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Abstract. This paper presents a three-dimensional varia-
tional (3DVAR) data assimilation (DA) system for aerosol
optical properties, including aerosol optical thickness (AOT)
retrievals and lidar-based aerosol profiles, developed for
the Model for Simulating Aerosol Interactions and Chem-
istry (MOSAIC) within the Weather Research and Forecast-
ing model coupled to Chemistry (WRF-Chem) model. For
computational efficiency, 32 model variables in the MO-
SAIC_4bin scheme are lumped into 20 aerosol state variables
that are representative of mass concentrations in the DA sys-
tem. To directly assimilate aerosol optical properties, an ob-
servation operator based on the Mie scattering theory was
employed, which was obtained by simplifying the optical
module in WRF-Chem. The tangent linear (TL) and adjoint
(AD) operators were then established and passed the TL/AD
sensitivity test. The Himawari-8 derived AOT data were as-
similated to validate the system and investigate the effects of
assimilation on both AOT and PM2.5 simulations. Two com-
parative experiments were performed with a cycle of 24 h
from 23 to 29 November 2018, during which a heavy air
pollution event occurred in northern China. The DA perfor-
mances of the model simulation were evaluated against inde-
pendent aerosol observations, including the Aerosol Robotic
Network (AERONET) AOT and surface PM2.5 measure-
ments. The results show that Himawari-8 AOT assimilation
can significantly improve model AOT analyses and forecasts.
Generally, the control experiments without assimilation se-
riously underestimated AOTs compared with observed val-
ues and were therefore unable to describe real aerosol pol-
lution. The analysis fields closer to observations improved

AOT simulations, indicating that the system successfully as-
similated AOT observations into the model. In terms of sta-
tistical metrics, assimilating Himawari-8 AOTs only limit-
edly improved PM2.5 analyses in the inner simulation domain
(D02); however, the positive effect can last for over 24 h.
Assimilation effectively enlarged the underestimated PM2.5
concentrations to be closer to the real distribution in northern
China, which is of great value for studying heavy air pollu-
tion events.

1 Introduction

Atmospheric aerosols have considerable impacts on weather,
climate, and human health (Menon et al., 2002; Qian et al.,
2009; Gao et al., 2015). They are involved in many phys-
ical and chemical processes in the atmosphere, such as di-
rectly scattering and absorbing solar radiation, sources of
cloud condensation nuclei, and air pollution (Pöschl, 2005;
Gao et al., 2015; Q. Chen et al., 2019). Conventional observa-
tions such as surface mass concentration measurements play
an important role in aerosol analysis and monitoring. For in-
stance, the China National Environmental Monitoring Cen-
tre (CNEMC, http://www.cnemc.cn/en/, last access: 1 May
2021) has established a nationwide monitoring network con-
sisting of more than 1500 stations since 2013 to provide near-
time data of pollutants, including PM2.5, PM10, SO2, NO2,
CO, and O3. However, conventional observations alone are
insufficient to describe three-dimensional aerosol distribu-
tion in detail because monitoring stations are mostly located
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in urban areas and aerosol profiles, which are important for
studying aerosol transport, are scarce. Light extinction is an
inherent property of aerosols, and different aerosol particles
have different extinctions, and thus optical observations are
utilized to study aerosols. Compared with conventional ob-
servations, Remote sensing optical properties can cover a
much larger domain (Kaufman et al., 2002) and provide de-
tailed aerosol profiles (Young and Vaughan, 2009), which are
bound to extend the aerosol study. Furthermore, with the de-
velopment of remote sensing technology, more aerosol opti-
cal properties have become available. For example, Moder-
ate Resolution Imaging Spectroradiometer (MODIS) aerosol
optical thickness (AOT) data have been widely used (Liu et
al., 2011; Schwartz et al., 2012; Saide et al., 2013), Aerosol
Robotic Network (AERONET; http://aeronet.gsfc.nasa.gov/,
last access: 25 July 2021) (Holben et al., 1998) AOT obser-
vations have been used for aerosol analyses (Rubin et al.,
2017; Dai et al., 2019), and AOT retrievals from the Japanese
Himawari-8, a next-generation geostationary meteorological
satellite, have been operationally used since 2015 (Sekiyama
et al., 2016). Additionally, aerosol extinction or backscatter-
ing coefficients detected by ground-based lidar (Wang et al.,
2014; Cheng et al., 2019) or space-borne lidar such as Cloud-
Aerosol Lidar and Infrared Pathfinder Satellite Observation
(CALIPSO) have also been employed to analyze aerosol pro-
files (Sekiyama et al., 2010).

Besides, numerical simulations conducted by atmospheric
chemistry models or air quality models have increasingly
played an essential role in aerosol analysis and prediction.
Significant progress has been achieved in recent years; how-
ever, accurate aerosol modeling remains challenging given
the large uncertainties associated with aerosol emissions, ini-
tial conditions, and complex interactions with meteorological
processes. Solving these uncertainties is of great significance
for improving aerosol modeling. Data assimilation (DA), a
statistically optimal approach combining observations with
numerical model outputs, can reduce uncertainties in the ini-
tial aerosol fields. Chemical DA, especially aerosol DA, has
gradually developed to improve the prediction of air qual-
ity in recent years. In early studies of aerosol DA, the op-
timal interpolation (OI) technique was employed to assimi-
late the total mass concentrations of PM2.5 or PM10 using a
control variable scheme (Tombette et al., 2009). The varia-
tional algorithm was also employed in some studies. Niu et
al. (2008) used the three-dimensional variational (3DVAR)
technique to assimilate dust aerosol observations based on
one control variable and obtained a positive assimilation re-
sult. With an understanding of the aerosol chemical mecha-
nism, as well as the improvement of computing performance,
multi-variable aerosol DA studies were conducted, which
mainly focused on the development of the 3DVAR technique
and Coupled Chemistry Meteorology Model (CCMM). For
example, the open-source Grid-point Statistical Interpolation
(GSI) tool presented by National Centers for Environmental
Prediction (NCEP) (Wu et al., 2002; Kleist et al., 2009) has

been widely applied to aerosol DA (Pagowski et al., 2010;
Liu et al., 2011; Jiang et al., 2013; Feng et al., 2018; Pang et
al., 2018). The GSI tool was preliminarily developed for the
Goddard Chemistry Aerosol Radiation and Transport (GO-
CART) aerosol scheme (Chin et al., 2000) using the 3DVAR
algorithm. To overcome the systematic underestimation of
the GOCART scheme in the assimilation context, researchers
developed an aerosol DA system based on the Model for
Simulating Aerosol Interactions and Chemistry (MOSAIC)
aerosol scheme (Li et al., 2013; Zang et al., 2016; Wang et
al., 2020; Liang et al., 2020). For instance, Li et al. (2013)
lumped eight aerosol species within MOSAIC into five con-
trol variables and then constructed a 3DVAR DA system to
assimilate PM2.5 mass concentrations, and the results showed
that DA has a beneficial effect on both the initial field and
PM2.5 forecasts within a 24 h period. Although the four-
dimensional variational (4DVAR) technique has been exten-
sively used in operations (Gauthier at al., 2007; Benedetti
et al., 2019) and has also been employed to assimilate at-
mospheric chemical compositions such as O3, SO2, and CO
based on the simple offline chemical transport model (CTM)
(Eibern and Schmidt, 1999; Elbern and Schmidt, 2001), it is
greatly challenging to develop a 4DVAR DA system coupled
with the sophisticated aerosol model such as MOSAIC be-
cause of the high computational cost and complex adjoint
model. Consequently, the 3DVAR algorithm is still com-
monly used for aerosol DA.

