeth rou-
tines create isotropic random fields. Thus, the corresponding
covariance is radially symmetric, and the spectral density can
be calculated by the Hankel transformation. Anisotropy is re-
alized by rescaling and rotating the input points. The work-

flow allows users to generate a random field only from a
given correlation, covariance or variogram function.

A key advantage of the randomization method implemen-
tation is the possibility to extend a generated SRF seamlessly,
which not only preserves its statistical properties but also
preserves the actual realization of the SRF. Potential appli-
cations are the following. (i) Particle simulations, where ran-
dom incompressible velocity fields can be generated exactly
at the location of the individual particles (see workflow in
Sect. 2.3.1). It avoids interpolation errors, arising from grid-
based velocity fields. (ii) If concentration plumes are sim-
ulated on a large domain, the SRF can be calculated on de-
mand only for the time dependent spatial extent of the plume.
And (iii) for high-performance computing applications, the
field generation can be directly coupled to the domain de-
composition, and each task only generates the SRF for its
part of the domain. There are two main classes of alternative
methods to the randomization method (Heße et al., 2014).
By decomposing the covariance function, small spatial ran-
dom fields can be computed very fast. But the computational
cost quickly becomes unfeasible as the field grows in size.
A second and quite popular class is the sequential Gaussian
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Figure 15. A workflow to generate a spatio-temporal random field with one spatial dimension.

method, which can also create conditioned spatial random
fields. However, numerical problems can arise if the underly-
ing correlation function is smooth at the origin, and the com-
putational costs also become unfeasible for highly resolved
random fields (Emery, 2004).

Just like the kriging routines, the spatial random field gen-
erator allows for incorporating predefined trend, normalizer
and mean for a greater variety of distributions. A special SRF
class feature is the capability to perform variance upscaling
to respect generation of random fields on mesh cells with a
certain volume. We hereby use the upscaling method coarse
graining (Attinger, 2003) to rescale the variance in Eq. (19)
at each target point based on a given filter volume size λ:

σ 2 (λ)= σ 2
·

(
`2

`2+
(
λ
2

)2
)d/2

, (20)

where ` is the correlation length, and λ= d
√
V is the filter

size derived from the cell volume V depending on the field
dimension, assuming the cell element is a hypercube. This
approach was derived from the groundwater flow equation,
assuming a Gaussian covariance model and should therefore
be used with caution in differing scenarios. An example is
provided in the workflow in Sect. 4.3.

2.2.3 Conditioned random fields

When point measurements of a target variable are available,
they need to be considered when generating random fields.
GSTools provides a class CondSRF combining kriging and
random field generation, where we first derive the kriged
field and the error variance and then generate a random field
with zero mean where the variance in Eq. (19) is replaced
with the estimated error variance. This procedure is advan-
tageous to classical sequential Gaussian simulation (Webster
and Oliver, 2007), as (i) we make use of the randomization

method to generate a single random field, and (ii) we only
need to solve the kriging problem once and not sequentially.

Figure 12 shows an example of an ensemble of condi-
tioned random fields in one dimension. Where measurements
of the target variables are available, all realizations satisfy
them. However, random fields behave as unconditional fields
(i.e. of an ensemble with identical parameters, like mean,
variance and correlation length) where no point measure-
ments are available (x > 6). Characteristics, such as the en-
semble variance, significantly change given the distribution
of measurements and conditioning. The ensemble mean and
the kriging field coincide, proving that the kriging field is the
best linear unbiased predictor for the given data.

2.3 Additional features

2.3.1 Incompressible random vector field generation

Kraichnan (1970) was the first to suggest a randomization
method for studying the diffusion of single particles in a ran-
dom incompressible velocity field. He came up with a ran-
domization method which includes a projector, ensuring the
incompressibility of the vector field.

When U is the mean velocity (oriented towards the first
basis vector e1), we generate random fluctuations with a
given covariance model around U . And at the same time,
we ensure that the velocity field remains incompressible; that
is, ∇ ·U= 0 by using the randomization method (Eq. 19) and
adding a projector p(ki) to every mode being summed:

U(x)= Ue1−

√
σ 2

N

N∑
i=1

p(ki) ·
(
Z1,i cos(ki · x)

+Z2,i sin(ki · x)
)
, (21)

p(ki)= e1−
ki1

|ki |2
· ki . (22)
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Calculating ∇·U= 0 verifies that the resulting field is indeed
incompressible. An example is shown in Fig. 13. Things like
boundary conditions cannot be modelled with this method,
but it can be used, for example, in transport simulations of
the saturated subsurface (Schüler et al., 2016) or for studying
turbulent open water (Kraichnan, 1970).

2.3.2 Field transformations

GSTools generates Gaussian random fields while real
data often do not follow a Gaussian distribution. This is
typically addressed through data transformation. GSTools
provides a number of appropriate transformations beyond
power transformations provided by the normalizer sub-
module (Sect. 2.1.4): (i) binary, (ii) discrete, (iii)
boxcox (Box and Cox, 1964), (iv) zinnharvey (Zinn
and Harvey, 2003), (v) normal_force_moments,
(vi) normal_to_lognormal, (vii)
normal_to_uniform, (viii) normal_to_arcsin and
(ix) normal_to_uquad.

Transformations can be combined sequentially to create
more complex scenarios as in Fig. 14. Note that, in contrast
to normalizers, transformations cannot be fitted to given data,
which leaves the choice of the best transformation to the user.

2.3.3 Spatio-temporal modelling

Spatio-temporal modelling provides insights into time-
dependent stochastic processes like rainfall, air temperature
or crop yield, which is of high practical relevance. GSTools
provides the metric spatio-temporal model (Cressie and
Wikle, 2011) for all covariance models by enhancing the spa-
tial with a time dimension, resulting in the spatio-temporal
dimension dst:

Cm(r,1t)= C


√√√√ d∑

i=1

(
ri

ei

)2

+

(
1t

κ

)2


= C
(√
r̃2+1t̃2

)
, (23)

where r̃ is the isotropified spatial distance as defined in
Eq. (6), 1t is the temporal distance and 1t̃ the isotropified
temporal distance. The parameter κ accounts for a spatio-
temporal anisotropy ratio and is the last entry of the anis
array appended to the spatial anisotropy ratios. The imple-
mentation in GSTools enables the direct incorporation of
spatial anisotropy and rotation in a spatio-temporal model.
It further supports the use of arbitrary spatial dimensions in
spatio-temporal models. Figure 15 shows the generation of a
spatio-temporal random field with one spatial dimension.

2.3.4 Working on meshes

For improved handling of spatial random fields as input
for PDE solvers like the finite element method (FEM),

GSTools provides an interface for a number of mesh stan-
dards, such as meshio (Schlömer et al., 2021), PyVista
(Sullivan and Kaszynski, 2019) and ogs5py (Müller et al.,
2020). When using meshio or PyVista, the generated
fields will be stored immediately in the mesh container. There
are two options to generate a field on a given mesh: either on
the points (points="points") or on the cell centroids
(points="centroids"), which is important depending
on the specification of the variable in the numerical scheme.
Figure 16 provides an example.

