Articles | Volume 15, issue 5
https://doi.org/10.5194/gmd-15-1855-2022
https://doi.org/10.5194/gmd-15-1855-2022
Model description paper
 | 
07 Mar 2022
Model description paper |  | 07 Mar 2022

Fast infrared radiative transfer calculations using graphics processing units: JURASSIC-GPU v2.0

Paul F. Baumeister and Lars Hoffmann

Related authors

Massive-Parallel Trajectory Calculations version 2.2 (MPTRAC-2.2): Lagrangian transport simulations on graphics processing units (GPUs)
Lars Hoffmann, Paul F. Baumeister, Zhongyin Cai, Jan Clemens, Sabine Griessbach, Gebhard Günther, Yi Heng, Mingzhao Liu, Kaveh Haghighi Mood, Olaf Stein, Nicole Thomas, Bärbel Vogel, Xue Wu, and Ling Zou
Geosci. Model Dev., 15, 2731–2762, https://doi.org/10.5194/gmd-15-2731-2022,https://doi.org/10.5194/gmd-15-2731-2022, 2022
Short summary
Trajectory errors of different numerical integration schemes diagnosed with the MPTRAC advection module driven by ECMWF operational analyses
Thomas Rößler, Olaf Stein, Yi Heng, Paul Baumeister, and Lars Hoffmann
Geosci. Model Dev., 11, 575–592, https://doi.org/10.5194/gmd-11-575-2018,https://doi.org/10.5194/gmd-11-575-2018, 2018
Short summary

Related subject area

Earth and space science informatics
Machine learning for numerical weather and climate modelling: a review
Catherine O. de Burgh-Day and Tennessee Leeuwenburg
Geosci. Model Dev., 16, 6433–6477, https://doi.org/10.5194/gmd-16-6433-2023,https://doi.org/10.5194/gmd-16-6433-2023, 2023
Short summary
Overcoming barriers to enable convergence research by integrating ecological and climate sciences: the NCAR–NEON system Version 1
Danica L. Lombardozzi, William R. Wieder, Negin Sobhani, Gordon B. Bonan, David Durden, Dawn Lenz, Michael SanClements, Samantha Weintraub-Leff, Edward Ayres, Christopher R. Florian, Kyla Dahlin, Sanjiv Kumar, Abigail L. S. Swann, Claire M. Zarakas, Charles Vardeman, and Valerio Pascucci
Geosci. Model Dev., 16, 5979–6000, https://doi.org/10.5194/gmd-16-5979-2023,https://doi.org/10.5194/gmd-16-5979-2023, 2023
Short summary
Ensemble of optimised machine learning algorithms for predicting surface soil moisture content at a global scale
Qianqian Han, Yijian Zeng, Lijie Zhang, Calimanut-Ionut Cira, Egor Prikaziuk, Ting Duan, Chao Wang, Brigitta Szabó, Salvatore Manfreda, Ruodan Zhuang, and Bob Su
Geosci. Model Dev., 16, 5825–5845, https://doi.org/10.5194/gmd-16-5825-2023,https://doi.org/10.5194/gmd-16-5825-2023, 2023
Short summary
Hazard assessment modeling and software development of earthquake-triggered landslides in the Sichuan–Yunnan area, China
Xiaoyi Shao, Siyuan Ma, and Chong Xu
Geosci. Model Dev., 16, 5113–5129, https://doi.org/10.5194/gmd-16-5113-2023,https://doi.org/10.5194/gmd-16-5113-2023, 2023
Short summary
A generalized spatial autoregressive neural network method for three-dimensional spatial interpolation
Junda Zhan, Sensen Wu, Jin Qi, Jindi Zeng, Mengjiao Qin, Yuanyuan Wang, and Zhenhong Du
Geosci. Model Dev., 16, 2777–2794, https://doi.org/10.5194/gmd-16-2777-2023,https://doi.org/10.5194/gmd-16-2777-2023, 2023
Short summary

Cited articles

Baumeister, P. and Hoffmann, L.: slcs-jsc/jurassic-gpu: v2.0, Zenodo [code], https://doi.org/10.5281/zenodo.4923608, 2021. a
Baumeister, P. F., Rombach, B., Hater, T., Griessbach, S., Hoffmann, L., Bühler, M., and Pleiter, D.: Strategies for Forward Modelling of Infrared Radiative Transfer on GPUs, in: Parallel Computing is Everywhere, vol. 32 of Advances in Parallel Computing, Parallel Computing, Bologna (Italy), 12–15 September 2017, IOS Press, Amsterdam, pp. 369–380, https://doi.org/10.3233/978-1-61499-843-3-369, 2017. a, b, c, d, e, f, g
Blumstein, D., Chalon, G., Carlier, T., Buil, C., Hebert, P., Maciaszek, T., Ponce, G., Phulpin, T., Tournier, B., Simeoni, D., Astruc, P., Clauss, A., Kayal, G., and Jegou, R.: IASI instrument: Technical overview and measured performances, in: Infrared Spaceborne Remote Sensing XII, vol. 5543, pp. 196–207, International Society for Optics and Photonics, https://doi.org/10.1117/12.560907, 2004. a
Born, M. and Wolf, E.: Principles of Optics, Cambridge University Press, Cambridge, 1999. a
Chandrasekhar, S.: Radiative Transfer, Dover Publications, New York, 1960. a
Download
Short summary
The efficiency of the numerical simulation of radiative transport is shown on modern server-class graphics cards (GPUs). The low-cost prefactor on GPUs compared to general-purpose processors (CPUs) enables future large retrieval campaigns for multi-channel data from infrared sounders aboard low-orbit satellites. The validated research software JURASSIC is available in the public domain.