Development and technical paper
03 Mar 2022
Development and technical paper
| 03 Mar 2022
A three-dimensional variational data assimilation system for aerosol optical properties based on WRF-Chem v4.0: design, development, and application of assimilating Himawari-8 aerosol observations
Daichun Wang et al.
Related authors
No articles found.
Yiwen Hu, Zengliang Zang, Xiaoyan Ma, Yi Li, Yanfei Liang, Wei You, Xiaobin Pan, and Zhijin Li
Atmos. Chem. Phys., 22, 13183–13200, https://doi.org/10.5194/acp-22-13183-2022, https://doi.org/10.5194/acp-22-13183-2022, 2022
Short summary
Short summary
This study developed a four-dimensional variational assimilation (4DVAR) system based on WRF–Chem to optimise SO2 emissions. The 4DVAR system was applied to obtain the SO2 emissions during the early period of the COVID-19 pandemic over China. The results showed that the 4DVAR system effectively optimised emissions to describe the actual changes in SO2 emissions related to the COVID lockdown, and it can thus be used to improve the accuracy of forecasts.
Xinghong Cheng, Zilong Hao, Zengliang Zang, Zhiquan Liu, Xiangde Xu, Shuisheng Wang, Yuelin Liu, Yiwen Hu, and Xiaodan Ma
Atmos. Chem. Phys., 21, 13747–13761, https://doi.org/10.5194/acp-21-13747-2021, https://doi.org/10.5194/acp-21-13747-2021, 2021
Short summary
Short summary
We develop a new inversion method of emission sources based on sensitivity analysis and the three-dimension variational technique. The novel explicit observation operator matrix between emission sources and the receptor’s concentrations is established. Then this method is applied to a typical heavy haze episode in North China, and spatiotemporal variations of SO2, NO2, and O3 concentrations simulated using a posterior emission sources are compared with results using an a priori inventory.
Yanfei Liang, Zengliang Zang, Dong Liu, Peng Yan, Yiwen Hu, Yan Zhou, and Wei You
Geosci. Model Dev., 13, 6285–6301, https://doi.org/10.5194/gmd-13-6285-2020, https://doi.org/10.5194/gmd-13-6285-2020, 2020
Y. Liang, Z. Zang, and W. You
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLII-3, 999–1002, https://doi.org/10.5194/isprs-archives-XLII-3-999-2018, https://doi.org/10.5194/isprs-archives-XLII-3-999-2018, 2018
Z. Zang, X. Pan, W. You, and Y. Liang
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLII-3, 2215–2218, https://doi.org/10.5194/isprs-archives-XLII-3-2215-2018, https://doi.org/10.5194/isprs-archives-XLII-3-2215-2018, 2018
Zengliang Zang, Zilong Hao, Yi Li, Xiaobin Pan, Wei You, Zhijin Li, and Dan Chen
Geosci. Model Dev., 9, 2623–2638, https://doi.org/10.5194/gmd-9-2623-2016, https://doi.org/10.5194/gmd-9-2623-2016, 2016
Short summary
Short summary
The aerosol data assimilation and forecasts can be improved by adopting balance constraints that spread observation information across variables, thus producing balanced initial distributions. Surface and aircraft aerosol observations were assimilated to demonstrate the impact of the balance constraints. The results showed that the forecasting experiment with balance constraints is more skillful and durable than the experiment without balance constraints.
Related subject area
Numerical methods
Characterizing uncertainties of Earth system modeling with heterogeneous many-core architecture computing
Metrics for Intercomparison of Remapping Algorithms (MIRA) protocol applied to Earth system models
Impact of the numerical solution approach of a plant hydrodynamic model (v0.1) on vegetation dynamics
Islet: interpolation semi-Lagrangian element-based transport
Multi-dimensional hydrological–hydraulic model with variational data assimilation for river networks and floodplains
Assessing the robustness and scalability of the accelerated pseudo-transient method
Spatial filtering in a 6D hybrid-Vlasov scheme for alleviating AMR artifacts: a case study with Vlasiator, versions 5.0, 5.1, 5.2.1
Assessment of stochastic weather forecast of precipitation near European cities, based on analogs of circulation
University of Warsaw Lagrangian Cloud Model (UWLCM) 2.0: adaptation of a mixed Eulerian–Lagrangian numerical model for heterogeneous computing clusters
Prediction error growth in a more realistic atmospheric toy model with three spatiotemporal scales
On numerical broadening of particle-size spectra: a condensational growth study using PyMPDATA 1.0
Lossy checkpoint compression in full waveform inversion: a case study with ZFPv0.5.5 and the overthrust model
Blockworlds 0.1.0: a demonstration of anti-aliased geophysics for probabilistic inversions of implicit and kinematic geological models
Efficient high-dimensional variational data assimilation with machine-learned reduced-order models
Improved double Fourier series on a sphere and its application to a semi-implicit semi-Lagrangian shallow-water model
SciKit-GStat 1.0: a SciPy-flavored geostatistical variogram estimation toolbox written in Python
Flow-Py v1.0: a customizable, open-source simulation tool to estimate runout and intensity of gravitational mass flows
Emulation of high-resolution land surface models using sparse Gaussian processes with application to JULES
Implementation of a Gaussian Markov random field sampler for forward uncertainty quantification in the Ice-sheet and Sea-level System Model v4.19
A method for assessment of the general circulation model quality using the K-means clustering algorithm: a case study with GETM v2.5
An explicit GPU-based material point method solver for elastoplastic problems (ep2-3De v1.0)
MagIC v5.10: a two-dimensional message-passing interface (MPI) distribution for pseudo-spectral magnetohydrodynamics simulations in spherical geometry
Machine-learning models to replicate large-eddy simulations of air pollutant concentrations along boulevard-type streets
Recalculation of error growth models' parameters for the ECMWF forecast system
spyro: a Firedrake-based wave propagation and full waveform inversion finite element solver
How biased are our models? – a case study of the alpine region
B-flood 1.0: an open-source Saint-Venant model for flash-flood simulation using adaptive refinement
A Bayesian data assimilation framework for lake 3D hydrodynamic models with a physics-preserving particle filtering method using SPUX-MITgcm v1
A micro-genetic algorithm (GA v1.7.1a) for combinatorial optimization of physics parameterizations in the Weather Research and Forecasting model (v4.0.3) for quantitative precipitation forecast in Korea
A fast, single-iteration ensemble Kalman smoother for sequential data assimilation
SymPKF (v1.0): a symbolic and computational toolbox for the design of parametric Kalman filter dynamics
NDCmitiQ v1.0.0: a tool to quantify and analyse greenhouse gas mitigation targets
Combining ensemble Kalman filter and reservoir computing to predict spatiotemporal chaotic systems from imperfect observations and models
The Coastline Evolution Model 2D (CEM2D) V1.1
An iterative process for efficient optimisation of parameters in geoscientific models: a demonstration using the Parallel Ice Sheet Model (PISM) version 0.7.3
Ocean Plastic Assimilator v0.2: assimilation of plastic concentration data into Lagrangian dispersion models
Development of a moving point source model for shipping emission dispersion modeling in EPISODE–CityChem v1.3
Efficient Bayesian inference for large chaotic dynamical systems
Constraining stochastic 3-D structural geological models with topology information using approximate Bayesian computation in GemPy 2.1
Retrieval of process rate parameters in the general dynamic equation for aerosols using Bayesian state estimation: BAYROSOL1.0
A discontinuous Galerkin finite-element model for fast channelized lava flows v1.0
A nested multi-scale system implemented in the large-eddy simulation model PALM model system 6.0
Extending legacy climate models by adaptive mesh refinement for single-component tracer transport: a case study with ECHAM6-HAMMOZ (ECHAM6.3-HAM2.3-MOZ1.0)
Using the Després and Lagoutière (1999) antidiffusive transport scheme: a promising and novel method against excessive vertical diffusion in chemistry-transport models
Porosity and permeability prediction through forward stratigraphic simulations using GPM™ and Petrel™: application in shallow marine depositional settings
Effects of transient processes for thermal simulations of the Central European Basin
A note on precision-preserving compression of scientific data
An N-dimensional Fortran interpolation programme (NterGeo.v2020a) for geophysics sciences – application to a back-trajectory programme (Backplumes.v2020r1) using CHIMERE or WRF outputs
A framework to evaluate IMEX schemes for atmospheric models
Inequality-constrained free-surface evolution in a full Stokes ice flow model (evolve_glacier v1.1)
Yangyang Yu, Shaoqing Zhang, Haohuan Fu, Lixin Wu, Dexun Chen, Yang Gao, Zhiqiang Wei, Dongning Jia, and Xiaopei Lin
Geosci. Model Dev., 15, 6695–6708, https://doi.org/10.5194/gmd-15-6695-2022, https://doi.org/10.5194/gmd-15-6695-2022, 2022
Short summary
Short summary
To understand the scientific consequence of perturbations caused by slave cores in heterogeneous computing environments, we examine the influence of perturbation amplitudes on the determination of the cloud bottom and cloud top and compute the probability density function (PDF) of generated clouds. A series of comparisons of the PDFs between homogeneous and heterogeneous systems show consistently acceptable error tolerances when using slave cores in heterogeneous computing environments.