3 GSTools within the ecosystem of the GeoStat
Framework

GSTools is part of a larger suite of Python packages,
collectively hosted on GitHub under https://github.com/
GeoStat-Framework (last access: 31 March 2022). The other
packages in the GeoStat Framework complement some of the
abilities of GSTools and form a comprehensive framework
for geostatistical applications. We introduce some packages
and demonstrate how they interact with, enhance and lever-
age the abilities of GSTools.

3.1 ogs5py

ogs5py (Müller et al., 2020) provides a Python API for the
FEM-based OpenGeoSys 5 (Kolditz et al., 2012) scientific
software suite for hydrogeological processes like ground-
water flow and transport modelling where data scarcity is
a typical shortcoming. Examples are point measurements
of hydraulic head from observation wells and breakthrough
curves from tracer experiments. Inferring hydraulic conduc-
tivity from these data requires a modelling framework with
integrated stochastic data generation. The combination of
GSTools with ogs5py enables a user to integrate the geo-
statistical modelling of an aquifer with hydrogeological sim-
ulations. Such an example for pumping test simulations is
provided in Sect. 4.3.

3.2 welltestpy and AnaFlow

A pumping test is a cost-effective subsurface observation
method typically used by hydrogeologists for aquifer charac-
terization. The package welltestpy (Müller et al., 2021b)
provides tools to handle, process, plot and analyse data from
pumping test campaigns. It assists practitioners in identifying
hydrogeological parameters by fitting measured drawdowns
to some conceptual flow model. The package contains a num-
ber of examples that illustrate these abilities.
AnaFlow (Müller et al., 2021a) provides a wide range

of analytical expressions for pumping tests under various
conditions. Classical examples are Thiem’s and Theis’ so-
lution assuming homogeneous aquifer properties. In addi-
tion, AnaFlow provides extended versions of both solutions,
which account for aquifer heterogeneity and allow for esti-
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Figure 16. Generating spatial random fields on finite element method (FEM) meshes: either on cell centroids (middle) or mesh points (right).
Plotting commands have been omitted.

Figure 17. Estimating the temperature variogram with geographic coordinates using the spherical Yadrenko model. Estimated length scale
is ca. 0.9 (radians) and sill is around 13.

Figure 18. Setting up universal kriging with a drift function.

mating higher-order geostatistical parameters like variance
and correlation length (Zech et al., 2012, 2016).

3.3 PyKrige

GSTools provides an interface to the stand-alone package
PyKrige (Murphy et al., 2021) for more specialized krig-
ing applications. After 10 years of independent development,
PyKrige has recently been migrated to the GeoStat Frame-
work, and its functionality is currently integrated with the
other packages. So far, the covariance model can be ex-
changed between the packages. In the future, PyKrige will

Figure 19. Workflow for regression kriging with a linear regression
model.

become the kriging toolbox for the GeoStat Framework, pro-
viding advanced methods.

3.4 Development, documentation and installation

GSTools is compatible with Python versions ≥ 3.6
, although previous releases support older versions of
Python. Performance-critical parts, like variogram estima-
tion (Sect. 2.1.4), kriging summation (Sect. 2.2.1) and the
summation of the randomization method (Sect. 2.2.2), are
implemented in Cython (Behnel et al., 2011). GSTools
mainly depends on the SciPy ecosystem with its mandatory
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Figure 20. Plot of temperature measurements (a), universal kriging interpolation (b) and regression kriging results (c).

Figure 21. Scatterplot of latitude–temperature values (grey dots),
the linear regression result (dashed orange line), universal kriging
mean drift (dashed blue line) and the cross-sections of the respective
kriging interpolation (solid lines).

dependencies numpy (Harris et al., 2020) and scipy (Vir-
tanen et al., 2020). The source code is maintained under a
GitHub organization for optimizing team efforts. Users have
the opportunity to communicate with developers by asking
questions in a discussions forum, raising issues or improv-
ing code by making pull requests. All packages come with
detailed documentation via https://readthedocs.org (last ac-
cess: 31 March 2022), which contains a range of tutorials ex-
plaining the features and a full API documentation created

by Sphinx. Continuous integration is established through
GitHub actions where Python wheels are pre-built for the
most common operating systems (Windows, Linux, MacOS)
and Python versions to enable simple installation. Each re-
lease on GitHub is directly deployed to the Python package
index (https://www.pypi.org; last access: 31 March 2022) as
well as conda-forge (conda-forge community, 2015). An ex-
tensive set of unit tests are performed automatically and con-
tinuously through GitHub actions.

3.5 Interoperability

To integrate GSTools into the Scientific Python Stack,
we provide a set of interfaces to other packages.
These include the above-mentioned packages ogs5py,
meshio, PyVista and pyevtk (https://github.com/
pyscience-projects/pyevtk, last access: 31 March 2022
) for mesh operations. Other packages for geostatistics
are also supported, such as PyKrige (Sect. 3.3) and
scikit-gstat (Mälicke, 2022), the latter having a fo-
cus on variography and can be used for more detailed var-
iogram estimation. For both packages, interfaces are pro-
vided to convert covariance models of GSTools to or from
their counterparts in the respective package. Another pack-
age worth mentioning is verde (Uieda, 2018), a Python li-
brary for processing and gridding spatial data. Some of the
features provided there can be easily combined with capa-
bilities of GSTools such as detrending data to preprocess
inputs.
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Figure 22. Initialization of an OGS model with mesh generation.

Figure 23. Generating correlated log-normal SRFs adapted to the
mesh settings of the numerical model for three connectivity struc-
tures following the Zinn and Harvey (2003) transformation.

4 Workflows

Having explained the core features of GSTools, we now
provide a couple of example applications covering the topic
of kriging, variogram estimation, random field generation
and coupling with other tools to achieve more elaborate
workflows. The examples illustrate the abilities of GSTools
and serve as a starting point for a user’s project development.
All shown code snippets are taken from the actual workflow
scripts and are not self-contained.

4.1 Regression kriging vs. universal kriging: finding a
north–south temperature trend

Kriging is a well-established interpolation method applied
in many fields of natural science. We compare two options
of incorporating auxiliary variables to calculate the kriging
weights: (i) regression kriging (RK), where the trend of input
data is estimated by regression and simple kriging is applied
to the residuals, and (ii) universal kriging (UK), where the

Figure 24. Tracer transport simulation results: spatially distributed
concentration plumes after 15 d with transmissivity distributions in
the background.

trend model is used as the internal drift in the kriging sys-
tem. The methods differ in use of the covariance model. The
linear RK does not incorporate spatial correlation informa-
tion, while UK does through the drift function for calculat-
ing the kriging weights. Both methods are often considered to
provide mathematically equal results, but we show that there
are sensitive differences. The resources for this workflow are
provided in Müller (2021).

