Articles | Volume 15, issue 4
Geosci. Model Dev., 15, 1821–1840, 2022
https://doi.org/10.5194/gmd-15-1821-2022
Geosci. Model Dev., 15, 1821–1840, 2022
https://doi.org/10.5194/gmd-15-1821-2022
Development and technical paper
03 Mar 2022
Development and technical paper | 03 Mar 2022

A three-dimensional variational data assimilation system for aerosol optical properties based on WRF-Chem v4.0: design, development, and application of assimilating Himawari-8 aerosol observations

Daichun Wang et al.

Related authors

Four-dimensional variational assimilation for SO2 emission and its application around the COVID-19 lockdown in the spring 2020 over China
Yiwen Hu, Zengliang Zang, Xiaoyan Ma, Yi Li, Yanfei Liang, Wei You, Xiaobin Pan, and Zhijin Li
Atmos. Chem. Phys., 22, 13183–13200, https://doi.org/10.5194/acp-22-13183-2022,https://doi.org/10.5194/acp-22-13183-2022, 2022
Short summary
A new inverse modeling approach for emission sources based on the DDM-3D and 3DVAR techniques: an application to air quality forecasts in the Beijing–Tianjin–Hebei region
Xinghong Cheng, Zilong Hao, Zengliang Zang, Zhiquan Liu, Xiangde Xu, Shuisheng Wang, Yuelin Liu, Yiwen Hu, and Xiaodan Ma
Atmos. Chem. Phys., 21, 13747–13761, https://doi.org/10.5194/acp-21-13747-2021,https://doi.org/10.5194/acp-21-13747-2021, 2021
Short summary
Development of a three-dimensional variational assimilation system for lidar profile data based on a size-resolved aerosol model in WRF–Chem model v3.9.1 and its application in PM2.5 forecasts across China
Yanfei Liang, Zengliang Zang, Dong Liu, Peng Yan, Yiwen Hu, Yan Zhou, and Wei You
Geosci. Model Dev., 13, 6285–6301, https://doi.org/10.5194/gmd-13-6285-2020,https://doi.org/10.5194/gmd-13-6285-2020, 2020
A THTEE-DIMENSIONAL VARIATIONAL ASSIMILATION SCHEME FOR SATELLITE AOD
Y. Liang, Z. Zang, and W. You
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLII-3, 999–1002, https://doi.org/10.5194/isprs-archives-XLII-3-999-2018,https://doi.org/10.5194/isprs-archives-XLII-3-999-2018, 2018
A THREE-DIMENSIONAL AEROSOL VARIATIONAL DATA ASSIMILATION SYSTEM FOR AIRCRAFT AND SURFACE OBSERVATIONS
Z. Zang, X. Pan, W. You, and Y. Liang
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLII-3, 2215–2218, https://doi.org/10.5194/isprs-archives-XLII-3-2215-2018,https://doi.org/10.5194/isprs-archives-XLII-3-2215-2018, 2018

Related subject area

Numerical methods
Characterizing uncertainties of Earth system modeling with heterogeneous many-core architecture computing
Yangyang Yu, Shaoqing Zhang, Haohuan Fu, Lixin Wu, Dexun Chen, Yang Gao, Zhiqiang Wei, Dongning Jia, and Xiaopei Lin
Geosci. Model Dev., 15, 6695–6708, https://doi.org/10.5194/gmd-15-6695-2022,https://doi.org/10.5194/gmd-15-6695-2022, 2022
Short summary
Metrics for Intercomparison of Remapping Algorithms (MIRA) protocol applied to Earth system models
Vijay S. Mahadevan, Jorge E. Guerra, Xiangmin Jiao, Paul Kuberry, Yipeng Li, Paul Ullrich, David Marsico, Robert Jacob, Pavel Bochev, and Philip Jones
Geosci. Model Dev., 15, 6601–6635, https://doi.org/10.5194/gmd-15-6601-2022,https://doi.org/10.5194/gmd-15-6601-2022, 2022
Short summary
Impact of the numerical solution approach of a plant hydrodynamic model (v0.1) on vegetation dynamics
Yilin Fang, L. Ruby Leung, Ryan Knox, Charlie Koven, and Ben Bond-Lamberty
Geosci. Model Dev., 15, 6385–6398, https://doi.org/10.5194/gmd-15-6385-2022,https://doi.org/10.5194/gmd-15-6385-2022, 2022
Short summary
Islet: interpolation semi-Lagrangian element-based transport
Andrew M. Bradley, Peter A. Bosler, and Oksana Guba
Geosci. Model Dev., 15, 6285–6310, https://doi.org/10.5194/gmd-15-6285-2022,https://doi.org/10.5194/gmd-15-6285-2022, 2022
Short summary
Multi-dimensional hydrological–hydraulic model with variational data assimilation for river networks and floodplains
Léo Pujol, Pierre-André Garambois, and Jérôme Monnier
Geosci. Model Dev., 15, 6085–6113, https://doi.org/10.5194/gmd-15-6085-2022,https://doi.org/10.5194/gmd-15-6085-2022, 2022
Short summary

Cited articles

Ackermann, I. J., Hass, H., Memmesheimer, M., Ebel, A., Binkowski, F. S., and Shankar, U.: Modal aerosol dynamics model for Europe: development and first applications, Atmos. Environ., 32, 2981–2999, https://doi.org/10.1016/S1352-2310(98)00006-5, 1998. 
Bannister, R. N.: A review of forecast error covariance statistics in atmospheric variational data assimilation. I: Characteristics and measurements of forecast error covariances, Q. J. R. Meteorol. Soc., 134, 1951–1970, https://doi.org/10.1002/qj.339, 2008. 
Barnard, J. C., Fast, J. D., Paredes-Miranda, G., Arnott, W. P., and Laskin, A.: Technical Note: Evaluation of the WRF-Chem “Aerosol Chemical to Aerosol Optical Properties” Module using data from the MILAGRO campaign, Atmos. Chem. Phys., 10, 7325–7340, https://doi.org/10.5194/acp-10-7325-2010, 2010. 
Benedetti, A. and Fisher, M.: Background error statistics for aerosols, Q. J. R. Meteor. Soc., 133, 391–405, https://doi.org/10.1002/qj.37, 2007. 
Benedetti, A., Di Giuseppe, F., Jones, L., Peuch, V.-H., Rémy, S., and Zhang, X.: The value of satellite observations in the analysis and short-range prediction of Asian dust, Atmos. Chem. Phys., 19, 987–998, https://doi.org/10.5194/acp-19-987-2019, 2019. 
Download
Short summary
This paper presents a 3D variational data assimilation system for aerosol optical properties, including aerosol optical thickness (AOT) retrievals and lidar-based aerosol profiles, which was developed for a size-resolved sectional model in WRF-Chem. To directly assimilate aerosol optical properties, an observation operator based on the Mie scattering theory was designed. The results show that Himawari-8 AOT assimilation can significantly improve model aerosol analyses and forecasts.