Vijay S. Mahadevan, Jorge E. Guerra, Xiangmin Jiao, Paul Kuberry, Yipeng Li, Paul Ullrich, David Marsico, Robert Jacob, Pavel Bochev, and Philip Jones
Geosci. Model Dev., 15, 6601–6635, https://doi.org/10.5194/gmd-15-6601-2022, https://doi.org/10.5194/gmd-15-6601-2022, 2022
Short summary
Short summary
Coupled Earth system models require transfer of field data between multiple components with varying spatial resolutions to determine the correct climate behavior. We present the Metrics for Intercomparison of Remapping Algorithms (MIRA) protocol to evaluate the accuracy, conservation properties, monotonicity, and local feature preservation of four different remapper algorithms for various unstructured mesh problems of interest. Future extensions to more practical use cases are also discussed.
Yilin Fang, L. Ruby Leung, Ryan Knox, Charlie Koven, and Ben Bond-Lamberty
Geosci. Model Dev., 15, 6385–6398, https://doi.org/10.5194/gmd-15-6385-2022, https://doi.org/10.5194/gmd-15-6385-2022, 2022
Short summary
Short summary
Accounting for water movement in the soil and water transport within the plant is important for plant growth in Earth system modeling. We implemented different numerical approaches for a plant hydrodynamic model and compared their impacts on the simulated aboveground biomass (AGB) at single points and globally. We found care should be taken when discretizing the number of soil layers for numerical simulations as it can significantly affect AGB if accuracy and computational costs are of concern.
Andrew M. Bradley, Peter A. Bosler, and Oksana Guba
Geosci. Model Dev., 15, 6285–6310, https://doi.org/10.5194/gmd-15-6285-2022, https://doi.org/10.5194/gmd-15-6285-2022, 2022
Short summary
Short summary
Tracer transport in atmosphere models can be computationally expensive. We describe a flexible and efficient interpolation semi-Lagrangian method, the Islet method. It permits using up to three grids that share an element grid: a dynamics grid for computing quantities such as the wind velocity; a physics parameterizations grid; and a tracer grid. The Islet method performs well on a number of verification problems and achieves high performance in the E3SM Atmosphere Model version 2.
Léo Pujol, Pierre-André Garambois, and Jérôme Monnier
Geosci. Model Dev., 15, 6085–6113, https://doi.org/10.5194/gmd-15-6085-2022, https://doi.org/10.5194/gmd-15-6085-2022, 2022
Short summary
Short summary
This contribution presents a new numerical model for representing hydraulic–hydrological quantities at the basin scale. It allows modeling large areas at a low computational cost, with fine zooms where needed. It allows the integration of local and satellite measurements, via data assimilation methods, to improve the model's match to observations. Using this capability, good matches to in situ observations are obtained on a model of the complex Adour river network with fine zooms on floodplains.
Ludovic Räss, Ivan Utkin, Thibault Duretz, Samuel Omlin, and Yuri Y. Podladchikov
Geosci. Model Dev., 15, 5757–5786, https://doi.org/10.5194/gmd-15-5757-2022, https://doi.org/10.5194/gmd-15-5757-2022, 2022
Short summary
Short summary
Continuum mechanics-based modelling of physical processes at large scale requires huge computational resources provided by massively parallel hardware such as graphical processing units. We present a suite of numerical algorithms, implemented using the Julia language, that efficiently leverages the parallelism. We demonstrate that our implementation is efficient, scalable and robust and showcase applications to various geophysical problems.
Konstantinos Papadakis, Yann Pfau-Kempf, Urs Ganse, Markus Battarbee, Markku Alho, Maxime Grandin, Maxime Dubart, Lucile Turc, Hongyang Zhou, Konstantinos Horaites, Ivan Zaitsev, Giulia Cozzani, Maarja Bussov, Evgeny Gordeev, Fasil Tesema, Harriet George, Jonas Suni, Vertti Tarvus, and Minna Palmroth
EGUsphere, https://doi.org/10.5194/egusphere-2022-420, https://doi.org/10.5194/egusphere-2022-420, 2022
Short summary
Short summary
Vlasiator is a plasma simulation code that simulates the entire near-Earth space at a global scale. Six-dimensional simulations require enormous amounts of computational resources, and Vlasiator uses Adaptive-Mesh-Refinement (AMR) to lighten the computational burden. However, due to Vlasiator’s grid topology, AMR simulations suffer from grid aliasing artifacts that affect the global results. In this work, we present and evaluate the performance of a mechanism for alleviating those artifacts.
Meriem Krouma, Pascal Yiou, Céline Déandreis, and Soulivanh Thao
Geosci. Model Dev., 15, 4941–4958, https://doi.org/10.5194/gmd-15-4941-2022, https://doi.org/10.5194/gmd-15-4941-2022, 2022
Short summary
Short summary
We evaluated the skill of a stochastic weather generator (SWG) to forecast precipitation at different time scales and in different areas of western Europe from analogs of Z500 hPa. The SWG has the skill to simulate precipitation for 5 and 10 d. We found that forecast weaknesses can be associated with specific weather patterns. The comparison with ECMWF forecasts confirms the skill of our model. This work is important because it provides information about weather forecasts over specific areas.
Piotr Dziekan and Piotr Zmijewski
Geosci. Model Dev., 15, 4489–4501, https://doi.org/10.5194/gmd-15-4489-2022, https://doi.org/10.5194/gmd-15-4489-2022, 2022
Short summary
Short summary
Detailed computer simulations of clouds are important for understanding Earth's atmosphere and climate. The paper describes how the UWLCM has been adapted to work on supercomputers. A distinctive feature of UWLCM is that air flow is calculated by processors at the same time as cloud droplets are modeled by graphics cards. Thanks to this, use of computing resources is maximized and the time to complete simulations of large domains is not affected by communications between supercomputer nodes.
Hynek Bednář and Holger Kantz
Geosci. Model Dev., 15, 4147–4161, https://doi.org/10.5194/gmd-15-4147-2022, https://doi.org/10.5194/gmd-15-4147-2022, 2022
Short summary
Short summary
A scale-dependent error growth described by a power law or by a quadratic hypothesis is studied in Lorenz’s system with three spatiotemporal levels. The validity of power law is extended by including a saturation effect. The quadratic hypothesis can only serve as a first guess. In addition, we study the initial error growth for the ECMWF forecast system. Fitting the parameters, we conclude that there is an intrinsic limit of predictability after 22 days.
Michael A. Olesik, Jakub Banaśkiewicz, Piotr Bartman, Manuel Baumgartner, Simon Unterstrasser, and Sylwester Arabas
Geosci. Model Dev., 15, 3879–3899, https://doi.org/10.5194/gmd-15-3879-2022, https://doi.org/10.5194/gmd-15-3879-2022, 2022
Short summary
Short summary
In systems such as atmospheric clouds, droplets undergo growth through condensation of vapor. The broadness of the resultant size spectrum of droplets influences precipitation likelihood and the radiative properties of clouds. One of the inherent limitations of simulations of the problem is the so-called numerical diffusion causing overestimation of the spectrum width, hence the term numerical broadening. In the paper, we take a closer look at one of the algorithms used in this context: MPDATA.