As a data basis, we use measured temperature of the
German weather service retrieved with the Python package
wetterdienst (Gutzmann et al., 2021), which we exam-
ine for a linear north–south trend. We use the established
spherical covariance model in its Yadrenko variant suitable
for geographical coordinates. Variogram estimation and fit-
ting results are shown in Fig. 17.
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Figure 25. Workflow to generate an ensemble of transmissivity fields on a given mesh (a). A single realization in shown in the right plot (b).

Figure 26. Comparison the ensemble mean drawdown 〈h(r, t)〉 (a, d) with the effective head solution hCG(r, t) (c, f) for two parameter sets.
The vanishing absolute difference between both (b, e) shows that they perfectly agree.

Figure 18 shows how to set up the UK estimator, including
the drift function, and Fig. 19 shows the setup of the RK es-
timator. RK requires the preceding step of fitting the regres-
sion model for the trend of the Detrended kriging routine.
The interpolation results are shown in Fig. 20, indicating that
both methods provide equally good results.

Figure 21 shows the estimated mean trends for both UK
and RK, revealing completely contrary results. The RK re-
sult indicates an increase in mean temperature with increas-
ing latitude, which seems reasonable given a raising terrain
elevation from the Baltic Sea in the north towards the Alps
in the south. The estimated mean of UK shows the opposite
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Figure 27. Transmissivity of the Herten aquifer analogue and locations of virtual observations marked as black dots.

Figure 28. Variogram estimation and resulting experimental (dots) and fitted variogram γ (line) of the Herten aquifer analogue.

with temperature decreasing with latitude. A potential expla-
nation here is the general temperature increase towards the
Equator. While the UK mean fits better with the cross-section
at 10◦ longitude (Fig. 21), the RK mean fits the scatter dia-
gram better, as expected.

4.2 Heterogeneous transport simulation: the impact of
connectivity

The combination of ogs5py and GSTools makes it possi-
ble to quickly set up and run subsurface flow and transport
simulations in a heterogeneous aquifer setting. The critical
step is the generation of a spatially distributed hydraulic con-
ductivity distribution, adapted to the numerical simulation
grid. We further demonstrate GSTools’ ability to generate
different connectivity structures, and we discuss their impact
on transport results. The resources for this workflow are pro-
vided in Müller and Zech (2021a).

A flow and transport model is initialized through an in-
stance of the OGS class from ogs5py, with simple mesh
generation (Fig. 22) and specification of model parame-
ters and boundary conditions. Random fields are initialized
through the SRF class (Fig. 23). By passing the subclass

model.msh, mesh details are transferred for generating dis-
tributed values at particular mesh locations, even for unstruc-
tured grids. The subroutine transform.zinnharvey al-
lows for generating Gaussian structures where the mean val-
ues of the field are not connected but the low- or high-
conductivity areas are connected, using the transformation by
Zinn and Harvey (2003). Note that the correlation lengths un-
dergo rescaling (Gong et al., 2013). The concept of connec-
tivity follows the paper by Zinn and Harvey (2003), where
connectedness refers to connected paths of extreme or spe-
cial values in the conductivity field.

Simulated tracer plumes in Fig. 24 show the particular ef-
fects of connectivity: the plume remains relatively compact
for classical Gaussian fields, where mean values are con-
nected. Transformed fields lead to more disrupted, dynamic
plumes, which is mostly caused by trapping in areas of con-
nected low conductivity and preferential flow in connected
high-conductivity areas.
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Figure 29. One realization of the conditioned SRF (a) and absolute difference (b) between the “true” (Fig. 27) and conditioned transmissivity,
showing increasing differences with distance from the conditioning area (rectangle).

Figure 30. Generation of an ensemble of 20 conditional realizations and transmissivity transects T (x) at y = 4 m. The thick blue line is the
true transmissivity (Fig. 27), and the shaded area shows the range of 1 standard deviation calculated from 20 realizations of conditioned
fields. Black points indicate the observations.

4.3 Characterizing mean drawdowns of a pumping test
ensemble

Combining flow simulations in ogs5py with random fields
of GSTools allows for performing Monte Carlo studies to
identify ensemble mean behaviour. Zech et al. (2016) made
use of this workflow to prove the applicability of an effec-
tive drawdown solution for pumping tests in random conduc-
tivity. We present a short form of their workflow, which is
accessible in Müller and Zech (2021b).

The flow model is initialized through the OGS class
with model parameters and boundary conditions creat-
ing the convergent flow setting of a pumping test. The
mesh generation and time stepping can be specifically
adapted to the non-uniform flow conditions. Ensembles
of heterogeneous transmissivity fields are generated with
the SRF class where reproducibility is controlled by the
seed and where normal fields are converted in place with
normalizer.LogNormal as shown in Fig. 25.

The implementation of the randomization method
(Sect. 2.2.2) allows for the adaption of random fields to the
non-uniform grid. The associated variance upscaling follows

the coarse graining procedure for Gaussian variograms
according to Eq. (20).

Calculated ensemble means can be compared to analyt-
ical solutions (Fig. 26), such as Theis’ solution for ho-
mogeneous media or the effective drawdown solution by
Zech et al. (2016), making use of their implementations in
welltestpy and AnaFlow.

4.4 Geostatistical exercises with the Herten aquifer

We demonstrate how to estimate variograms and how to con-
dition spatial random fields on observations using data from
the Herten aquifer analogue (Bayer et al., 2011). The aquifer
analogue was created from surveying multiple outcrop faces
at a gravel pit, situated in the Rhine valley in southern Ger-
many. The 2D information was interpolated to a 3D data set,
including hydraulic, thermal and chemical information. The
workflow files are provided in Schüler and Müller (2021).

We determine spatial correlations through variogram es-
timation using gstools.variogram. First, we identify
the full transmissivity structure. The aquifer analogue data
are given in a facies structure with one hydraulic conduc-
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tivity value K per facies. We calculate transmissivity by in-
tegrating the hydraulic conductivity over the vertical axis
T (x,y)=

∫
K(x,y,z) dz. The structured transmissivity is

shown in Fig. 27, which we consider as true distribution for
the following exercises.

We select 13×13 virtual observations on a rectangular grid
(Fig. 27), covering a subarea of about 42 m2. These observa-
tions are used to determine the empirical variogram shown
in Fig. 28. We fit an exponential covariance model to the
data, which suits well with a coefficient of determination of
R2
= 0.913.

We use the fitted exponential variogram model and ordi-
nary kriging to create conditioned spatial random fields with
CondSRF. Figure 29 shows one realization and the absolute
difference to the true transmissivity (Fig. 27). Differences
grow with increasing distance from observations. This trend
can be even better seen in a transmissivity transect shown
in Fig. 30. The standard deviation calculated from 20 real-
izations of conditioned SRFs shows that deviations from the
reference field are significantly lower close to observation
points.