As mentioned above, optical properties have great poten-
tial for studying aerosols, and thus it is natural to incorporate
them into models via assimilation. The key issue of directly
assimilating aerosol optical properties is the establishment of
an observation operator and its adjoint for variational meth-
ods. Liu et al. (2011) added the forward AOT operator and
its adjoint module within the Community Radiative Trans-
fer Model (CRTM) (Han et al., 2006) to the GSI for the first
time and successfully assimilated MODIS AOTs. This ex-
tended assimilation tool was then employed to assimilate var-
ious AOT retrievals from different platforms (Schwartz et al.,
2012; Saide et al., 2014; Tang et al., 2017; Pang et al., 2018;
Ha et al., 2020) and achieved encouraging results. Similar
to AOT, assimilating lidar aerosol profiles also involves the
complex forward operator and its adjoint (Cheng et al., 2019;
Wang et al., 2014). In order to simplify the observation oper-
ator, an approximate approach was utilized to directly assim-
ilate aerosol profiles. For example, Liang et al. (2020) em-
ployed the Interagency Monitoring of Protected Visual Envi-
ronments (IMPROVE) equation, which is the linear link be-
tween the extinction coefficient and aerosol chemical species
mass, as the forward operator to construct a 3DVAR DA sys-
tem and then assimilated ground-based lidar aerosol profiles
and PM2.5 mass concentrations simultaneously. In addition,
some researchers have used sequential approaches, such as
the ensemble Kalman filter, to advance aerosol DA (Schut-
gens et al., 2010; Yumimoto et al., 2016; Sekiyama et al.,
2016; Dai et al., 2019). Nevertheless, the ensemble-based
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aerosol forecasts are very expensive due to the heavy com-
putational load, especially for online meteorology–chemistry
modeling, and it is thus difficult to widely implement them
in the operational air quality DA systems (Pang and Wang,
2021).

Following Li et al. (2013) and You (2017), this study
further extends the assimilation of aerosol optical proper-
ties. Using an observation operator based on the Mie scat-
tering theory, a comprehensive 3DVAR DA system aim-
ing for aerosol optical properties, including AOT retrievals
and aerosol profiles, is developed for the MOSAIC aerosol
scheme within the Weather Research and Forecasting model
coupled to Chemistry (WRF-Chem) model for the first time.
The remainder of this paper is organized as follows. Section 2
presents the aerosol DA system in detail. The data and exper-
imental methods used in this study are described in Sect. 3.
The background error statistics necessary for the assimilation
experiment are analyzed in Sect. 4. The results are summa-
rized in Sect. 5, discussing the assimilation effects. Finally,
a summary is presented in Sect. 6, along with discussions
on the limitations of this study and suggestions for future re-
search.

2 Aerosol data assimilation design

2.1 Model description

WRF-Chem is an advanced online coupled meteorology–
aerosol model (Grell et al., 2005) that can simultaneously
simulate meteorological fields and atmospheric chemical
compositions including aerosols. It has been widely used
in air quality forecasting and aerosol-related studies (Chen
et al., 2016). Aerosol processes are treated by modules or
schemes in WRF-Chem, such as GOCART (Chin et al.,
2000), MOSAIC (Zaveri et al., 2008), and Modal Aerosol
Dynamics Model for Europe (MADE) (Ackermann et al.,
1998). There is no size information except total mass for
sulfate, black carbon (BC), and organic carbon (OC), while
there is only size information for dust and sea salt in GO-
CART, in addition to no description of second organic
aerosol (SOA), resulting in its numerical efficiency. Due to
more detailed descriptions of dust, GOCART has been ap-
plied more extensively in dust aerosol research. MADE is
a modal aerosol scheme that describes more aerosol species
than GOCART, including sulfate, ammonium salt, black car-
bon, organic carbon, sea salt, nitrate, dust, and SOA. More-
over, it employs three log-normal modes, that is, Aitken, ac-
cumulation, and coarse, to describe aerosol size distributions
in detail. Although such a scheme is ideal for aerosols, it con-
sumes more computational resources; therefore, its applica-
tions are limited. As a newly developed scheme, MOSAIC
is a sectional aerosol scheme that incorporates tradeoffs be-
tween detailed descriptions of aerosol chemical species, size
distributions, and computational cost. Previous studies have

shown that this scheme has a good ability to simulate the
compound aerosol pollution process in China (Gao et al.,
2015; D. Chen et al., 2016, 2019). The MOSAIC scheme di-
vides atmospheric aerosols into eight species, including BC,
OC, nitrate (NO−3 ), sulfate (SO2−

4 ), chloride (Cl−), sodium
(NA+), ammonium salt (NH+4 ), and other unclassified inor-
ganic mass (OIN). At the same time, four or eight discrete
size sections or bins are employed to represent the size distri-
bution of each species. In this study, we selected four bins for
computational efficiency. The first, second, third, and fourth
size sections are set to be 0.0390625–0.15625, 0.15625–
0.625, 0.625–2.5, and 2.5–10.0 µm, respectively. The sum of
the eight species in the first three sections corresponds to
PM2.5, whereas the sum of all the sections corresponds to
PM10. This approach ensures that aerosols are represented
efficiently and accurately. Thus, it can be concluded that the
MOSAIC aerosol mechanism of multiple species in multi-
particle size sections has an advantage in anthropogenic
aerosol studies over other schemes. Therefore, we conducted
aerosol analyses and forecasts using MOSAIC, and a DA
system was developed for the MOSAIC scheme.

The WRF-Chem version 4.0 was used to perform assim-
ilation simulation experiments. Both physical and chemi-
cal parameterization schemes are indispensable for numer-
ical simulations. The main parameterization schemes used in
this study include the WRF single-moment six-class micro-
physics scheme (WSM6, Hong and Lim, 2006), the Rapid
Radiative Transfer Model for General Circulation Model
(RRTMG) longwave and shortwave radiation scheme (Ia-
cono et al., 2008), the Noah land surface scheme (Chen
and Dudhia, 2001), the Yonsei University (YSU) atmo-
spheric boundary layer scheme (Hong and Lim, 2006), the
Grell–Freitas convective parameterization scheme, the Fast-
J photolysis scheme (Ruggaber et al., 1994), the Regional
Acid Deposition Model, Version 2 (RADM2, Stockwell et
al., 1990), the Modal Aerosol Dynamics Model for Eu-
rope (MADE, Ackermann et al., 1998) and Second Or-
ganic Aerosol Model (SORGAM, Schell et al., 2001) anthro-
pogenic emissions, and the MOSAIC_4bin scheme described
above.