Navjot Kukreja, Jan Hückelheim, Mathias Louboutin, John Washbourne, Paul H. J. Kelly, and Gerard J. Gorman
Geosci. Model Dev., 15, 3815–3829, https://doi.org/10.5194/gmd-15-3815-2022, https://doi.org/10.5194/gmd-15-3815-2022, 2022
Short summary
Short summary
Full waveform inversion (FWI) is a partial-differential equation (PDE)-constrained optimization problem that is notorious for its high computational load and memory footprint. In this paper we present a method that combines recomputation with lossy compression to accelerate the computation with minimal loss of precision in the results. We show this using experiments running FWI with a variety of compression settings on a popular academic dataset.
Richard Scalzo, Mark Lindsay, Mark Jessell, Guillaume Pirot, Jeremie Giraud, Edward Cripps, and Sally Cripps
Geosci. Model Dev., 15, 3641–3662, https://doi.org/10.5194/gmd-15-3641-2022, https://doi.org/10.5194/gmd-15-3641-2022, 2022
Short summary
Short summary
This paper addresses numerical challenges in reasoning about geological models constrained by sensor data, especially models that describe the history of an area in terms of a sequence of events. Our method ensures that small changes in simulated geological features, such as the position of a boundary between two rock layers, do not result in unrealistically large changes to resulting sensor measurements, as occur presently using several popular modeling packages.
Romit Maulik, Vishwas Rao, Jiali Wang, Gianmarco Mengaldo, Emil Constantinescu, Bethany Lusch, Prasanna Balaprakash, Ian Foster, and Rao Kotamarthi
Geosci. Model Dev., 15, 3433–3445, https://doi.org/10.5194/gmd-15-3433-2022, https://doi.org/10.5194/gmd-15-3433-2022, 2022
Short summary
Short summary
In numerical weather prediction, data assimilation is frequently utilized to enhance the accuracy of forecasts from equation-based models. In this work we use a machine learning framework that approximates a complex dynamical system given by the geopotential height. Instead of using an equation-based model, we utilize this machine-learned alternative to dramatically accelerate both the forecast and the assimilation of data, thereby reducing need for large computational resources.
Hiromasa Yoshimura
Geosci. Model Dev., 15, 2561–2597, https://doi.org/10.5194/gmd-15-2561-2022, https://doi.org/10.5194/gmd-15-2561-2022, 2022
Short summary
Short summary
This paper proposes a new double Fourier series (DFS) method on a sphere that improves the numerical stability of a model compared with conventional DFS methods. The shallow-water model and the advection model using the new DFS method give stable results without the appearance of high-wavenumber noise near the poles. The model using the new DFS method is faster than the model using spherical harmonics (especially at high resolutions) and gives almost the same results.
Mirko Mälicke
Geosci. Model Dev., 15, 2505–2532, https://doi.org/10.5194/gmd-15-2505-2022, https://doi.org/10.5194/gmd-15-2505-2022, 2022
Short summary
Short summary
I preset SciKit-GStat, a well-documented and tested Python package for variogram estimation. The variogram is the core means of geostatistics, which almost all other methods rely on. Geostatistical interpolation and field generation are widely spread in geoscience, i.e., for data assimilation or modeling.
While SciKit-GStat focuses on effective and intuitive variogram estimation, it can interface with other prominent packages and make its variograms available for a multitude of methods.
Christopher J. L. D'Amboise, Michael Neuhauser, Michaela Teich, Andreas Huber, Andreas Kofler, Frank Perzl, Reinhard Fromm, Karl Kleemayr, and Jan-Thomas Fischer
Geosci. Model Dev., 15, 2423–2439, https://doi.org/10.5194/gmd-15-2423-2022, https://doi.org/10.5194/gmd-15-2423-2022, 2022
Short summary
Short summary
The term gravitational mass flow (GMF) covers various natural hazard processes such as snow avalanches, rockfall, landslides, and debris flows. Here we present the open-source GMF simulation tool Flow-Py. The model equations are based on simple geometrical relations in three-dimensional terrain. We show that Flow-Py is an educational, innovative GMF simulation tool with three computational experiments: 1. validation of implementation, 2. performance, and 3. expandability.
Evan Baker, Anna B. Harper, Daniel Williamson, and Peter Challenor
Geosci. Model Dev., 15, 1913–1929, https://doi.org/10.5194/gmd-15-1913-2022, https://doi.org/10.5194/gmd-15-1913-2022, 2022
Short summary
Short summary
We have adapted machine learning techniques to build a model of the land surface in Great Britain. The model was trained using data from a very complex land surface model called JULES. Our model is faster at producing simulations and predictions and can investigate many different scenarios, which can be used to improve our understanding of the climate and could also be used to help make local decisions.
Kevin Bulthuis and Eric Larour
Geosci. Model Dev., 15, 1195–1217, https://doi.org/10.5194/gmd-15-1195-2022, https://doi.org/10.5194/gmd-15-1195-2022, 2022
Short summary
Short summary
We present and implement a stochastic solver to sample spatially and temporal varying uncertain input parameters in the Ice-sheet and Sea-level System Model, such as ice thickness or surface mass balance. We represent these sources of uncertainty using Gaussian random fields with Matérn covariance function. We generate random samples of this random field using an efficient computational approach based on solving a stochastic partial differential equation.
Urmas Raudsepp and Ilja Maljutenko
Geosci. Model Dev., 15, 535–551, https://doi.org/10.5194/gmd-15-535-2022, https://doi.org/10.5194/gmd-15-535-2022, 2022
Short summary
Short summary
A model's ability to reproduce the state of a simulated object is always a subject of discussion. A new method for the multivariate assessment of numerical model skills uses the K-means algorithm for clustering model errors. All available data that fall into the model domain and simulation period are incorporated into the skill assessment. The clustered errors are used for spatial and temporal analysis of the model accuracy. The method can be applied to different types of geoscientific models.
Emmanuel Wyser, Yury Alkhimenkov, Michel Jaboyedoff, and Yury Y. Podladchikov
Geosci. Model Dev., 14, 7749–7774, https://doi.org/10.5194/gmd-14-7749-2021, https://doi.org/10.5194/gmd-14-7749-2021, 2021
Short summary
Short summary
We propose an implementation of the material point method using graphical processing units (GPUs) to solve elastoplastic problems in three-dimensional configurations, such as the granular collapse or the slumping mechanics, i.e., landslide. The computational power of GPUs promotes fast code executions, compared to a traditional implementation using central processing units (CPUs). This allows us to study complex three-dimensional problems tackling high spatial resolution.
Rafael Lago, Thomas Gastine, Tilman Dannert, Markus Rampp, and Johannes Wicht
Geosci. Model Dev., 14, 7477–7495, https://doi.org/10.5194/gmd-14-7477-2021, https://doi.org/10.5194/gmd-14-7477-2021, 2021
Short summary
Short summary
In this work we discuss a two-dimensional distributed parallelization of MagIC, an open-source code for the numerical solution of the magnetohydrodynamics equations. Such a parallelization involves several challenges concerning the distribution of work and data. We detail our algorithm and compare it with the established, optimized, one-dimensional distribution in the context of the dynamo benchmark and discuss the merits of both implementations.
Moritz Lange, Henri Suominen, Mona Kurppa, Leena Järvi, Emilia Oikarinen, Rafael Savvides, and Kai Puolamäki
Geosci. Model Dev., 14, 7411–7424, https://doi.org/10.5194/gmd-14-7411-2021, https://doi.org/10.5194/gmd-14-7411-2021, 2021
Short summary
Short summary
This study aims to replicate computationally expensive high-resolution large-eddy simulations (LESs) with regression models to simulate urban air quality and pollutant dispersion. The model development, including feature selection, model training and cross-validation, and detection of concept drift, has been described in detail. Of the models applied, log-linear regression shows the best performance. A regression model can replace LES unless high accuracy is needed.
Hynek Bednář, Aleš Raidl, and Jiří Mikšovský
Geosci. Model Dev., 14, 7377–7389, https://doi.org/10.5194/gmd-14-7377-2021, https://doi.org/10.5194/gmd-14-7377-2021, 2021
Short summary
Short summary
Forecast errors in numerical weather prediction systems grow in time. To quantify the impacts of this growth, parametric error growth models may be employed. This study recalculates and newly defines parameters for several statistic models approximating error growth in the ECMWF forecasting system. Accurate values of parameters are important because they are used to evaluate improvements of the forecasting systems or to estimate predictability.