5 Conclusions

The GSTools package provides a Python-based platform
for geostatistical applications. It is similar to software
packages like gstat for R or stand-alone packages like
TPROGS (Carle, 1999), GSLIB (Deutsch and Journel, 1997)
and S-GeMS (Remy, 2005). However, we believe that a com-
prehensive and ready-made geostatistical software package
for Python has advantages, simply through the choice of the
programming language, as it has a gentle learning curve, is
often used as a glue language and is widely adopted by the
scientific community. Salient features of GSTools are its
random field generation and its versatile covariance model.
It is furthermore integrated with other Python packages, like
PyKrige (Murphy et al., 2021), ogs5py (Müller et al.,
2020) or scikit-gstat (Mälicke, 2022), and provides in-
terfaces to meshio (Schlömer et al., 2021) and PyVista
(Sullivan and Kaszynski, 2019). GeoStat Examples (https:
//github.com/GeoStat-Examples, last access: 31 March 2022
) provides a number of applications, including the four pre-
sented workflows. They showcase the abilities of GSTools
and can serve as a starting point for practitioners to develop
their own solutions for the geostatistical problems they face.

Code availability. As part of the GeoStat Framework, the
code of GSTools is developed at https://github.com/
GeoStat-Framework/GSTools and available via Zenodo at
https://doi.org/10.5281/zenodo.5883346 (Müller and Schüler,
2021). It is distributed under the GNU LGPL v3.0 licence.
The documentation, which includes a quick-start guide, some
more in-depth tutorials and a complete overview over the
API, can be accessed via https://gstools.readthedocs.io/ (last

access: 31 March 2022). The workflows can be found in
separate repositories https://github.com/GeoStat-Examples/
gstools-temperature-trend, (Müller, 2021), https://github.
com/GeoStat-Examples/gstools-connectivity-and-transport,
(Müller and Zech, 2021a), https://github.com/GeoStat-Examples/
gstools-pumping-test-ensemble, (Müller and Zech, 2021b),
https://github.com/GeoStat-Examples/gstools-herten-example, and
(Schüler and Müller, 2021).

Data availability. All data can be accessed by the given
DOIs (https://doi.org/10.5281/zenodo.5159728, Müller, 2021,
https://doi.org/10.5281/zenodo.5159578, Müller and Zech,
2021a, https://doi.org/10.5281/zenodo.4891875, Müller and
Zech, 2021b, https://doi.org/10.5281/zenodo.5159658, Schüler
and Müller, 2021) and the related repositories are hosted under
https://github.com/GeoStat-Examples (last access: 31 March
2022).

Author contributions. SM and LS are the main authors of the
GSTools package, with contributions by Falk Heße to an older
version of the package. SM, LS and AZ contributed to the imple-
mentation of the workflows. AZ acted as supervisor for SM with
respect to the scientific applications of GSTools (workflows). The
article was collectively written by SM, FH, AZ and LS with major
contributions by SM.

Competing interests. The contact author has declared that neither
they nor their co-authors have any competing interests.

Disclaimer. Publisher’s note: Copernicus Publications remains
neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

Acknowledgements. We would like to thank everyone who con-
tributed to GSTools and all the people using it and asking questions
about it. We want to especially thank Mirko Mälicke for the good
cooperation to make SciKit-GStat and GSTools work together har-
moniously and complement each other.

Financial support. Sebastian Müller and Falk Heße were finan-
cially supported by the Deutsche Forschungsgemeinschaft via grant
number HE-7028-1/2. Sebastian Müller was also funded by the
German Federal Environmental Foundation (grant no. 20016/432).
This work was partially funded by the Center of Advanced Systems
Understanding (CASUS), which is financed by Germany’s Federal
Ministry of Education and Research (BMBF) and by the Saxon
Ministry for Science, Culture and Tourism (SMWK) with tax funds
on the basis of the budget approved by the Saxon State Parliament.

The article processing charges for this open-access
publication were covered by the Helmholtz Centre for
Environmental Research – UFZ.

https://doi.org/10.5194/gmd-15-3161-2022 Geosci. Model Dev., 15, 3161–3182, 2022

https://github.com/GeoStat-Examples
https://github.com/GeoStat-Examples
https://github.com/GeoStat-Framework/GSTools
https://github.com/GeoStat-Framework/GSTools
https://doi.org/10.5281/zenodo.5883346
https://gstools.readthedocs.io/
https://github.com/GeoStat-Examples/gstools-temperature-trend
https://github.com/GeoStat-Examples/gstools-temperature-trend
https://github.com/GeoStat-Examples/gstools-connectivity-and-transport
https://github.com/GeoStat-Examples/gstools-connectivity-and-transport
https://github.com/GeoStat-Examples/gstools-pumping-test-ensemble
https://github.com/GeoStat-Examples/gstools-pumping-test-ensemble
https://github.com/GeoStat-Examples/gstools-herten-example
https://doi.org/10.5281/zenodo.5159728
https://doi.org/10.5281/zenodo.5159578
https://doi.org/10.5281/zenodo.4891875
https://doi.org/10.5281/zenodo.5159658
https://github.com/GeoStat-Examples


3180 S. Müller et al.: GeoStatTools

Review statement. This paper was edited by Fabien Maussion and
reviewed by two anonymous referees.

References

Abramowitz, M., and Stegun, I. A.: Handbook of mathematical
functions, 10th edn., Dover Publications, New York, ISBN 978-
0-486-61272-0, 1972.

Attinger, S.: Generalized coarse graining procedures for
flow in porous media, Computat. Geosci., 7, 253–273,
https://doi.org/10.1023/B:COMG.0000005243.73381.e3, 2003.

Banerjee, S., Carlin, B. P., and Gelfand, A. E.: Hierarchical Mod-
eling and Analysis for Spatial Data, 2 edn., Chapman and Hal-
l/CRC, Boca Raton, https://doi.org/10.1201/b17115, 2014.

Bayer, P., Huggenberger, P., Renard, P., and Comunian,
A.: Three-dimensional high resolution fluvio-glacial
aquifer analog: Part 1: Field study, J. Hydrol., 405, 1–9,
https://doi.org/10.1016/j.jhydrol.2011.03.038, 2011.

Beg, M., Taka, J., Kluyver, T., Konovalov, A., Ragan-Kelley,
M., Thiéry, N. M., and Fangohr, H.: Using Jupyter for Re-
producible Scientific Workflows, in: Computing in Science
Engineering, Computing in Science Engineering, 23, 36–46,
https://doi.org/10.1109/MCSE.2021.3052101, 2021.