The configuration of the two-level nested simulation do-
main is shown in Fig. 1a, including most of East Asia in
Domain 1 (hereafter denoted as D01) with a horizontal grid
spacing of 27 km, and the entirety of northern China as well
as parts of East and Central China in Domain 2 (hereafter
denoted as D02) with a horizontal resolution of 9 km, one-
third that of D01. To ensure a detailed simulation of aerosol
vertical distributions, 40 vertical layers were modeled in the
simulation, and it is worth mentioning that the vertical axis is
on hybrid sigma-pressure levels with a resolution decreasing
with height. The lowest layer is at the surface, whereas the
top reaches 50 hPa.
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Figure 1. Configuration of the two-level nested domain used in this study (a), the monitoring stations in Domain 2 (D02) (b), and a zoomed-
in map for AERONET sites in Beijing area (c), including Beijing, Beijing-CAMS, Beijing_PKU, Beijing_RADI, and XiangHe. There are a
total of 683 surface ambient air quality monitoring stations represented by little blue circles, which are mainly located in urban areas, as well
as six AERONET sites represented by red triangles in D02. All the maps are plotted with NCAR Command Language Version 6.6.2.

2.2 Basic formulation

The 3DVAR algorithm has been extensively used for aerosol
analysis and forecasts, such as the GSI tool, because of its
high computational efficiency and the advantages of handling
unconventional observations. Thus, it was employed to con-
struct a DA system aiming for aerosol optical properties in
this study. The 3DVAR algorithm can produce an aerosol
analysis field with minimum analysis error covariance after
a correction to the background field through the introduction
of various observation information. For this purpose, an in-
cremental approach was adopted, similar to the operational
use in meteorology (Courtier et al., 1998). In its incremental
formulation, 3DVAR attempts to minimize the cost function
J .

J (δx)=
1
2
δxTB−1δx+

1
2
(Hδx− d)TR−1 (Hδx− d) , (1)

where δx is the increment, corresponding to an aerosol state
vector that defines the state variables of three-dimensional
grid, also known as control variables in the DA process. At
the minimum, the resulting analysis increment δxa is added
to the background xb to provide the analysis xa. B is the
background error covariance matrix, and d is the innovation
vector, which is expressed as follows:

d = y−H
[
xb
]
, (2)

where y is the observation vector. H is a suitable linear ap-
proximation of the observation operator H in the vicinity of
xb, known as the tangent linear (TL) operator, and its trans-
pose is the adjoint (AD) operator (see below). R is the obser-
vation error covariance matrix. Section 5 describes the cal-
culation of B. In most cases, observations are independently
conducted, and thus R is assumed to be a diagonal matrix

without correlations among different observation errors con-
sidered. In general, observation errors associated with AOT
retrievals are determined by measurement and representa-
tion errors (Elbern and Schmidt, 2001; Schwartz et al., 2012;
Jiang et al., 2013). According to Yumimoto et al. (2016), the
observation error of Himawari-8 AOT retrievals is set to 0.06
in this study. However, further studies into observation errors
of aerosol optical properties are necessary.

The search for a minimum solution to the cost function
usually involves a numerical iterative process using a descent
algorithm. However, it is difficult to solve using Eq. (1) be-
cause it includes the inverse of B. We used the methods of Li
et al. (2013) to deal with the inversion of B. First, B can be
represented as the product of submatrices (Bannister, 2008),
B= DCDT, where D is the background error standard de-
viation (SD) matrix and C is the background error correla-
tion matrix. Second, a Cholesky factorization is applied to C
because it is a symmetric and positive definite matrix. The
Cholesky factorization is as follows:

C= C1/2
(

C1/2
)T
, (3)

where the matrix C1/2 is a lower triangular matrix. Using this
Cholesky factorization, we can transform the control vari-
ables δx to δz through

δx = DC1/2δz. (4)

Finally, substituting Eq. (4) into Eq. (1), we obtain the de-
sired form of Eq. (1) as follows:

J (δz)=
1
2
δzTδz+

1
2

(
HDC1/2δz− d

)T

×R−1
(

HDC1/2δz− d
)
. (5)
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The transformed cost function is generally better condi-
tioned, and thus this transformation expedites convergence
when it is iteratively minimized. Along with the cost func-
tion J (δz) computed at each iterative step, the derivative of
J (δz) with respect to δz is computed as follows:

∇J (δz)= δz+
(

DC1/2
)T

HTR−1
(

HDC1/2δz− d
)
. (6)

The iteration starts with δz= 0 and does not finish until the
convergence condition is met or it reaches the maximum
number of iterations. The descent algorithm used is the lim-
ited memory BFGS method (L-BFGS) (Liu and Nocedal,
1989). Finally, a return from the resulting δz at the minimum
to δxa is obtained through Eq. (4).

2.3 Control variables

As discussed above, the basic framework of Li et al. (2013)
was employed to develop a DA system. To assimilate aerosol
optical properties, a set of control variables different from
those of Li et al. (2013) was designed, which are key ele-
ments in the DA system. The control variables vary with the
aerosol scheme. Because the background field xb was sim-
ulated with the MOSAIC_4bin scheme within WRF-Chem
described in Sect. 2.1, the control variables should be de-
signed according to the MOSAIC aerosol scheme. A total
of 32 model variables represent the mass concentrations of
eight species in the four bins within MOSAIC. If these model
variables are directly taken as control variables, the result-
ing increments directly correspond to the model variables
and can be added to the background to produce an analy-
sis without intermediate conversions. However, such a num-
ber of control variables, much more than those in meteo-
rological DA, will cause a heavy burden on computational
and memory resources and even lead to computational non-
convergence when the cost function is iteratively minimized.
Therefore, a reduction in the model variables is essential for
a stable and efficient assimilation system, meaning that the
model variables should be lumped into fewer control vari-
ables in the DA process. The control variables generally de-
pend on the available observations to be assimilated. For
example, when assimilating routine aerosol measurements,
such as the total mass concentrations of PM2.5 and PM10, the
lumped control variables represent the total mass concentra-
tions of different aerosol species without the size information
included. For instance, the four model variables for sulfate.
so4_a01, so4_a02, so4_a03, and so4_a04, were reduced to
two control variables: one was the sum of so4_a01, so4_a02,
and so4_a03, and the other was so4_a04 itself (Wang et al.,
2020). However, for aerosol optical properties, the size in-
formation must be reserved within the control variables be-
cause aerosol particles with different size distributions have
significantly different light extinctions. Nevertheless, some
species have similar optical characteristics, including den-
sity and complex refractive indices, such as sulfate (SO2−

4 ),

nitrate (NO−3 ), and ammonium salt (NH+4 ) (Barnard et al.,
2010). Thus, we lumped these species so that the species
treated by the assimilation system were reduced to black
carbon; organic carbon; the summation of sulfate, nitrate,
and ammonium salt; the summation of chlorides and sodium
salts, which are quite rare inland; and other unclassified in-
organics, and these five species were denoted by EC, OC,
SSN, CN, and OIN, respectively (You, 2017); the size in-
formation of these species was retained using the same four
bins as in Sect. 2.1. Consequently, there are a total of 20
control variables, named after EC1, EC2, EC3, EC4, OC1,
OC2, OC3, OC4, SSN1, SSN2, SSN3, SSN4, CN1, CN2,
CN3, CN4, OIN1, OIN2, OIN3, and OIN4, where the num-
bers 1, 2, 3, and 4 represent the four size sections, respec-
tively. These control variables can easily be obtained from
the model variables and represent the mass concentrations
of the five aerosol species within the four bins. It should be
noted that the direct result of assimilating is to generate the
increments of 20 control variables above here, and the in-
crements of lumped variables should be distributed into in-
dividual model variable within MOSAIC. For instance, the
increment of SSN1 is equal to the summation of that of the
model variables so4_a01, no3_a01, and nh4_a01. For sim-
plicity, the distribution ratio was determined using the mass
concentration background error SD for each model variable.
When the increment of each model variable is obtained, di-
rectly adding that to its background value will produce an
aerosol analysis.