Keith J. Roberts, Alexandre Olender, Lucas Franceschini, Robert C. Kirby, Rafael S. Gioria, and Bruno S. Carmo
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2021-363, https://doi.org/10.5194/gmd-2021-363, 2021
Revised manuscript accepted for GMD
Short summary
Short summary
Finite Element Methods (FEM), although permit the use of more flexible unstructured meshes, are rarely used in Full Waveform Inversions (FWI), an iterative process that reconstructs velocity models of earth’s subsurface, due to computational and memory storage costs. To reduce those costs, a novel software is presented allowing the use of high-order mass-lumped FEM on triangular meshes, together with a material-property mesh-adaptation performance enhancing strategy, enabling its use in FWI.
Denise Degen, Cameron Spooner, Magdalena Scheck-Wenderoth, and Mauro Cacace
Geosci. Model Dev., 14, 7133–7153, https://doi.org/10.5194/gmd-14-7133-2021, https://doi.org/10.5194/gmd-14-7133-2021, 2021
Short summary
Short summary
In times of worldwide energy transitions, an understanding of the subsurface is increasingly important to provide renewable energy sources such as geothermal energy. To validate our understanding of the subsurface we require data. However, the data are usually not distributed equally and introduce a potential misinterpretation of the subsurface. Therefore, in this study we investigate the influence of measurements on temperature distribution in the European Alps.
Geoffroy Kirstetter, Olivier Delestre, Pierre-Yves Lagrée, Stéphane Popinet, and Christophe Josserand
Geosci. Model Dev., 14, 7117–7132, https://doi.org/10.5194/gmd-14-7117-2021, https://doi.org/10.5194/gmd-14-7117-2021, 2021
Short summary
Short summary
The development of forecasting tools may help to limit the impacts of flash floods. Our purpose here is to demonstrate the possibility of using b-flood, which is a 2D tool based on shallow-water equations and adaptive mesh refinement.
Artur Safin, Damien Bouffard, Firat Ozdemir, Cintia L. Ramón, James Runnalls, Fotis Georgatos, Camille Minaudo, and Jonas Šukys
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2021-305, https://doi.org/10.5194/gmd-2021-305, 2021
Revised manuscript accepted for GMD
Short summary
Short summary
Reconciling the differences between numerical model predictions and observational data is always a challenge. In this paper, we investigate the viability of a novel approach to the calibration of a three-dimensional hydrodynamic model of Lake Geneva, where the target parameters are inferred in terms of distributions. We employ a filtering technique that generates physically consistent model trajectories, and implement a neural network to enable bulk-to-skin temperature conversion.
Sojung Park and Seon K. Park
Geosci. Model Dev., 14, 6241–6255, https://doi.org/10.5194/gmd-14-6241-2021, https://doi.org/10.5194/gmd-14-6241-2021, 2021
Short summary
Short summary
One of the biggest uncertainties in numerical weather predictions (NWPs) comes from treating subgrid-scale physical processes. Physical processes, such as cumulus, microphysics, and planetary boundary layer processes, are parameterized in NWP models by empirical and theoretical backgrounds. We developed an interface between a micro-genetic algorithm and the WRF model for a combinatorial optimization of physics for heavy rainfall events in Korea. The system improved precipitation forecasts.
Colin Grudzien and Marc Bocquet
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2021-306, https://doi.org/10.5194/gmd-2021-306, 2021
Revised manuscript accepted for GMD
Short summary
Short summary
Iterative optimization techniques, at the state-of-the-art of data assimilation, have largely focused on extending forecast accuracy to moderate- to long-range forecast systems. However, current methodology may not be cost-effective in reducing forecast errors in online, short-range forecast systems. We propose a novel optimization of these techniques for online, short-range forecast cycles, simultaneously providing an improvement in forecast accuracy and a reduction of the computational cost.
Olivier Pannekoucke and Philippe Arbogast
Geosci. Model Dev., 14, 5957–5976, https://doi.org/10.5194/gmd-14-5957-2021, https://doi.org/10.5194/gmd-14-5957-2021, 2021
Short summary
Short summary
This contributes to research on uncertainty prediction, which is important either for determining the weather today or estimating the risk in prediction. The problem is that uncertainty prediction is numerically very expensive. An alternative has been proposed wherein uncertainty is presented in a simplified form with only the dynamics of certain parameters required. This tool allows for the determination of the symbolic equations of these parameter dynamics and their numerical computation.
Annika Günther, Johannes Gütschow, and Mairi Louise Jeffery
Geosci. Model Dev., 14, 5695–5730, https://doi.org/10.5194/gmd-14-5695-2021, https://doi.org/10.5194/gmd-14-5695-2021, 2021
Short summary
Short summary
The mitigation components of the nationally determined contributions (NDCs) under the Paris Agreement are essential in our fight against climate change. Regular updates with increased ambition are requested to limit global warming to 1.5–2 °C. The new and easy-to-update open-source tool NDCmitiQ can be used to quantify the NDCs' mitigation targets and construct resulting emissions pathways. In use cases, we show target uncertainties from missing clarity, data, and methodological challenges.
Futo Tomizawa and Yohei Sawada
Geosci. Model Dev., 14, 5623–5635, https://doi.org/10.5194/gmd-14-5623-2021, https://doi.org/10.5194/gmd-14-5623-2021, 2021
Short summary
Short summary
A new method to predict chaotic systems from observation and process-based models is proposed by combining machine learning with data assimilation. Our method is robust to the sparsity of observation networks and can predict more accurately than a process-based model when it is biased. Our method effectively works when both observations and models are imperfect, which is often the case in geoscience. Therefore, our method is useful to solve a wide variety of prediction problems in this field.
Chloe Leach, Tom Coulthard, Andrew Barkwith, Daniel R. Parsons, and Susan Manson
Geosci. Model Dev., 14, 5507–5523, https://doi.org/10.5194/gmd-14-5507-2021, https://doi.org/10.5194/gmd-14-5507-2021, 2021
Short summary
Short summary
Numerical models can be used to understand how coastal systems evolve over time, including likely responses to climate change. However, many existing models are aimed at simulating 10- to 100-year time periods do not represent a vertical dimension and are thus unable to include the effect of sea-level rise. The Coastline Evolution Model 2D (CEM2D) presented in this paper is an advance in this field, with the inclusion of the vertical coastal profile against which the water level can be altered.
Steven J. Phipps, Jason L. Roberts, and Matt A. King
Geosci. Model Dev., 14, 5107–5124, https://doi.org/10.5194/gmd-14-5107-2021, https://doi.org/10.5194/gmd-14-5107-2021, 2021
Short summary
Short summary
Simplified schemes, known as parameterisations, are sometimes used to describe physical processes within numerical models. However, the values of the parameters are uncertain. This introduces uncertainty into the model outputs. We develop a simple approach to identify plausible ranges for model parameters. Using a model of the Antarctic Ice Sheet, we find that the value of one parameter can depend on the values of others. We conclude that a single optimal set of parameter values does not exist.
Axel Peytavin, Bruno Sainte-Rose, Gael Forget, and Jean-Michel Campin
Geosci. Model Dev., 14, 4769–4780, https://doi.org/10.5194/gmd-14-4769-2021, https://doi.org/10.5194/gmd-14-4769-2021, 2021
Short summary
Short summary
We present a new algorithm developed at The Ocean Cleanup to update ocean plastic models based on measurements from the field to improve future cleaning operations. Prepared in collaboration with MIT researchers, this initial study presents its use in several analytical and real test cases in which two observers in a flow field record regular observations to update a plastic forecast. We demonstrate this improves the prediction, even with inaccurate knowledge of the water flows driving plastic.
Kang Pan, Mei Qi Lim, Markus Kraft, and Epaminondas Mastorakos
Geosci. Model Dev., 14, 4509–4534, https://doi.org/10.5194/gmd-14-4509-2021, https://doi.org/10.5194/gmd-14-4509-2021, 2021
Short summary
Short summary
A new moving point source (MPS) model was developed to simulate the dispersion of emissions generated by the moving ships. Compared to the commonly used line source (LS) or fixed point source (FPS) model, the MPS model provides more emission distribution details generated by the moving ships and matches reasonably with the measurements. Therefore, the MPS model should be a valuable alternative for the environmental society to evaluate the pollutant dispersion contributed from the moving ships.