Behnel, S., Bradshaw, R., Citro, C., Dalcin, L., Seljebotn, D. S.,
and Smith, K.: Cython: The Best of Both Worlds, in: Computing
in Science Engineering, Computing in Science Engineering, 13,
31–39, https://doi.org/10.1109/MCSE.2010.118, 2011.

Bellin, A. and Rubin, Y.: HYDRO_GEN: A spatially distributed
random field generator for correlated properties, Stoch. Hydrol.
Hydraul., 10, 253–278, https://doi.org/10.1007/BF01581869,
1996.

Box, G. E. P. and Cox, D. R.: An Analysis of Transformations, J.
Roy. Stat. Soc. B, 26, 211–243, https://doi.org/10.1111/j.2517-
6161.1964.tb00553.x, 1964.

Brouste, A., Istas, J., and Lambert-Lacroix, S.: On Fractional
Gaussian Random Fields Simulations, J. Stat. Softw., 23, 1–23
, https://doi.org/10.18637/jss.v023.i01, 2008.

Carle, S. F.: T-PROGS: Transition probability geostatistical soft-
ware, version 2.1, Tech. Rep., University of California, Davis,
http://gmsdocs.aquaveo.com/t-progs.pdf (last access: 31 March
2022), 1999.

Cecinati, F., Wani, O., and Rico-Ramirez, M. A.: Comparing Ap-
proaches to Deal With Non-Gaussianity of Rainfall Data in
Kriging-Based Radar-Gauge Rainfall Merging, Water Resour.
Res., 53, 8999–9018, https://doi.org/10.1002/2016WR020330,
2017.

Chilès, J.-P. and Delfiner, P.: Geostatistics: Modeling Spatial Un-
certainty, second edn., Wiley Series in Probability and Statistics,
edited by: Balding, D. J., Cressie, N. A. C., Fitzmaurice, G. M.,
Goldstein, H., Johnstone, I. M., Molenberghs, G., Scott, D. W.,
Smith, A. F. M., Tsay, R. S., and Weisberg, S., John Wiley &
Sons, https://doi.org/10.1002/9781118136188, 2012.

Cirpka, O. A. and Valocchi, A. J.: Debates – Stochastic sub-
surface hydrology from theory to practice: Does stochastic
subsurface hydrology help solving practical problems of con-
taminant hydrogeology?, Water Resour. Res., 52, 9218–9227,
https://doi.org/10.1002/2016WR019087, 2016.

conda-forge community: The conda-forge Project: Community-
based Software Distribution Built on the conda
Package Format and Ecosystem, Zenodo [software],
https://doi.org/10.5281/zenodo.4774217, 2015.

Cressie, N. and Wikle, C. K.: Statistics for spatio-temporal data,
Wiley Series in Probability and Statistics, 1st edn., John Wiley &
Sons, Hoboken, New Jersey, ISBN 978-0-471-69274-4, 2011.

Dagan, G.: Flow and Transport in Porous Formations, 1st edn.,
Springer, Berlin, Heidelberg, https://doi.org/10.1007/978-3-642-
75015-1, 1989.

Deutsch, C. V. and Journel, A. G.: GSLIB: Geostatistical software
library and user’s guide, Applied geostatistics series, 2. edn., Ox-
ford University Press, ISBN 9780195100150, 1997.

Di Federico, V. and Neuman, S. P.: Scaling of random
fields by means of truncated power variograms and as-
sociated spectra, Water Resour. Res., 33, 1075–1085,
https://doi.org/10.1029/97WR00299, 1997.

Diggle, P. and Ribeiro, P. J.: Model-based Geostatistics, Springer
Series in Statistics, 1st edn., Springer-Verlag, New York,
https://doi.org/10.1007/978-0-387-48536-2, 2007.

Eliason, S. R.: Maximum likelihood estimation: Logic and prac-
tice, Sage Publications, 1st edn., Thousand Oaks, CA, US, ISBN
9781506315904, 1993.

Emery, X.: Testing the correctness of the sequential algorithm for
simulating Gaussian random fields, Stoch. Env. Res. Risk A., 18,
401–413, https://doi.org/10.1007/s00477-004-0211-7, 2004.

Fiori, A., Cvetkovic, V., Dagan, G., Attinger, S., Bellin, A., Diet-
rich, P., Zech, A., and Teutsch, G.: Debates – Stochastic sub-
surface hydrology from theory to practice: The relevance of
stochastic subsurface hydrology to practical problems of con-
taminant transport and remediation. What is characterization and
stochastic theory good for?, Water Resour. Res., 52, 9228–9234,
https://doi.org/10.1002/2015WR017525, 2016.

Foreman-Mackey, D., Hogg, D. W., Lang, D., and Goodman, J.:
emcee: The MCMC Hammer, Publ. Astron. Soc. Pac., 125, 306–
312, https://doi.org/10.1086/670067, 2013.

Goldstein, H.: Classical mechanics, 2nd edn., Addison-Wesley,
ISBN 9780201029185, 1980.

Gong, R., Haslauer, C. P., Chen, Y., and Luo, J.: Analytical re-
lationship between Gaussian and transformed-Gaussian spa-
tially distributed fields, Water Resour. Res., 49, 1735–1740,
https://doi.org/10.1002/wrcr.20143, 2013.

Goovaerts, P.: Geostatistics in soil science: state-of-the-art and per-
spectives, Geoderma, 89, 1–45, https://doi.org/10.1016/S0016-
7061(98)00078-0, 1999.

Gutzmann, B., Motl, A., Lassahn, D., Kamenshchikov,
I., Bachmann, M., and Schrammel, M.: earthob-
servations/wetterdienst: v0.18.0, Zenodo [software],
https://doi.org/10.5281/zenodo.4737739, 2021.

Harris, C. R., Millman, K. J., van der Walt, S. J., Gommers,
R., Virtanen, P., Cournapeau, D., Wieser, E., Taylor, J., Berg,
S., Smith, N. J., Kern, R., Picus, M., Hoyer, S., van Kerk-
wijk, M. H., Brett, M., Haldane, A., Fernández del Río, J.,
Wiebe, M., Peterson, P., Gérard-Marchant, P., Sheppard, K.,
Reddy, T., Weckesser, W., Abbasi, H., Gohlke, C., and Oliphant,
T. E.: Array programming with NumPy, Nature, 585, 357–362,
https://doi.org/10.1038/s41586-020-2649-2, 2020.