2.4 Observation operator and its adjoint

The observation operator transforms the control variables
into an equivalent of each observed quantity at the observa-
tion locations. Thus, a comparison between the simulations
and observations can be performed, upon which the resulting
increments depend. A nonlinear operator based on the Mie
scattering theory was employed to directly assimilate aerosol
optical properties. Specifically, the 20 control variables de-
scribed in Sect. 2.3 are used to compute optical parame-
ters, such as aerosol extinction coefficient at every model
grid point, and then both horizontal and vertical interpola-
tions of the simulations from the model grid to observation
locations are performed. This approach ensures that the sim-
ulated and observed quantities are comparable to each other.
The process of the forward observation operator is to com-
pute aerosol optical properties through the control variables,
as shown in Fig. 2, based on the work of Wang et al. (2014)
and Barnard et al. (2010).

Although computing aerosol optical properties with WRF-
Chem outputs involves many aerosol variables, as shown in
Fig. 2, for simplicity, only mass concentrations measured
routinely were set as the control variables. The forward op-
erator is composed of several steps as follows. First, it is
assumed that aerosol chemical species are internally mixed
along with water in each bin. Given the densities of five as-
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Figure 2. Diagram describing the forward observation operator used to transform aerosol mass concentrations to optical parameters. Qext
and Qsca are extinction and scattering efficiencies, respectively, which are functions of the size parameter and complex refractive index.

similated species and water, individual volume is easily ob-
tained so that the mean wet radius ri assigned to each bin
can be computed by dividing the total volume by the number
concentration Ni , assuming that the particles are spherical,
where the subscript i denotes the size bin. The particle size
parameter is of significant importance to optical properties
and is determined by x = 2πri/λ, where λ is the incident
wavelength. Each species is associated with a complex in-
dex of refraction, and while these indices depend on λ, they
vary little in the shortwave range where aerosols are remotely
measured. The indices at a wavelength of 550 nm were there-
fore used to compute the averaged refractive index mi for
each size bin by means of volume averaging for simplicity,
which was reduced from the optical properties (OP) module
in WRF-Chem that employs the RRTMG scheme to compute
a set of refractive indices in the range of both long and short
waves. It is worth noting that the incident wavelength λ is
set as an input parameter according to aerosol retrievals so
that the size parameter can be accurately computed. Second,
when the mean wet radius ri and complex refractive index
mi are given, optical efficiencies such as extinction efficiency
Qext and scattering efficiency Qsca can be obtained through
Mie calculations, and this step is crucial to the whole for-
ward operator. Because Mie calculation involves the opera-
tions of a complex variable, it is very difficult to establish the
computing codes and their adjoint codes. Fortunately, some
Mie calculation modules have been successfully developed
by previous researchers and have been widely applied in re-
lated studies. Among these modules, the routines provided by
Wiscombe (1979) behave perfectly in terms of computational
stability and efficiency, and thus we can obtain optical effi-
ciencies at each grid point of three dimension by repeatedly

calling it within a loop. This approach ensures that optical
efficiencies are accurately calculated; however, this requires
more computation time owing to complex nonlinear opera-
tions of Mie scattering, and developing its adjoint is faced
with great challenges and difficulties, which will have an ad-
verse impact on operational use. The methodology described
by Ghan et al. (2001) was used to efficiently calculate op-
tical efficiencies by the OP module in WRF-Chem (Fast et
al., 2006). It employs a Chebyshev polynomial expansion
to fit extinction efficiency, absorption efficiency, scattering
efficiency, asymmetry factor, and backscattering efficiency
based on a sample generated from Mie calculations; for ex-
ample, Qext can be given by

Qext = exp

[
M∑
i=1

AiTi(s)

]
, (7)

where s = (2logri−logrmax−logrmin)/(logrmax−logrmin),
a logarithm of the wet radius ri , and both rmaxand rmin are
known parameters. Ti(s) is the Chebyshev polynomial of or-
der i, and M is the number of terms in the expansion. The
coefficients Ai depend on the averaged refractive index for
the size bin in question, and they are found using bilinear
interpolation over a set of stored coefficients. Once Ai is ob-
tained, Qext is easily computed using Eq. (7). This method
is fast and results in maximum errors of just a few percent.
More details regarding this methodology can be found in Fast
et al. (2006). Similarly, optical efficiencies are determined by
the wet radius ri , refractive indexmi , and wavelength λmore
efficiently than the Mie calculation, which also reduces the
difficulties of developing the DA system. Hence, we directly
transported the OP module to construct the forward observa-
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tion operator. To perform efficiently, some routine codes un-
necessary for the assimilation system were removed so that
the forward codes were dramatically reduced compared to
the OP module, which is convenient for establishing the TL
and adjoint codes. Finally, optical properties are determined
by summation across all four size bins. For example, the ex-
tinction coefficient is given by

bext =

4 bins∑
i=1

Niπr
2
i Qext (ri,mi,λ) , (8)

and AOT is the column integration of bext over the vertical
layers. Obviously, the optical properties simulated by the for-
ward operator are distributed over the three-dimensional grid
points. To directly compare the observations, spatial interpo-
lation is needed.

As mentioned in Sect. 2.2, the TL and AD operators are
used to compute the cost function and its derivative with re-
spect to the control variables, respectively. Source code trans-
formation based on the chain rule is usually used to construct
TL and adjoint codes, which is an augmentation of forward
operator codes that have been already established and tested.
Adjoint coding involves strict rules (Zou et al., 1997; Gier-
ing and Kaminski, 1998) and is also a heavy task if com-
pleted manually. The TL and adjoint codes were generated
using the automatic differentiation tool TAPENADE V.3.15
(Hascoët and Pascual, 2013), which is available at http://
www-tapenade.inria.fr:8080/tapenade/index.jsp (last access:
1 May 2021). If a source program and its independent input
variables and dependent output variables are given, the tool
can generate the TL and adjoint programs, easing the burden
of hand coding. The generated TL and adjoint codes were
examined to ensure that they were correct prior to real ap-
plication, and they passed TL/AD sensitivity test; for more
details on how to check the TL and adjoint codes, please re-
fer to Zou et al. (1997). Manual interventions are required
when these generated codes are incorporated into the DA sys-
tem, especially in the case of variable calculations on three-
dimensional grid points. In addition, because the optical pa-
rameters are computed independently at each point, the for-
ward, TL, and adjoint codes are properly organized in a par-
allel mode to further reduce the computation time.