Sebastian Springer, Heikki Haario, Jouni Susiluoto, Aleksandr Bibov, Andrew Davis, and Youssef Marzouk
Geosci. Model Dev., 14, 4319–4333, https://doi.org/10.5194/gmd-14-4319-2021, https://doi.org/10.5194/gmd-14-4319-2021, 2021
Short summary
Short summary
Model predictions always contain uncertainty. But in some cases, such as weather forecasting or climate modeling, chaotic unpredictability increases the difficulty to say exactly how much uncertainty there is. We combine two recently proposed mathematical methods to show how the uncertainty can be analyzed in models that are simplifications of true weather models. The results can be extended in the future to show how forecasts from large-scale models can be improved.
Alexander Schaaf, Miguel de la Varga, Florian Wellmann, and Clare E. Bond
Geosci. Model Dev., 14, 3899–3913, https://doi.org/10.5194/gmd-14-3899-2021, https://doi.org/10.5194/gmd-14-3899-2021, 2021
Short summary
Short summary
Uncertainty is an inherent property of any model of the subsurface. We show how geological topology information – how different regions of rocks in the subsurface are connected – can be used to train uncertain geological models to reduce uncertainty. More widely, the method demonstrates the use of probabilistic machine learning (Bayesian inference) to train structural geological models on auxiliary geological knowledge that can be encoded in graph structures.
Matthew Ozon, Aku Seppänen, Jari P. Kaipio, and Kari E. J. Lehtinen
Geosci. Model Dev., 14, 3715–3739, https://doi.org/10.5194/gmd-14-3715-2021, https://doi.org/10.5194/gmd-14-3715-2021, 2021
Short summary
Short summary
Experimental research has provided large amounts of high-quality data on aerosol over the last 2 decades. However, inference of the process rates (e.g., the rates at which particles are generated) is still typically done by simple curve-fitting methods and does not assess the credibility of the estimation. The devised method takes advantage of the Bayesian framework to not only retrieve the state of the observed aerosol system but also to estimate the process rates (e.g., growth rate).
Colton J. Conroy and Einat Lev
Geosci. Model Dev., 14, 3553–3575, https://doi.org/10.5194/gmd-14-3553-2021, https://doi.org/10.5194/gmd-14-3553-2021, 2021
Short summary
Short summary
Lava flows present a natural hazard to communities around volcanoes and are usually slow-moving (< 1-5 cm/s). Lava flows during the 2018 eruption of Kilauea volcano, Hawai’i, however, reached speeds as high as 11 m/s. To investigate these dynamics we develop a new lava flow computer model that incorporates a nonlinear expression for the fluid viscosity. Model results indicate that the lava flows at Site 8 of the eruption displayed shear thickening behavior due to the flow's high bubble content.
Antti Hellsten, Klaus Ketelsen, Matthias Sühring, Mikko Auvinen, Björn Maronga, Christoph Knigge, Fotios Barmpas, Georgios Tsegas, Nicolas Moussiopoulos, and Siegfried Raasch
Geosci. Model Dev., 14, 3185–3214, https://doi.org/10.5194/gmd-14-3185-2021, https://doi.org/10.5194/gmd-14-3185-2021, 2021
Short summary
Short summary
Large-eddy simulation (LES) of the urban atmospheric boundary layer involves a large separation of turbulent scales, leading to prohibitive computational costs. An online LES–LES nesting scheme is implemented into the PALM model system 6.0 to overcome this problem. Test results show that the accuracy within the high-resolution nest domains approach the non-nested high-resolution reference results. The nesting can reduce the CPU by time up to 80 % compared to the fine-resolution reference runs.
Yumeng Chen, Konrad Simon, and Jörn Behrens
Geosci. Model Dev., 14, 2289–2316, https://doi.org/10.5194/gmd-14-2289-2021, https://doi.org/10.5194/gmd-14-2289-2021, 2021
Short summary
Short summary
Mesh adaptivity can reduce overall model error by only refining meshes in specific areas where it us necessary in the runtime. Here we suggest a way to integrate mesh adaptivity into an existing Earth system model, ECHAM6, without having to redesign the implementation from scratch. We show that while the additional computational effort is manageable, the error can be reduced compared to a low-resolution standard model using an idealized test and relatively realistic dust transport tests.
Sylvain Mailler, Romain Pennel, Laurent Menut, and Mathieu Lachâtre
Geosci. Model Dev., 14, 2221–2233, https://doi.org/10.5194/gmd-14-2221-2021, https://doi.org/10.5194/gmd-14-2221-2021, 2021
Short summary
Short summary
Representing the advection of thin polluted plumes in numerical models is a challenging task since these models usually tend to excessively diffuse these plumes in the vertical direction. This numerical diffusion process is the cause of major difficulties in representing such dense and thin polluted plumes in numerical models. We propose here, and test in an academic framework, a novel method to solve this problem through the use of an antidiffusive advection scheme in the vertical direction.
Daniel Otoo and David Hodgetts
Geosci. Model Dev., 14, 2075–2095, https://doi.org/10.5194/gmd-14-2075-2021, https://doi.org/10.5194/gmd-14-2075-2021, 2021
Short summary
Short summary
The forward stratigraphic simulation method is used to predict lithofacies, porosity, and permeability in a reservoir model. The objective of using this approach is to enhance subsurface property modelling through geologic realistic 3-D stratigraphic patterns.
Results show realistic stratigraphic sequences. Given this, we can derive spatial and geometric data as secondary data to constrain property simulation in a reservoir model. The approach can reduce the uncertainty of property modelling.
Denise Degen and Mauro Cacace
Geosci. Model Dev., 14, 1699–1719, https://doi.org/10.5194/gmd-14-1699-2021, https://doi.org/10.5194/gmd-14-1699-2021, 2021
Short summary
Short summary
In this work, we focus on improving the understanding of subsurface processes with respect to interactions with climate dynamics. We present advanced, open-source mathematical methods that enable us to investigate the influence of various model properties on the final outcomes. By relying on our approach, we have been able to showcase their importance in improving our understanding of the subsurface and highlighting the current shortcomings of currently adopted models.
Rostislav Kouznetsov
Geosci. Model Dev., 14, 377–389, https://doi.org/10.5194/gmd-14-377-2021, https://doi.org/10.5194/gmd-14-377-2021, 2021
Short summary
Short summary
Resetting of non-significant figures (precision trimming) enables efficient data compression and helps to avoid excessive use of storage space and network bandwidth while having well-constrained distortion to the data. The paper analyses accuracy losses and artifacts caused by trimming methods and by the widely used linear packing method. The paper presents several methods with implementation, evaluation, and illustrations and includes subroutines directly usable in geoscientific models.
Bertrand Bessagnet, Laurent Menut, and Maxime Beauchamp
Geosci. Model Dev., 14, 91–106, https://doi.org/10.5194/gmd-14-91-2021, https://doi.org/10.5194/gmd-14-91-2021, 2021
Short summary
Short summary
This paper presents a new interpolator useful for geophysics applications. It can explore N-dimensional meshes, grids or look-up tables. The code accepts irregular but structured grids. Written in Fortran, it is easy to implement in existing codes and very fast and portable. We have compared it with a Python library. Python is convenient but suffers from portability and is sometimes not optimized enough. As an application case, this method is applied to atmospheric sciences.
Oksana Guba, Mark A. Taylor, Andrew M. Bradley, Peter A. Bosler, and Andrew Steyer
Geosci. Model Dev., 13, 6467–6480, https://doi.org/10.5194/gmd-13-6467-2020, https://doi.org/10.5194/gmd-13-6467-2020, 2020
Anna Wirbel and Alexander Helmut Jarosch
Geosci. Model Dev., 13, 6425–6445, https://doi.org/10.5194/gmd-13-6425-2020, https://doi.org/10.5194/gmd-13-6425-2020, 2020
Short summary
Short summary
We present an open-source numerical tool to simulate the free-surface evolution of gravity-driven flows (e.g. glaciers) constrained by bed topography. No ad hoc post-processing is required to enforce positive ice thickness and mass conservation. We utilise finite elements, define benchmark tests, and showcase glaciological examples. In addition, we provide a thorough analysis of the applicability and robustness of different spatial stabilisation and time discretisation methods.