Heße, F., Prykhodko, V., Schlüter, S., and Attinger, S.: Generating
random fields with a truncated power-law variogram: A compar-

Geosci. Model Dev., 15, 3161–3182, 2022 https://doi.org/10.5194/gmd-15-3161-2022

https://doi.org/10.1023/B:COMG.0000005243.73381.e3
https://doi.org/10.1201/b17115
https://doi.org/10.1016/j.jhydrol.2011.03.038
https://doi.org/10.1109/MCSE.2021.3052101
https://doi.org/10.1109/MCSE.2010.118
https://doi.org/10.1007/BF01581869
https://doi.org/10.1111/j.2517-6161.1964.tb00553.x
https://doi.org/10.1111/j.2517-6161.1964.tb00553.x
https://doi.org/10.18637/jss.v023.i01
http://gmsdocs.aquaveo.com/t-progs.pdf
https://doi.org/10.1002/2016WR020330
https://doi.org/10.1002/9781118136188
https://doi.org/10.1002/2016WR019087
https://doi.org/10.5281/zenodo.4774217
https://doi.org/10.1007/978-3-642-75015-1
https://doi.org/10.1007/978-3-642-75015-1
https://doi.org/10.1029/97WR00299
https://doi.org/10.1007/978-0-387-48536-2
https://doi.org/10.1007/s00477-004-0211-7
https://doi.org/10.1002/2015WR017525
https://doi.org/10.1086/670067
https://doi.org/10.1002/wrcr.20143
https://doi.org/10.1016/S0016-7061(98)00078-0
https://doi.org/10.1016/S0016-7061(98)00078-0
https://doi.org/10.5281/zenodo.4737739
https://doi.org/10.1038/s41586-020-2649-2


S. Müller et al.: GeoStatTools 3181

ison of several numerical methods, Environ. Modell. Softw., 55,
32–48, https://doi.org/10.1016/j.envsoft.2014.01.013, 2014.

Hohn, M.: Geostatistics and Petroleum Geology, Computer
Methods in the Geosciences, 2 edn., Springer Netherlands,
https://doi.org/10.1007/978-94-011-4425-4, 1999.

John, J. A. and Draper, N. R.: An Alternative Family of
Transformations, J. Roy. Stat. Soc. C-App., 29, 190–197,
https://doi.org/10.2307/2986305, 1980.

Kitanidis, P.: Introduction to Geostatistics: Applications in Hydro-
geology, 1st edn., Cambridge University Press, Cambridge, New
York, ISBN 9780521587471, 2008.

Kolditz, O., Bauer, S., Bilke, L., Böttcher, N., Delfs, J.-O., Fis-
cher, T., Görke, U. J., Kalbacher, T., Kosakowski, G., McDer-
mott, C. I., Park, C. H., Radu, F., Rink, K., Shao, H., Shao,
H. B., Sun, F., Sun, Y. Y., Singh, A. K., Taron, J., Walther,
M., Wang, W., Watanabe, N., Wu, Y., Xie, M., Xu, W., and
Zehner, B.: OpenGeoSys: An open-source initiative for numer-
ical simulation of thermo-hydro-mechanical/chemical (THM/C)
processes in porous media, Environ. Earth Sci., 67, 589–599,
https://doi.org/10.1007/s12665-012-1546-x, 2012.

Kraichnan, R.: Diffusion by a Random Velocity Field, Phys. Fluids,
13, 22–31, https://doi.org/10.1063/1.1692799, 1970.

Krige, D. G.: A statistical approach to some basic mine valuation
problems on the Witwatersrand, J. S. Afr. I. Min. Metall., 52,
119–139, 1951.

Lantuéjoul, C., Freulon, X., and Renard, D.: Spectral Simu-
lation of Isotropic Gaussian Random Fields on a Sphere,
Math. Geosci., 51, 999–1020, https://doi.org/10.1007/s11004-
019-09799-4, 2019.

Mälicke, M.: SciKit-GStat 1.0: a SciPy-flavored geostatisti-
cal variogram estimation toolbox written in Python, Geosci.
Model Dev., 15, 2505–2532, https://doi.org/10.5194/gmd-15-
2505-2022, 2022.

Manly, B. F. J.: Exponential Data Transformations, J. Roy. Stat. Soc.
D-Sta., 25, 37–42, https://doi.org/10.2307/2988129, 1976.

Matheron, G.: Traité de géostatistique appliquée, no. 14 in Mé-
moires du BRGM, Editions Technip, Tome II: le krigeage, no
24, Editions BRGM, Paris, 1962.

Matern, B.: Spatial variation – stochastic models and their applica-
tions to some problems in forest survey sampling investigations,
Report of the Forest Research Institute of Sweden 49, 1–144,
1960 (in English, Swedish summary).

Mohammadi, H., Riche, R. L., Durrande, N., Touboul, E., and Bay,
X.: An analytic comparison of regularization methods for Gaus-
sian Processes, arXiv [preprint], arXiv:1602.00853, 5 May 2017.

Monestiez, P., Petrenko, A., Leredde, Y., and Ongari, B.: Geosta-
tistical analysis of three dimensional current patterns in coastal
oceanography: Application to the gulf of lions (NW mediter-
ranean sea), in: geoENV IV – Geostatistics for environmental ap-
plications, edited by: Sanchez-Vila, X., Carrera, J., and Gómez-
Hernández, J. J., pp. 367–378, Springer Netherlands, Dordrecht,
https://doi.org/10.1007/1-4020-2115-1_31, 2004.

Müller, S.: GeoStat – Examples/gstools-temperature-trend: v1.0,
Zenodo [data set], https://doi.org/10.5281/zenodo.5159728,
2021.

Müller, S. and Schüler, L.: GeoStat – Frame-
work/GSTools: v1.3.5 “Pure Pink”, Zenodo [code],
https://doi.org/10.5281/zenodo.5883346, 2021.

Müller, S. and Zech, A.: GeoStat – Examples/gstools-
connectivity-and-transport: v1.0, Zenodo [data set],
https://doi.org/10.5281/zenodo.5159578, 2021a.

Müller, S. and Zech, A.: GeoStat – Examples/gstools-
pumping-test-ensemble: v1.0, Zenodo [data set],
https://doi.org/10.5281/zenodo.4891875, 2021b.

Müller, S., Zech, A., and Heße, F.: ogs5py: A Python – API for the
OpenGeoSys 5 Scientific Modeling Package, Groundwater, 59,
117–122, https://doi.org/10.1111/gwat.13017, 2020.

Müller, S., Heße, F., Attinger, S., and Zech, A.: The extended gen-
eralized radial flow model and effective conductivity for trun-
cated power law variograms, Adv. Water Resour., 156, 104027,
https://doi.org/10.1016/j.advwatres.2021.104027, 2021a.

Müller, S., Leven, C., Dietrich, P., Attinger, S., and Zech, A.:
How to Find Aquifer Statistics Utilizing Pumping Tests? Two
Field Studies Using welltestpy, Groundwater, 60, 137–144,
https://doi.org/10.1111/gwat.13121, 2021b.

Murphy, B., Müller, S., and Yurchak, R.: GeoStat-
Framework/PyKrige: v1.6.0, Zenodo [code],
https://doi.org/10.5281/zenodo.4661732, 2021.