With the increase in aerosol observations, the simultane-
ous assimilation of aerosol observations from various plat-
forms has become a trend, combined assimilation of various
optical properties in particular has made great progress in re-
cent years (Escribano et al., 2017; C. Chen et al., 2019; Tsik-
erdekis et al., 2021). This can be achieved by adding the sum-
mation associated with the corresponding observation items
to the second term in the cost function described by Eq. (1).
For this purpose, the system was developed to assimilate as
many aerosol measurements as possible so that it has more
potential for aerosol analysis and forecasting. In contrast to
aerosol optical properties, assimilating mass concentrations
is elementary and easily performed using only a simple lin-

ear operator. The system developed here can assimilate opti-
cal properties, including the extinction coefficient, backscat-
tering coefficient, AOT, and even total attenuated backscat-
tering coefficient (Sekiyama et al., 2010), and mass concen-
trations, including total PM2.5 or PM10 mass and individual
chemical species mass, simultaneously or separately, with a
rational introduction of desired observational data, making it
possible for further study.

3 Data and methods

Two comparative experiments were performed to assess the
performance of assimilating aerosol optical properties, which
have the same model configurations as that described in
Sect. 2.1 and a spin-up time of 24 h. The only difference be-
tween them is in the initial aerosol field. One is the refer-
ence experiment without any observations assimilated, sim-
ply taking the previous 24 h aerosol forecasts as an initializa-
tion, referred to as “control”, while the other takes the aerosol
analysis after assimilating satellite-derived AOT as an initial-
ization to simulate their subsequent variations, referred to as
“assimilation”. Both experiments employed the final (FNL)
Operational Global Analysis data at a resolution of 1◦× 1◦

and a 6 h interval from the National Centers for Environmen-
tal Prediction (NCEP) (National Centers for Environmen-
tal Prediction/National Weather Service/NOAA/U.S. Depart-
ment of Commerce, 2000) to generate the initial and lateral
boundary conditions of the meteorological fields. The 2017
Multi-resolution Emission Inventory for China (MEIC) col-
lated by Tsinghua University (Zheng et al., 2018) was used
for simulation. The experiment period started on 23 Novem-
ber 2018 and ended on 29 November 2018, lasting 1 week,
with a cycle of 24 h, during which an aerosol episode oc-
curred in northern China and considerable observational data
were available.

The Himawari-8 AOT product was selected for assimi-
lation by this system because it has a much higher tempo-
ral coverage than that of polar-orbiting satellites, which is
promising for aerosol DA, and has also been successfully as-
similated using other methods (Sekiyama et al., 2016; Yumi-
moto et al., 2016; Dai et al., 2019). The Himawari-8 level
2 AOT is retrieved at 500 nm with a 10 min observation in-
terval and 0.05◦ spatial resolution; however, the data are no-
ticeably noisy. The level 3 AOT, including AOT_Pure and
AOT_Merged, an improved hourly product, is an optimal es-
timation of AOT at a certain time rather than an estimate
of the average state over an hour. AOT_Pure is a subset of
level 2 AOT with strict quality control of cloud contami-
nation, and AOT_Merged is the spatial and temporal opti-
mum interpolation of AOT_Pure within an hour (Kikuchi
et al., 2018). In this study, we focused on assimilating the
latest version of the Himawari-8 level 3 AOT_Merged at
500 nm, which contains as many AOT retrievals as possible
with a horizontal resolution of 0.05◦× 0.05◦. The original
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Figure 3. Observations of the thinned Himawari-8 AOTs (a) and surface PM2.5 mass concentration (b) in D02 at 03:00 UTC on 25 November
2018.

AOT data are commonly thinned before directly assimilat-
ing to avoid seriously overestimated increments caused by
the much higher spatial resolution of AOT data than that of
the model (Yumimoto et al., 2016; Dai et al., 2019; Ha et al.,
2020). Similar to Ha et al. (2020), we thinned the original
AOT data over the D01 mesh (27 km) and D02 mesh (9 km),
respectively, using the mean value of all the data points in one
grid cell. A case of thinned AOTs retrieved at 03:00 UTC on
25 November 2018 in D02 is shown in Fig. 3a, the number
of data is 13100, with a maximum value of 1.801. The AOT
observations represent a heavy aerosol pollution episode that
occurred in northern China, yet there is a lack of aerosol in-
formation in some heavily polluted regions due to cloud con-
tamination, meaning that optical retrievals alone are not suf-
ficient to thoroughly study aerosols. The Himawari-8 AOT is
retrieved in the visible and near-infrared bands, so the ob-
servation coverage differs with time of day. Nevertheless,
the observations at 03:00 UTC can nearly cover the whole
of China (except some western areas). Hence, we chose the
03:00 UTC rather than 00:00 UTC, as used in usual exper-
iments, as the initial time to perform a 24 h prediction of
aerosols for the purpose of research.

To evaluate the performance of Himawari-8 AOT assimila-
tion, three common statistical metrics, including the correla-
tion coefficient (CORR), root-mean-squared error (RMSE),
and mean bias (BIAS), were utilized (Boylan and Russell,
2006). It should be noted that compared with observations
is the WRF-Chem D02 simulation, the results given be-
low were computed using D02 outputs. First, we investi-
gated the effects of AOT assimilation on AOT simulations
using assimilated Himawari-8 AOTs and independent obser-
vations, including MODIS AOT and AERONET AOT ob-
servations. Second, we investigated the effects of assimilat-
ing AOTs on PM2.5 analysis and forecasting using hourly
surface mass concentration observations (Fig. 1b) released

by the China National Environmental Monitoring Centre
(CNEMC). For instance, the PM2.5 mass concentration ob-
served at 03:00 UTC on 25 November 2018 in D02 is shown
in Fig. 3b, indicating a severe pollution zone in northern
China, which is largely consistent with the spatial represen-
tation of Himawari-8 AOTs.

4 Statistics of background error covariance

Background error covariance is an important issue in data
assimilation, which not only specifies the spread of obser-
vation information in the background field, namely the way
in which the observations affect the background values, but
also determines the relative weight of observational and
background information across the analysis field. In prac-
tice, however, the error covariance B matrix is too large for
a multi-variable aerosol DA to be calculated numerically.
For instance, the number of D02 grid points used here is
in the order of 106, in addition to 20 state variables, the
number of elements in B is, therefore, 107

× 107. This size
will result in difficulty for computing and storing B, there-
fore a simplification of B is required. Following the stud-
ies of Bannister (2008) and Li et al. (2013), the B matrix
was reduced to background error SD D, horizontal corre-
lation matrix, and vertical correlation matrix, which can be
computed separately. These three submatrices have dramati-
cally fewer dimensions than B, and thus they become com-
putationally treatable. Because the forecast error is unknown,
most studies use model outputs to statistically estimate er-
ror covariance via modeling or parameterization, such as the
National Meteorological Center (NMC) method (Parrish and
Derber, 1992), which has been regularly used to calculate
background error covariance for traditional meteorological
fields such as temperature and wind and is also appropri-
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Figure 4. Vertical profiles of background error SDs in mass con-
centration for aerosol control variables EC1, EC2, EC3, EC4, OC1,
OC2, OC3, OC4, SSN1, SSN2, SSN3, SSN4, CN1, CN2, CN3,
CN4, OIN1, OIN2, OIN3, and OIN4 in the data assimilation pro-
cess, which were calculated using WRF-Chem D02 forecasts for
1 month, i.e., November 2018.

ate for aerosol mass concentrations (Benedetti and Fisher,
2007; Liu et al., 2011; Li et al., 2013). This study also uti-
lizes the NMC method to calculate background error SDs,
horizontal correlation, and vertical correlation based on dif-
ferences between 48 and 24 h forecasts valid at the same
time (i.e., 00:00 UTC) within a period of 1 month (Novem-
ber 2018). Because each aerosol state variable has a differ-
ent background error covariance from others, which has been
demonstrated by error statistics (see below), there is a need
to estimate the error covariance for each variable to achieve
better assimilation performance.