Cited articles
Ackermann, I. J., Hass, H., Memmesheimer, M., Ebel, A., Binkowski, F. S., and Shankar, U.: Modal aerosol dynamics model for Europe: development and first applications, Atmos. Environ., 32, 2981–2999,
https://doi.org/10.1016/S1352-2310(98)00006-5, 1998.
Bannister, R. N.: A review of forecast error covariance statistics in
atmospheric variational data assimilation. I: Characteristics and
measurements of forecast error covariances, Q. J. R. Meteorol. Soc., 134,
1951–1970, https://doi.org/10.1002/qj.339, 2008.
Barnard, J. C., Fast, J. D., Paredes-Miranda, G., Arnott, W. P., and Laskin, A.: Technical Note: Evaluation of the WRF-Chem “Aerosol Chemical to Aerosol Optical Properties” Module using data from the MILAGRO campaign, Atmos. Chem. Phys., 10, 7325–7340, https://doi.org/10.5194/acp-10-7325-2010, 2010.
Benedetti, A. and Fisher, M.: Background error statistics for aerosols, Q.
J. R. Meteor. Soc., 133, 391–405, https://doi.org/10.1002/qj.37, 2007.
Benedetti, A., Di Giuseppe, F., Jones, L., Peuch, V.-H., Rémy, S., and Zhang, X.: The value of satellite observations in the analysis and short-range prediction of Asian dust, Atmos. Chem. Phys., 19, 987–998, https://doi.org/10.5194/acp-19-987-2019, 2019.
Boylan, J. W. and Russell, A. G.: PM and light extinction model performance
metrics, goals, and criteria for three-dimensional air quality models,
Atmos. Environ., 40, 4946–4959, 2006.
Chen, C., Dubovik, O., Henze, D. K., Chin, M., Lapyonok, T., Schuster, G. L., Ducos, F., Fuertes, D., Litvinov, P., Li, L., Lopatin, A., Hu, Q., and Torres, B.: Constraining global aerosol emissions using POLDER/PARASOL satellite remote sensing observations, Atmos. Chem. Phys., 19, 14585–14606, https://doi.org/10.5194/acp-19-14585-2019, 2019.
Chen, D., Liu, Z., Fast, J., and Ban, J.: Simulations of sulfate–nitrate–ammonium (SNA) aerosols during the extreme haze events over northern China in October 2014, Atmos. Chem. Phys., 16, 10707–10724, https://doi.org/10.5194/acp-16-10707-2016, 2016.
Chen, D., Liu, Z., Ban, J., and Chen, M.: The 2015 and 2016 wintertime air pollution in China: SO2 emission changes derived from a WRF-Chem/EnKF coupled data assimilation system , Atmos. Chem. Phys., 19, 8619–8650, https://doi.org/10.5194/acp-19-8619-2019, 2019.
Chen, F. and Dudhia, J.: Coupling an Advanced Land Surface–Hydrology Model
with the Penn State–NCAR MM5 Modeling System. Part I: Model Implementation
and Sensitivity, Mon. Weather Rev., 129, 569–585,
https://doi.org/10.1175/1520-0493(2001)129<0569:CAALSH>2.0.CO;2, 2001.
Chen, Q., Yin, Y., Jiang, H., Chu, Z., Xue, L., Shi, R., Zhang, X., and
Chen, J.: The roles of mineral dust as cloud condensation nuclei and ice
nuclei during the evolution of a hail storm, J. Geophys. Res., 124,
14262–14284, https://doi.org/10.1029/2019JD031403, 2019.
Cheng, X., Liu, Y., Xu, X., You, W., Zang, Z., Gao, L., Chen, Y., Su, D.,
and Yan, P.: Lidar data assimilation method based on CRTM and WRF-Chem
models and its application in PM2.5 forecasts in Beijing, Sci. Total.
Environ., 682, 541–552, https://doi.org/10.1016/j.scitotenv.2019.05.186,
2019.
Chin, M., Rood, R. B., Lin, S.-J., Müller, J.-F., and Thompson, A. M.:
Atmospheric sulfur cycle simulated in the global model GOCART: Model
description and global properties, J. Geophys. Res., 105, 24671–24687,
https://doi.org/10.1029/2000JD900384, 2000.
Courtier, P., Andersson, E., Heckley, W., Vasiljevic, D., Hamrud, M.,
Hollingsworth, A., Rabier, F., Fisher, M., and Pailleux, J.: The ECMWF
implementation of three-dimensional variational assimilation (3D-Var). I:
Formulation, Q. J. R. Meteorol. Soc., 124, 1783–1807,
https://doi.org/10.1002/qj.49712455002, 1998.
Dai, T., Cheng, Y., Suzuki, K., Goto, D., Kikuchi, M., Schutgens, N. A. J.,
Yoshida, M., Zhang, P., Husi, L., Shi, G., and Nakajima, T.: Hourly aerosol
assimilation of Himawari-8 AOT using the four-dimensional local ensemble
transform Kalman filter, J. Adv. Model. Earth Syst., 11,
680–711, https://doi.org/10.1029/2018MS001475, 2019.
Eibern, H. and Schmidt, H.: A four-dimensional variational chemistry data
assimilation scheme for Eulerian chemistry transport modeling, J. Geophys.
Res., 104, 18583–18598, https://doi.org/10.1029/1999JD900280, 1999.
Elbern, H. and Schmidt, H.: Ozone episode analysis by four-dimensional
variational chemistry data assimilation, J. Geophys. Res., 106, 3569–3590,
https://doi.org/10.1029/2000JD900448, 2001.
Escribano, J., Boucher, O., Chevallier, F., and Huneeus, N.: Impact of the choice of the satellite aerosol optical depth product in a sub-regional dust emission inversion, Atmos. Chem. Phys., 17, 7111–7126, https://doi.org/10.5194/acp-17-7111-2017, 2017.
Fast, J. D., Gustafson, W. I., Easter, R. C., Zaveri, R. A., Barnard, J. C.,
Chapman, E. G., Grell, G. A., and Peckham, S. E.: Evolution of ozone,
particulates, and aerosol direct radiative forcing in the vicinity of
Houston using a fully coupled meteorology-chemistry-aerosol model, J.
Geophys. Res.-Atmos., 111, D21305, https://doi.org/10.1029/2005jd006721,
2006.
Feng, S., Jiang, F., Jiang, Z., Wang, H., Cai, Z., and Zhang, L.: Impact
of 3DVAR assimilation of surface PM2.5 observations on PM2.5
forecasts over China during wintertime, Atmos. Environ., 187, 34–49, 2018.
Gao, M., Guttikunda, S. K., Carmichael, G. R., Wang, Y., Liu, Z., Stanier, C.
O., Saide, P. E., and Yu, M.: Health impacts and economic losses assessment
of the 2013 severe haze event in Beijing area, Sci. Total. Environ., 511,
553–561, https://doi.org/10.1016/j.scitotenv.2015.01.005, 2015.
Gauthier, P., Tanguay, M., Laroche, S., Pellerin, S., and Morneau, J.:
Extension of 3DVAR to 4DVAR: Implementation of 4DVAR at the Meteorological
Service of Canada, Mon. Weather Rev., 135, 2339–2354,
https://doi.org/10.1175/MWR3394.1, 2007.
Ghan, S., Laulainen, N., Easter, R., Wagener, R., Nemesure, S., Chapman, E.,
Zhang, Y., and Leung, R.: Evaluation of aerosol direct radiative forcing in
MIRAGE, J. Geophys. Res., 106, 5295–5316,
https://doi.org/10.1029/2000JD900502, 2001.
Giering, R. and Kaminski, T.: Recipes for adjoint code construction, ACM
T. Math. Software, 24, 437–474, 1998.
Grell, G., Peckham, S., Schmitz, R., McKeen, S., Frost, G., Skamarock, W.
C., and Eder, B.: Fully coupled “online” chemistry within the WRF model,
Atmos. Environ., 39, 6957–6975,
https://doi.org/10.1016/j.atmosenv.2005.04.027, 2005.