Murray, S. G. and Poulin, F. J.: hankel: A Python li-
brary for performing simple and accurate Hankel transfor-
mations, The Journal of Open Source Software, 4, 1397,
https://doi.org/10.21105/joss.01397, 2019.

Neuman, S. P.: Stochastic groundwater models in practice, Stoch.
Env. Res. Risk A., 18, 268–270, https://doi.org/10.1007/s00477-
004-0192-6, 2004.

Ogata, H.: A Numerical Integration Formula Based on the
Bessel Functions, Publ. Res. I. Math. Sci., 41, 949–970,
https://doi.org/10.2977/prims/1145474602, 2005.

Pebesma, E. J.: Multivariable geostatistics in S: the
gstat package, Comput. Geosci., 30, 683–691,
https://doi.org/10.1016/j.cageo.2004.03.012, 2004.

Perkel, J. M.: Why Jupyter is data scientists’ compu-
tational notebook of choice, Nature, 563, 145–146,
https://doi.org/10.1038/d41586-018-07196-1, 2018.

Pyrcz, M. J. and Deutsch, C. V.: Geostatistical Reservoir Modeling,
2 edn., Oxford University Press, Oxford, ISBN 978-0199731442,
2014.

Queiroz, F., Silva, R., Miller, J., Brockhauser, S., and
Fangohr, H.: Track 1 Paper: Good Usability Prac-
tices in Scientific Software Development, Figshare,
https://doi.org/10.6084/m9.figshare.5331814.v3, 2017.

Rajaram, H.: Debates – Stochastic subsurface hydrology from the-
ory to practice: Introduction, Water Resour. Res., 52, 9215–9217,
https://doi.org/10.1002/2016WR020066, 2016.

Rasmussen, C. E. and Williams, C. K. I.: Gaus-
sian Processes for Machine Learning, 1st
edn., The MIT Press, ISBN 9780262256834,
https://doi.org/10.7551/mitpress/3206.001.0001, 2005.

Remy, N.: S-GeMS: The Stanford Geostatistical Modeling Soft-
ware: A Tool for New Algorithms Development, in: Quantitative
Geology and Geostatistics, Geostatistics Banff 2004, 14, 865–
871, https://doi.org/10.1007/978-1-4020-3610-1_89, 2005.

Rossi, R. E., Mulla, D. J., Journel, A. G., and Franz,
E. H.: Geostatistical tools for modeling and interpreting
ecological spatial dependence, Ecol. Monogr., 62, 277–314,
https://doi.org/10.2307/2937096, 1992.

https://doi.org/10.5194/gmd-15-3161-2022 Geosci. Model Dev., 15, 3161–3182, 2022

https://doi.org/10.1016/j.envsoft.2014.01.013
https://doi.org/10.1007/978-94-011-4425-4
https://doi.org/10.2307/2986305
https://doi.org/10.1007/s12665-012-1546-x
https://doi.org/10.1063/1.1692799
https://doi.org/10.1007/s11004-019-09799-4
https://doi.org/10.1007/s11004-019-09799-4
https://doi.org/10.5194/gmd-15-2505-2022
https://doi.org/10.5194/gmd-15-2505-2022
https://doi.org/10.2307/2988129
http://arxiv.org/abs/1602.00853
https://doi.org/10.1007/1-4020-2115-1_31
https://doi.org/10.5281/zenodo.5159728
https://doi.org/10.5281/zenodo.5883346
https://doi.org/10.5281/zenodo.5159578
https://doi.org/10.5281/zenodo.4891875
https://doi.org/10.1111/gwat.13017
https://doi.org/10.1016/j.advwatres.2021.104027
https://doi.org/10.1111/gwat.13121
https://doi.org/10.5281/zenodo.4661732
https://doi.org/10.21105/joss.01397
https://doi.org/10.1007/s00477-004-0192-6
https://doi.org/10.1007/s00477-004-0192-6
https://doi.org/10.2977/prims/1145474602
https://doi.org/10.1016/j.cageo.2004.03.012
https://doi.org/10.1038/d41586-018-07196-1
https://doi.org/10.6084/m9.figshare.5331814.v3
https://doi.org/10.1002/2016WR020066
https://doi.org/10.7551/mitpress/3206.001.0001
https://doi.org/10.1007/978-1-4020-3610-1_89
https://doi.org/10.2307/2937096


3182 S. Müller et al.: GeoStatTools

Rubin, Y.: Applied Stochastic Hydrogeology, 1st edn., Ox-
ford University Press, New York, ISBN 9780195138047,
https://doi.org/10.1093/oso/9780195138047.001.0001, 2003.

Rubin, Y., Chen, X., Murakami, H., and Hahn, M.: A Bayesian
approach for inverse modeling, data assimilation, and condi-
tional simulation of spatial random fields, Water Resour. Res.,
46, W10523, https://doi.org/10.1029/2009WR008799, 2010.

Rubin, Y., Chang, C.-F., Chen, J., Cucchi, K., Harken, B., Heße, F.,
and Savoy, H.: Stochastic hydrogeology’s biggest hurdles ana-
lyzed and its big blind spot, Hydrol. Earth Syst. Sci., 22, 5675–
5695, https://doi.org/10.5194/hess-22-5675-2018, 2018.

Rudin, W.: Fourier Analysis on Groups, 1st edn., Wiley-
Interscience, John Wiley & Sons, ISBN 9780470744819,
https://doi.org/10.1002/9781118165621, 1990.

Sales, M. H., Souza, C. M., Kyriakidis, P. C., Roberts,
D. A., and Vidal, E.: Improving spatial distribution es-
timation of forest biomass with geostatistics: A case
study for Rondônia, Brazil, Ecol. Model., 205, 221–230,
https://doi.org/10.1016/j.ecolmodel.2007.02.033, 2007.

Savoy, H., Heße, F., and Rubin, Y.: anchoredDistr: a Pack-
age for the Bayesian Inversion of Geostatistical Parameters
with Multi-type and Multi-scale Data, R Journal, 9, 6–17,
https://doi.org/10.32614/RJ-2017-034, 2017.

Schlömer, N., McBain, G. D., Luu, K., christos, Li, T., Hochste-
ger, M., Keilegavlen, E., Ferrándiz, V. M., Barnes, C.,
Lukeš, V., Dalcin, L., Jansen, M., Wagner, N., Gupta, A.,
Müller, S., Woodsend, B., Andersen, K., Schwarz, L., Blechta,
J., Christovasilis, I. P., Coutinho, C., Beurle, D., ffilotto,
Dokken, J. S., blacheref, so1291, Cervone, A., Shrimali, B.,
Bill, and Jones, D.: nschloe/meshio: None, Zenodo [code],
https://doi.org/10.5281/zenodo.4900671, 2021.

Schüler, L. and Müller, S.: GeoStat – Examples/gstools-
herten-example: v1.0, Zenodo [data set],
https://doi.org/10.5281/zenodo.5159658, 2021.