The error SD D matrix of each variable is diagonal and
was directly estimated as a domain average at every model
level using WRF-Chem D01 and D02 outputs, respectively,
and its vertical distribution (only for D02) is shown in Fig. 4.
These SDs differ among aerosol variables. In terms of values,
SSN2, SSN3, OIN2, and OIN4 have larger error SDs than the
others, with SSN2 having the largest value. The background
error SDs are related to the aerosol species mass concentra-
tion. In general, variables with higher mass concentrations
tend to have larger error SDs. For example, the simulation
domain is far from the sea, and sea salt aerosols are very rare.
As a result, no matter which size bin, the species CN has sig-
nificantly lower error SDs below 0.05 µg m−3, which is much
lower than the other variables. These error SDs display a rela-
tively rapid decrease with height apart from SSN2 and SSN3,
but diminishing rates vary among aerosol variables. The fine
structures of the error SD vertical distribution are related to
the boundary layer heights. There is a noticeable increase in
the SSN2 and SSN3 error SDs at the boundary layer height
(approximately 1000 m).

The horizontal correlation matrix determines the propaga-
tion of observation information from the observation site to
the surrounding area in the horizontal direction. Similar to

Table 1. Horizontal correlation length scales for individual aerosol
state variables.

Variable EC1 OC1 SSN1 CN1 OIN1
Lv (km) 29.2 30.2 31.6 20.9 26.5

Variable EC2 OC2 SSN2 CN2 OIN2
Lv (km) 36.4 38.4 43.3 20.3 32.7

Variable EC3 OC3 SSN3 CN3 OIN3
Lv (km) 41.0 42.5 47.0 12.8 37.4

Variable EC4 OC4 SSN4 CN4 OIN4
Lv (km) 37.3 38.0 35.0 14.6 25.5

Li et al. (2013), we assumed that different aerosol variables
are not correlated; therefore, only auto-correlations of one
variable at different distances were taken into consideration.
For further simplification, we assumed that horizontal corre-
lations are isotropic (Kahnert, 2008), which means that hori-
zontal correlations are just a function of distance and have
nothing to do with direction. Consequently, the horizontal
correlation can be fitted using a one-dimensional Gaussian
function. The correlation between two arbitrary points x1 and
x2 can be expressed as c(x1,x2)= exp[−(x1− x2)

2/2L2
v],

where Lv is the only unknown parameter and is the hor-
izontal correlation length scale of each state variable. The
correlation increases as the distance decreases, when the dis-
tance decreases to zero it obtains a maximum of 1. Thus, Lv
is defined as the distance at which the correlation decreases
to e−1/2 and can be calculated via model outputs. This dis-
tance averaged over the model domain was used as an es-
timate of Lv . The introduction of Lv reduces the relatively
complex two-dimensional correlation matrix to a parameter
that is able to completely describe the structure of horizontal
correlation, undoubtedly simplifying the computing and stor-
age of the horizontal correlation matrix. The estimated Lv in
D02 for individual aerosol state variable is given in Table 1.
The estimated correlation length scales are significantly dif-
ferent among the distinct species. Thus, out of all aerosol
variables, SSN3 has the largest scale at 47 km, indicating that
the influence of SSN3 observations could spread farther than
other variables and has a larger domain improvement across
the background field. In contrast, CN3 has the smallest scale
(12.8 km) and spreads the least based on observational in-
formation. Overall, SSN species have relatively large corre-
lation length scales among species of the same size section,
except for in the fourth bin. Additionally, the same aerosol
species in different size sections have distinctly different er-
ror correlation length scales; for example, OIN3 has a larger
scale than OIN2. Such differences among the correlation
length scales indicate the need to use multi-species concen-
trations within the four size bins as control variables.

Background error vertical correlation plays an important
role in the vertical spread of aerosol observation information.
On the one hand, it has more complicated structures instead
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Figure 5. Vertical auto-correlations of background errors for aerosol state variables within the third size bin, i.e., EC3, OC3, SSN3, CN3,
and OIN3. These statistics are directly estimated by the NMC method using WRF-Chem D02 outputs. Both axes are logarithmic and the
contour interval is 0.1.

of isotropy compared to the horizontal correlation because of
the discontinuity-like transition of the vertical distributions
between the boundary layer and the free atmosphere above,
and such structures are difficult to represent using an analytic
function. On the other hand, the vertical correlation, which is
the nz× nz (here, nz is equal to 40) matrix, is much smaller
than the horizontal correlation matrix. As a result, the vertical

correlation was directly estimated using model outputs. Be-
cause the vertical correlation of every variable is similar, the
computed vertical correlations only for control variables in
the third size bin are shown in Fig. 5. A salient and common
feature of these vertical correlations is that they decrease with
height and have strong relation to the boundary layer heights,
which means that aerosols are mainly stacked in the bound-
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ary layer and tend to accumulate closer to the ground. At the
same time, consistent with the horizontal correlations, verti-
cal correlations differ among aerosol variables. SSN3 has a
relatively large vertical scale, whereas CN3 has a relatively
small vertical scale, which is consistent with the horizontal
features.

5 Results

5.1 Effects on AOT simulations

AOT is of great value for studying aerosol activities, which
can be simulated by the forward operator within the DA
system. In general, assimilating AOT certainly improves its
analysis according to the basic principle of the 3DVAR algo-
rithm unless it is not successfully assimilated. It is noted that
the wavelength variable necessary for computing AOTs de-
scribed in Sect. 2.4 was set to be 500 nm, the wavelength at
which the Himawari-8 AOTs are retrieved. A comparison be-
tween the simulated AOTs in the background field and anal-
ysis is usually employed to demonstrate the positive effects
of assimilation. For illustration, the simulated AOTs and the
so-called AOT increments at an initialization of 03:00 UTC
on 25 November 2018 are shown in Fig. 6. The increments,
which are differences between the analysis and the back-
ground field, can be considered the changes generated by as-
similation, including magnitude and range, and these incre-
ments are spatially consistent with the observations, which
means that the observations have an important effect on the
assimilation results. Obviously, the simulated AOTs in the
background field are dramatically underestimated (Fig. 6a)
compared with the observed Himawari-8 AOTs (Fig. 3a),
while the analysis brings the AOTs closer to the observations,
which is indicated by the prominently positive increments
(Fig. 6c). At the same time, assimilation also decreases the
AOTs over other regions, with negative increments marked
in blue. The background field is generally unable to describe
the real pollution, especially in the case of heavy pollution;
however, the analysis after assimilation can provide a rela-
tively accurate pollution situation (Fig. 6b).