Ha, S., Liu, Z., Sun, W., Lee, Y., and Chang, L.: Improving air quality forecasting with the assimilation of GOCI aerosol optical depth (AOD) retrievals during the KORUS-AQ period, Atmos. Chem. Phys., 20, 6015–6036, https://doi.org/10.5194/acp-20-6015-2020, 2020.
Han, Y., van Delst, P., Liu, Q., Weng, F., Yan, B., Treadon, R., and Derber,
J.: JCSDA Community Radiative Transfer Model (CRTM) – Version 1, NOAA Tech. Rep. NESDIS 122, 33 pp., NOAA, Silver Spring, Md, USA, https://ftp.emc.ncep.noaa.gov/jcsda/CRTM/library/CRTM_v1-NOAA_Tech_Report_NESDIS122.pdf (last access: 1 May 2021), 2006.
Hascoët, L. and Pascual, V.: The Tapenade Automatic Differentiation
tool: Principles, Model, and Specification, ACM T. Math.
Software, 39, 1–43, https://doi.org/10.1145/2450153.2450158, 2013.
Holben, B. N., Eck, T. F., Slutsker, I., Tanré, D., Buis, J. P., Setzer,
A., Vermote, E., Reagan, J. A., Kaufman, Y. J., Nakajima, T., Lavenu, F.,
Jankowiak, I., and Smirnov, A.: AERONET – A federated instrument network
and data archive for aerosol characterization, Remote. Sens. Environ., 66,
1–16, 1998.
Hong, S. Y. and Lim, J.-O.: The WRF Single-Moment 6-Class Microphysics Scheme
(WSM6), J. Korean Meteor. Soc., 42, 129–151, 2006.
Iacono, M. J., Delamere, J. S., Mlawer, E. J., Shephard, M. W., Clough, S.
A., and Collins, W. D.: Radiative forcing by long-lived greenhouse gases:
Calculations with the AER radiative transfer models, J. Geophys. Res., 113,
D13103, https://doi.org/10.1029/2008JD009944, 2008.
Jiang, Z., Liu, Z., Wang, T., Schwartz, C. S., Lin, H.-C., and Jiang, F.:
Probing into the impact of 3DVAR assimilation of surface PM10
observations over China using process analysis, J. Geophys. Res.-Atmos.,
118, 6738–6749, https://doi.org/10.1002/jgrd.50495, 2013.
Kahnert, M.: Variational data analysis of aerosol species in a regional CTM:
background error covariance constraint and aerosol optical observation
operators, Tellus B, 60, 753–770,
https://doi.org/10.1111/j.1600-0889.2008.00377.x, 2008.
Kaufman, Y. J., Tanré, D., and Boucher, O.: A satellite view of aerosols
in the climate system, Nature, 419, 215–223,
https://doi.org/10.1038/nature01091, 2002.
Kleist, D. T., Parrish, D. F., Derber, J. C., Treadon, R., Wu, W.-S., and
Lord, S.: Introduction of the GSI into the NCEP Global Data Assimilation
System, Weather Forecast., 24, 1691–1705,
https://doi.org/10.1175/2009WAF2222201.1, 2009.
Kikuchi, M., Murakami, H., Suzuki, K., Nagao, T. M., and Higurashi, A.:
Improved hourly estimates of aerosol optical thickness using spatiotemporal
variability derived from Himawari-8 geostationary satellite, IEEE
T. Geosci. Remote, 56, 3442–3455.
https://doi.org/10.1109/TGRS.2018.2800060, 2018.
Li, Z., Zang, Z., Li, Q. B., Chao, Y., Chen, D., Ye, Z., Liu, Y., and Liou, K. N.: A three-dimensional variational data assimilation system for multiple aerosol species with WRF/Chem and an application to PM2.5 prediction, Atmos. Chem. Phys., 13, 4265–4278, https://doi.org/10.5194/acp-13-4265-2013, 2013.
Liang, Y., Zang, Z., Liu, D., Yan, P., Hu, Y., Zhou, Y., and You, W.: Development of a three-dimensional variational assimilation system for lidar profile data based on a size-resolved aerosol model in WRF–Chem model v3.9.1 and its application in PM2.5 forecasts across China, Geosci. Model Dev., 13, 6285–6301, https://doi.org/10.5194/gmd-13-6285-2020, 2020.
Liu, D. C. and Nocedal, J.: On the limited memory BFGS method for large
scale optimization, Math. Program., 45, 503–528, 1989.
Liu, Z., Liu, Q., Lin, H.-C., Schwartz, C. S., Lee, Y.-H., and Wang, T.:
Three-dimensional variational assimilation of MODIS aerosol optical depth:
Implementation and application to a dust storm over East Asia, J. Geophys.
Res., 116, D23206, https://doi.org/10.1029/2011JD016159, 2011.
Menon, S., Hansen, j., Nazarenko, L., and Luo, Y.: Climate Effects of Black
Carbon Aerosols in China and India, Science, 297, 2250–2253, https://doi.org/10.1126/science.1075159, 2002.
National Centers for Environmental Prediction/National Weather
Service/NOAA/U.S. Department of Commerce: NCEP FNL Operational Model Global
Tropospheric Analyses, continuing from July 1999, Research Data Archive at
the National Center for Atmospheric Research, Computational and Information
Systems Laboratory, https://doi.org/10.5065/D6M043C6, 2000.
Niu, T., Gong, S. L., Zhu, G. F., Liu, H. L., Hu, X. Q., Zhou, C. H., and Wang, Y. Q.: Data assimilation of dust aerosol observations for the CUACE/dust forecasting system, Atmos. Chem. Phys., 8, 3473–3482, https://doi.org/10.5194/acp-8-3473-2008, 2008.
Pagowski, M., Grell, G. A., McKeen, S. A., Peckham, S. E., and Devenyi, D.:
Three-dimensional variational data assimilation of ozone and fine
particulate matter observations: some results using the Weather Research and
Forecasting Chemistry model and Grid-point Statistical Interpolation, Q. J.
Roy. Meteor. Soc., 136, 2013–2024, https://doi.org/10.1002/qj.700, 2010.
Pang, J. and Wang, X.: The impacts of background error covariance on particulate
matter assimilation and forecast: An ideal case study with a modal aerosol
model over China, Sci. Total Environ., 786, 147417, https://doi.org/10.1016/j.scitotenv.2021.147417, 2021.
Pang, J., Liu, Z., Wang, X., Bresch, J., Ban, J., Chen, D., and Kim, J.:
Assimilating AOD retrievals from GOCI and VIIRS to forecast surface
PM2.5 episodes over Eastern China, Atmos. Environ., 179, 288–304,
https://doi.org/10.1016/j.atmosenv.2018.02.011, 2018.
Parrish, D. F. and Derber, J. C.: The National Meteorological Center's
spectral statistical-interpolation analysis system, Mon. Weather Rev., 120,
1747–1763, 1992.
Pöschl, U.: Atmospheric Aerosols: Composition, Transformation, Climate
and Health Effects, Angew. Chem. Int. Edit., 44, 7520–7540,
https://doi.org/10.1002/anie.200501122, 2005.
Qian, Y., Gong, D., Fan, J., Leung, L. R., Bennartz, R., Chen, D., and Wang,
W.: Heavy pollution suppresses light rain in China: Observations and
modeling, J. Geophys. Res., 114, D00K02, https://doi.org/10.1029/2008JD011575, 2009.
Rubin, J. I., Reid, J. S., Hansen, J. A., Anderson, J. L., Holben, B. N.,
Xian, P., Westphal, D. L., and Zhang, J.: Assimilation of AERONET and MODIS
AOT observations using variational and ensemble data assimilation methods
and its impact on aerosol forecasting skill, J. Geophys. Res.-Atmos., 122,
4967–4992, https://doi.org/10.1002/2016JD026067, 2017.
Ruggaber, A., Dlugi, R., and Nakajima, T.: Modelling radiation quantities
and photolysis frequencies in the troposphere, J. Atmos. Chem., 18,
171–210, https://doi.org/10.1007/BF00696813, 1994.