Schüler, L., Suciu, N., Knabner, P., and Attinger, S.: A time
dependent mixing model to close PDF equations for trans-
port in heterogeneous aquifers, Adv. Water Resour., 96, 55–67,
https://doi.org/10.1016/j.advwatres.2016.06.012, 2016.

Schüler, L., Calabrese, J. M., and Attinger, S.: Data driven
high resolution modeling and spatial analyses of the
COVID-19 pandemic in Germany, PLOS ONE, 16, 1–14,
https://doi.org/10.1371/journal.pone.0254660, 2021.

Sturges, H. A.: The Choice of a Class Interval, J. Am. Stat. Assoc.,
21, 65–66, https://doi.org/10.1080/01621459.1926.10502161,
1926.

Sullivan, C. B. and Kaszynski, A. A.: PyVista: 3D plotting and
mesh analysis through a streamlined interface for the Visualiza-
tion Toolkit (VTK), Journal of Open Source Software, 4, 1450,
https://doi.org/10.21105/joss.01450, 2019.

Uieda, L.: Verde: Processing and gridding spatial data using
Green’s functions, Journal of Open Source Software, 3, 957,
https://doi.org/10.21105/joss.00957, 2018.

Virtanen, P., Gommers, R., Oliphant, T. E., Haberland, M., Reddy,
T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W.,
Bright, J., van der Walt, S. J., Brett, M., Wilson, J., Millman,
K. J., Mayorov, N., Nelson, A. R. J., Jones, E., Kern, R., Larson,
E., Carey, C. J., Polat, i., Feng, Y., Moore, E. W., VanderPlas,
J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quin-
tero, E. A., Harris, C. R., Archibald, A. M., Ribeiro, A. H., Pe-
dregosa, F., van Mulbregt, P., and SciPy 1.0 Contributors: SciPy
1.0: Fundamental algorithms for scientific computing in python,
Nat. Methods, 17, 261–272, https://doi.org/10.1038/s41592-019-
0686-2, 2020.

Vrugt, J. A.: Markov chain Monte Carlo simulation using
the DREAM software package: Theory, concepts, and MAT-
LAB implementation, Environ. Modell. Softw., 75, 273–316,
https://doi.org/10.1016/j.envsoft.2015.08.013, 2016.

Wackernagel, H.: Multivariate Geostatistics: An Introduction
with Applications, 3 edn., Springer-Verlag, Berlin Heidel-
berg, ISBN 978-3-540-44142-7, https://doi.org/10.1007/978-3-
662-05294-5, 2003.

Webster, R. and Oliver, M. A.: Geostatistics for Environmental Sci-
entists, 2 edn., John Wiley & Sons, ISBN 978-0-470-02858-2,
2007.

Wendland, H.: Piecewise polynomial, positive definite and com-
pactly supported radial functions of minimal degree, Adv. Com-
put. Math., 4, 389–396, https://doi.org/10.1007/BF02123482,
1995.

Winter, C. L.: Stochastic hydrology: practical alterna-
tives exist, Stoch. Env. Res. Risk A., 18, 271–273,
https://doi.org/10.1007/s00477-004-0198-0, 2004.

Yeo, I. and Johnson, R. A.: A new family of power transforma-
tions to improve normality or symmetry, Biometrika, 87, 954–
959, https://doi.org/10.1093/biomet/87.4.954, 2000.

Zech, A., Schneider, C. L., and Attinger, S.: The extended Thiem’s
solution – Including the impact of heterogeneity, Water Resour.
Res., 48, W10535, https://doi.org/10.1029/2012WR011852,
2012.

Zech, A., Müller, S., Mai, J., Heße, F., and Attinger, S.: Extending
Theis’ solution: Using transient pumping tests to estimate pa-
rameters of aquifer heterogeneity, Water Resour. Res., 52, 6156–
6170, https://doi.org/10.1002/2015WR018509, 2016.

Zhang, Y.-K. and Zhang, D.: Forum: The state of stochas-
tic hydrology, Stoch. Env. Res. Risk A., 18, 265,
https://doi.org/10.1007/s00477-004-0190-8, 2004.

Zinn, B. and Harvey, C. F.: When good statistical models of
aquifer heterogeneity go bad: A comparison of flow, disper-
sion, and mass transfer in connected and multivariate Gaus-
sian hydraulic conductivity fields, Water Resour. Res., 39, 1051,
https://doi.org/10.1029/2001WR001146, 2003.

Geosci. Model Dev., 15, 3161–3182, 2022 https://doi.org/10.5194/gmd-15-3161-2022

https://doi.org/10.1093/oso/9780195138047.001.0001
https://doi.org/10.1029/2009WR008799
https://doi.org/10.5194/hess-22-5675-2018
https://doi.org/10.1002/9781118165621
https://doi.org/10.1016/j.ecolmodel.2007.02.033
https://doi.org/10.32614/RJ-2017-034
https://doi.org/10.5281/zenodo.4900671
https://doi.org/10.5281/zenodo.5159658
https://doi.org/10.1016/j.advwatres.2016.06.012
https://doi.org/10.1371/journal.pone.0254660
https://doi.org/10.1080/01621459.1926.10502161
https://doi.org/10.21105/joss.01450
https://doi.org/10.21105/joss.00957
https://doi.org/10.1038/s41592-019-0686-2
https://doi.org/10.1038/s41592-019-0686-2
https://doi.org/10.1016/j.envsoft.2015.08.013
https://doi.org/10.1007/978-3-662-05294-5
https://doi.org/10.1007/978-3-662-05294-5
https://doi.org/10.1007/BF02123482
https://doi.org/10.1007/s00477-004-0198-0
https://doi.org/10.1093/biomet/87.4.954
https://doi.org/10.1029/2012WR011852
https://doi.org/10.1002/2015WR018509
https://doi.org/10.1007/s00477-004-0190-8
https://doi.org/10.1029/2001WR001146

	Abstract
	Introduction
	GSTools features
	Covariance models and variography
	Covariance models
	Anisotropy and rotation
	Geographical coordinates
	Empirical variogram, data preparation and model fitting

	Kriging, random fields and conditioned random fields
	Kriging
	Random fields
	Conditioned random fields

	Additional features
	Incompressible random vector field generation
	Field transformations
	Spatio-temporal modelling
	Working on meshes


	GSTools within the ecosystem of the GeoStat Framework
	ogs5py
	welltestpy and AnaFlow
	PyKrige
	Development, documentation and installation
	Interoperability

	Workflows
	Regression kriging vs. universal kriging: finding a north–south temperature trend
	Heterogeneous transport simulation: the impact of connectivity
	Characterizing mean drawdowns of a pumping test ensemble
	Geostatistical exercises with the Herten aquifer

	Conclusions
	Code availability
	Data availability
	Author contributions
	Competing interests
	Disclaimer
	Acknowledgements
	Financial support
	Review statement
	References