The distributions shown in Fig. 6 express the effects of
assimilating AOT on its analysis. To quantitatively evalu-
ate the effects, the three metrics described above, CORR,
RMSE, and BIAS, were computed through all the data pairs
between the simulated and observed AOTs after spatial in-
terpolation from regular grid points to the corresponding ob-
servational locations. Higher scores for the metrics CORR,
RMSE, and BIAS would demonstrate better assimilation per-
formance and vice versa. Besides, the assimilated Himawari-
8 AOTs were used to compute the metrics, and another in-
dependent observation MODIS AOT was employed to fully
evaluate the effects of assimilation on the analysis. The Terra
MODIS level 2 AOT data (MOD04_L2) were used for val-
idation in this study. As this polar-orbiting satellite passes

over the Equator at 10:30 LT, we collected all the data be-
tween 00:00 and 06:00 UTC, rather than at a given time, to
obtain more observations, matching the simulated values at
the initial time (i.e., 03:00 UTC). It is worth mentioning that
MODIS AOT is retrieved at 550 nm and the simulated AOT
is at 500 nm, which will have a small and thus not largely sig-
nificant effect on the evaluation. The experiment lasted for a
week in cycles of 24 h, which contained seven initializations,
and thus we gathered the simulated AOTs at all the initializa-
tions to achieve a general evaluation result. The comparisons
between the observed and simulated AOTs are presented us-
ing scatter plots, as shown in Fig. 7, where Fig. 7a repre-
sents the comparison with Himawari-8 and Fig. 7b shows a
comparison with MODIS. The comparison with Himawari-8
AOTs reveals that the analyses have a better performance as
CORR increases from 0.524 to 0.868, RMSE decreases from
0.280 to 0.147, and BIAS is reduced by about 77 % after as-
similation. Similar results are found in the comparison with
the MODIS AOTs. Red points are distributed more densely
and more parallel to the 1 : 1 line than the blue points, indicat-
ing that the analyses are closer to the observations. All three
metrics demonstrated positive effects from assimilation on
the analysis. Usually AOT at higher wavelengths (550 nm) is
smaller than AOT at lower wavelengths (500 nm), and thus
the bias would be even more negative if comparing AOT
simulations with MODIS AOT for both control and analysis,
which is demonstrated by the indicator BIAS in Fig. 7. For
instance, BIAS is −0.031 when comparing with Himawari-8
AOT, while BIAS is −0.140 against MODIS AOT after as-
similation. In summary, the assimilation system can success-
fully introduce AOT observations into the model to generate
a more accurate initial field.

Similar to other studies (Dai et al., 2019; Ha et al., 2020),
an independent validation of the simulated hourly AOTs
from both the control and assimilation experiments was con-
ducted through a comparison with AERONET observations
to further investigate the effects of assimilation on fore-
casting. There are a total of six AERONET sites in D02:
Beijing, Beijing-CAMS, Beijing_PKU, Beijing_RADI, Xi-
angHe, and Xuzhou-CUMT, which are marked with red tri-
angles in Fig. 1b. The sites can provide various AOT re-
trievals at different wavelengths, and those at 500 nm were
selected for validation. In this study, we took level 2.0 and
1.5 (if level 2.0 data are not available) AERONET AOTs,
which are cloud-screened (Smirnov et al., 2000), and used
them to evaluate satellite observations. Figure 8 depicts the
time series of the simulated AOTs and observations at six
AERONET sites from 23 to 30 November 2018. Compared
with observations, the control experiment dramatically un-
derestimated AOTs at all sites, while the assimilation experi-
ment significantly enlarged AOTs so that they became closer
to the observations. This indicates that assimilation signifi-
cantly improves AOT simulation. As can be seen, the assim-
ilation benefits vary with sites; for instance, assimilation im-
proves the AOT simulation, as well as the forecasting time, at
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Figure 6. Spatial distributions of simulated AOTs in the background field (a) and analysis (b) and the increments (c), which are differences
between the analysis and the background field. For illustration, distributions in D02 at a model initialization of 03:00 UTC on 25 November
2018 are given, which are similar to other results during the experiment period (i.e., from 23 to 29 November 2018).

Figure 7. Scatter plots of the simulated AOTs colocated in D02 vs. (a) the observed Himawari-8 AOTs and (b) Terra MODIS AOTs. These
data were a set of all initializations from 23 to 29 November 2018; blue points are the control experiment, while red points are the assimilation
experiment. The solid line is the 1 : 1 line where simulated values are equal to observed values, and the dashed lines correspond to 1 : 2 and
2 : 1.

Xuzhou-CUMT less than that at other sites (Fig. 8f); for ex-
ample, the assimilation benefits for analyses can reach 24 h in
the case of 25 November, while they last less than 24 h in the
case of 24 November. The available observations largely ac-
count for this variation. A high-pollution event took place on
26 November in northern China so that AOTs over 1.6 were
measured in Beijing (Fig. 8b), which can also be demon-
strated by ground-level PM2.5 observations (not shown here),
but there are few Himawari-8 observations for the event to
be assimilated due to cloud contamination. As a result, the
assimilation experiment had the same performance as the
control experiment, which is unable to describe the high-
pollution event. It has been concluded that the introduction

of AOT observations by assimilation is beneficial to capture
heavy pollution levels (Rubin et al., 2017).

5.2 Effects on PM2.5 simulations

PM2.5 mass concentrations draw large attention from both
the public and researchers. They can be directly modeled us-
ing WRF-Chem and are conventionally measured at ambient
air quality monitoring stations. As the DA system was devel-
oped based on the MOSAIC scheme, it should hopefully im-
prove aerosol analyses and subsequent forecasts, especially
for PM2.5. Northern China is located in D02 and is known
for its high levels of air pollution; therefore, WRF-Chem D02
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Figure 8. Time series of the simulated AOTs colocated in D02 and AERONET AOT observations at (a) Beijing, (b) Beijing-CAMS, (c) Bei-
jing_ PKU, (d) Beijing_RADI, (e) XiangHe, and (f) Xuzhou-CUMT during the whole forecasting period. Both simulated AOTs and observed
AOTs are at 500 nm. The brown line is the control experiment, while the light blue line is the assimilation experiment, and the AERONET
observations are represented by black dots, which are only available under clear-sky conditions.

outputs were directly employed to investigate the effects of
assimilating Himawari-8 AOTs on regional PM2.5 forecasts.

As described in Sect. 2.3, the assimilation process will pro-
duce the increments of 20 control variables. Of course, we
can analyze every increment to assess the effects of AOT as-
similation on the corresponding aerosol species simulations.

Because there is a lack of observations for aerosol species
at each size section, the total increment of PM2.5 is ana-
lyzed instead, which is simply a summation of increments
over five assimilated species in the first, second, and third
size bins. For illustration, Fig. 9 only shows the simulated
surface PM2.5 concentrations in the background field and
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Figure 9. Spatial distribution of surface PM2.5 concentrations simulated at an initialization of 03:00 UTC on 25 November 2018 in (a) the
control experiment and (b) the assimilation experiment and (c) the increment that is the difference between (b) and (a). These quantities are
in units of µg m−3 and colocated in D02.