Saide, P. E., Carmichael, G. R., Liu, Z., Schwartz, C. S., Lin, H. C., da Silva, A. M., and Hyer, E.: Aerosol optical depth assimilation for a size-resolved sectional model: impacts of observationally constrained, multi-wavelength and fine mode retrievals on regional scale analyses and forecasts, Atmos. Chem. Phys., 13, 10425–10444, https://doi.org/10.5194/acp-13-10425-2013, 2013.
Saide, P. E., Kim, J., Song, C. H., Choi, M., Cheng, Y., and Carmichael, G.
R.: Assimilation of next generation geostationary aerosol optical depth
retrievals to improve air quality simulations, Geophys. Res. Lett., 41,
9188–9196, https://doi.org/10.1002/2014GL062089, 2014.
Schell, B., Ackermann, I. J., Hass, H., Binkowski, F. S., and Ebel, A.:
Modeling the formation of secondary organic aerosol within a comprehensive
air quality model system, J. Geophys. Res., 106, 28275–28293,
https://doi.org/10.1029/2001JD000384, 2001.
Schutgens, N. A. J., Miyoshi, T., Takemura, T., and Nakajima, T.: Applying an ensemble Kalman filter to the assimilation of AERONET observations in a global aerosol transport model, Atmos. Chem. Phys., 10, 2561–2576, https://doi.org/10.5194/acp-10-2561-2010, 2010.
Schwartz, C. S., Liu, Z., Lin, H.-C., and McKeen, S. A.: Simultaneous
three-dimensional variational assimilation of surface fine particulate
matter and MODIS aerosol optical depth, J. Geophys. Res.-Atmos., 117,
D13202, https://doi.org/10.1029/2011JD017383, 2012.
Sekiyama, T. T., Tanaka, T. Y., Shimizu, A., and Miyoshi, T.: Data assimilation of CALIPSO aerosol observations, Atmos. Chem. Phys., 10, 39–49, https://doi.org/10.5194/acp-10-39-2010, 2010.
Sekiyama, T. T., Yumimoto, K., Tanaka, T. Y., Nagao, T., Kikuchi, M., and
Murakami, H.: Data assimilation of Himawari-8 aerosol observations: Asian
dust forecast in June 2015, SOLA, 12, 86–90,
https://doi.org/10.2151/sola.2016-020, 2016.
Smirnov, A., Holben, B., Eck, T., Dubovik, O., and Slutsker, I.:
Cloud-screening and quality control algorithms for the AERONET database,
Remote Sens. Environ., 73, 337–349,
https://doi.org/10.1016/S0034-4257(00)00109-7, 2000.
Stockwell, W. R., Middleton, P., Chang, J. S., and Tang, X.: The second
generation regional acid deposition model chemical mechanism for regional
air quality modeling, J. Geophys. Res., 95, 16343–16367,
https://doi.org/10.1029/JD095iD10p16343, 1990.
Tang, Y., Pagowski, M., Chai, T., Pan, L., Lee, P., Baker, B., Kumar, R., Delle Monache, L., Tong, D., and Kim, H.-C.: A case study of aerosol data assimilation with the Community Multi-scale Air Quality Model over the contiguous United States using 3D-Var and optimal interpolation methods, Geosci. Model Dev., 10, 4743–4758, https://doi.org/10.5194/gmd-10-4743-2017, 2017.
Tombette, M., Mallet, V., and Sportisse, B.: PM10 data assimilation over Europe with the optimal interpolation method, Atmos. Chem. Phys., 9, 57–70, https://doi.org/10.5194/acp-9-57-2009, 2009.
Tsikerdekis, A., Schutgens, N. A. J., and Hasekamp, O. P.: Assimilating aerosol optical properties related to size and absorption from POLDER/PARASOL with an ensemble data assimilation system, Atmos. Chem. Phys., 21, 2637–2674, https://doi.org/10.5194/acp-21-2637-2021, 2021.
Wang, D., You, W., Zang, Z., Pan, X., He, H., and Liang, Y.: A
three-dimensional variational data assimilation system for a size-resolved
aerosol model: Implementation and application for particulate matter and
gaseous pollutant forecasts across China, Sci. China Earth Sci., 63,
1366–1380, https://doi.org/10.1007/s11430-019-9601-4, 2020.
Wang, Y., Sartelet, K. N., Bocquet, M., and Chazette, P.: Modelling and assimilation of lidar signals over Greater Paris during the MEGAPOLI summer campaign, Atmos. Chem. Phys., 14, 3511–3532, https://doi.org/10.5194/acp-14-3511-2014, 2014.
Wiscombe, W. J.: Mie Scattering Calculations: Advances in Technique and Fast, Vector-speed Computer Codes (No. NCAR/TN-140+STR), University Corporation for Atmospheric Research, https://doi.org/10.5065/D6ZP4414, 1979.
WRF Users Page: WRF-Chem model, Weather Research and Forecasting [code], https://www2.mmm.ucar.edu/wrf/users/download/get_source.html, last access: 1 May 2021.
Wu, W., Purser, R. J., and Parrish, D. F.: Three-Dimensional Variational
Analysis with Spatially Inhomogeneous Covariances, Mon. Weather Rev.,
130, 2905–2916, https://doi.org/10.1175/1520-0493(2002)130<2905:TDVAWS>2.0.CO;2, 2002.
You, W.: PM2.5/PM10 Retrieval and Assimilation Based on Satellite
AOD, A dissertation for doctor's degree in the National University of
Defense Technology, in preparation, 2017.
You, W.: A three-dimensional variational data assimilation system for aerosol optical properties based on WRF-Chem: design, development, and application of assimilating Himawari-8 aerosol observations, Zenodo [data set], https://doi.org/10.5281/zenodo.5528505, 2021.
Young, S. A. and Vaughan, M. A.: The retrieval of profiles of particulate
extinction from Cloud-Aerosol Lidar Infrared Pathfinder Satellite
Observations (CALIPSO) data: Algorithm description, J. Atmos. Ocean. Tech.,
26, 1105–1119, https://doi.org/10.1175/2008JTECHA1221.1, 2009.
Yumimoto, K., Nagao, T. M., Kikuchi, M., Sekiyama, T. T., Murakami, H.,
Tanaka, T. Y., Ogi, A., Irie, H., Khatri, P., Okumura, H., Arai, K., Morino,
I., Uchino, O., and Maki, T.: Aerosol data assimilation using data from
Himawari-8, a next-generation geostationary meteorological satellite,
Geophys. Res. Lett., 43, 5886–5894, https://doi.org/10.1002/2016GL069298,
2016.
Zang, Z., Li, Z., Pan, X., Hao, Z., and You W.: Aerosol data assimilation
and forecasting experiments using aircraft and surface observations during
CalNex, Tellus B, 68, 29812,
https://doi.org/10.3402/tellusb.v68.29812, 2016.
Zaveri, R. A., Easter, R. C., Fast, J. D., and Peters, L. K.: Model for
Simulating Aerosol Interactions and Chemistry (MOSAIC), J. Geophys. Res.,
113, D13204, https://doi.org/10.1029/2007JD008782, 2008.
Zheng, B., Tong, D., Li, M., Liu, F., Hong, C., Geng, G., Li, H., Li, X., Peng, L., Qi, J., Yan, L., Zhang, Y., Zhao, H., Zheng, Y., He, K., and Zhang, Q.: Trends in China's anthropogenic emissions since 2010 as the consequence of clean air actions, Atmos. Chem. Phys., 18, 14095–14111, https://doi.org/10.5194/acp-18-14095-2018, 2018.
Zou, X., Vandenberghe, F., Pondeca, M., and Kuo, Y. -H.: Introduction to
Adjoint Techniques and the MM5 Adjoint Modeling System (No.
NCAR/TN-435+STR), University Corporation for Atmospheric Research,
https://doi.org/10.5065/D6F18WNM, 1997.
Short summary
This paper presents a 3D variational data assimilation system for aerosol optical properties, including aerosol optical thickness (AOT) retrievals and lidar-based aerosol profiles, which was developed for a size-resolved sectional model in WRF-Chem. To directly assimilate aerosol optical properties, an observation operator based on the Mie scattering theory was designed. The results show that Himawari-8 AOT assimilation can significantly improve model aerosol analyses and forecasts.
This paper presents a 3D variational data assimilation system for aerosol optical properties,...