Figure 10. Vertical cross section of PM2.5 in the background field (a), analysis (b), and the increment (c) in D02 at 03:00 UTC on 25 Novem-
ber 2018.

corresponding analyses at an initialization of 03:00 UTC on
25 November 2018, as well as the increments. The control
experiment underestimated PM2.5 concentrations in northern
China compared with the observed values (Fig. 3b). For ex-
ample, the PM2.5 concentrations in Tianjin marked by the
small black triangle in Fig. 9 reached more than 200 µg m−3,
while the simulated values in the background field were less
than 150 µg m−3 (Fig. 9a). The evidently positive increments
generated by assimilation enlarge PM2.5 analyses (Fig. 9c),
making them closer to the observations, and the analyses
are therefore able to describe heavy pollution. At the same
time, negative increments decrease overestimation in some
places. The PM2.5 increments are spatially consistent with
AOT observations (Fig. 3a), which means that aerosol op-
tical properties have been transformed into mass concentra-

tions using the observation operator and then incorporated
into the model. The analyses are superior to the background
field in terms of pollution magnitude; however, the heavy
pollution band in northern China was simulated further to
the east compared with the observations. This might be as-
cribed to model deficiency in the representation of three-
dimensional aerosol species. Since AOT is an atmospheric
column measurement, it naturally includes the information
of aerosol vertical distributions. Consequently, AOT assim-
ilation can improve aerosol vertical distributions as well. A
vertical cross section of PM2.5 at 03:00 UTC on 25 Novem-
ber 2018 is shown in Fig. 10; this cross section is through
Tianjin. Similar to surface PM2.5, suspended PM2.5 mass
concentrations in the upper air are also enlarged with a wide
range from the ground to about 1 km by significantly posi-
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tive increments generated by assimilation (Fig. 10c). Despite
having no observational PM2.5 profiles to compare it with,
the vertical distribution in analyses is believed to be closer
to the real distribution in terms of the ground PM2.5 level
(Fig. 10b). It should be noted that the vertical increments are
determined by the background error vertical correlation. In
summary, AOT assimilation is certainly helpful to improve
the three-dimensional descriptions of PM2.5.

Assimilation directly aims to improve aerosol analyses. As
shown in Fig. 11, the data dots between simulated and ob-
served PM2.5 concentrations were also analyzed according
to the three metrics. From Fig. 11, the red points (standing
for analyses) do not have a significantly better performance
than their blue counterparts for the control experiment, yet
the metrics demonstrate the slight positive effects of AOT as-
similation on aerosol analyses, increasing CORR from 0.485
to 0.530, decreasing RMSE from 60.66 to 56.40 µg m−3, and
reducing BIAS by 4.97 µg m−3. This improvement is less sig-
nificant than that of directly assimilating PM2.5 concentra-
tions (Wang et al., 2020); however, the use of PM2.5 con-
centrations to evaluate the effects of AOT assimilation is not
objective and comprehensive because there is a discrepancy
between PM2.5 and AOT observations. For example, no as-
similation benefits in some highly polluted areas are gener-
ated because of the lack of AOT retrievals, and thus the PM2.5
observations cannot reflect the benefits from AOT assimila-
tion. Besides, AOT is an atmospheric column measurement
while PM2.5 is a surface measurement. Therefore, if you have
an aerosol plume that is not close to the surface, AOT can
be increased by increasing the aerosol concentration of that
plume, whereas PM2.5 can remain almost unaffected by that
change.

To investigate the effects of AOT assimilation on PM2.5
forecasts, time series of three metrics regarding the forecast
range (i.e., 24 h) were computed using hourly WRF-Chem
D02 outputs and observations. As shown in Fig. 12, in terms
of both CORR and RMSE, the assimilation experiment per-
formed better than the control experiment, indicating that the
benefits for analyses from AOT assimilation can last up to
24 h. It is noted that the assimilation benefits vary with inte-
gration time, decreasing in a fluctuating manner. The com-
puted BIAS indicates that AOT assimilation improves PM2.5
forecasts within 24 h but can vary for certain times. As dis-
cussed above, assimilation significantly enlarges the simu-
lated PM2.5 concentrations, but an overcorrection, namely
that the simulated values surpass observations, occurs ap-
proximately 7–8 h from the initial time (Fig. 12c), which may
be ascribed to the dramatically noisy AOT retrievals, as well
as an imperfection of the observation operator for aerosol op-
tical properties.

The time series of the simulated PM2.5 concentrations and
observations during the entire experimental period are shown
in Fig. 13, which are hourly averaged over 683 stations in
D02. The blue line denotes the control experiment, the red
line denotes the assimilation experiment, and the observa-

Figure 11. Scatter plots of the simulated PM2.5 concentrations in
the control experiment and corresponding analyses in the assimila-
tion experiment vs. the observations. Like Fig. 7, these data are also
colocated in D02 and a set of all initializations. Blue points stand for
the control experiment, while red points stand for the assimilation
experiment.

tions are represented using the black line. Overall, the mean
PM2.5 concentrations simulated by the assimilation experi-
ment were closer to the observations than the control ex-
periment, which is beneficial for describing the real heavy
pollution in northern China. Statistically, the CORR, RMSE,
and BIAS between the black curve and blue curve were
0.645, 20.74 µg m−3, and−16.25 µg m−3, respectively, while
CORR, RMSE, and BIAS between the black curve and the
red curve were 0.732, 15.12 µg m−3, and −9.81 µg m−3, re-
spectively, which means that the assimilation experiment had
a better performance in PM2.5 forecasts than the control ex-
periment. These metrics indicate that AOT assimilation im-
proves regional PM2.5 forecasts, especially in the case of
heavy pollution.

6 Summary and discussions

A 3DVAR DA system was independently developed to di-
rectly assimilate aerosol optical properties. This system was
built based on the framework of Li et al. (2013) and devel-
oped for the MOSAIC scheme within WRF-Chem, a sophis-
ticated aerosol model, rather than the GOCART scheme em-
ployed by CRTM. MOSAIC divides aerosol particles into
eight species that are described in four size bins so that there
are 32 mass concentration model variables. For computa-
tional efficiency, the 32 model variables were lumped into 20
aerosol state variables, which are representative of the mass
concentrations of five assimilated species within the four size
bins. An optical module was added to assimilate aerosol op-
tical properties, which consisted of the forward observation
operator and its TL and AD codes. We properly reduced the

https://doi.org/10.5194/gmd-15-1821-2022 Geosci. Model Dev., 15, 1821–1840, 2022



1836 D. Wang et al.: Data assimilation for aerosol optical properties in the MOSAIC aerosol scheme

Figure 12. Statistical metrics (a) CORR, (b) RMSE, and (c) BIAS for surface PM2.5 forecast performances in D02 regarding the forecast
range, which are computed as an average over seven analysis steps. The blue line is the control experiment, and the red line is the assimilation
experiment.

Figure 13. Time series of surface PM2.5 simulated by the control
experiment (blue) and the assimilation experiment (red) as well as
corresponding observations (black), as averages over 683 stations in
D02. The simulations are representative of hourly 0–23 h forecasts
in D02 from 03:00 UTC every day during the whole forecasting pe-
riod using WRF-Chem.

OP module (Fast et al., 2006) in WRF-Chem to establish the
forward operator, then the TL and AD codes were generated
using an automatic differentiation tool and tested to ensure
that they were correct. The system can (simultaneously or
separately) assimilate aerosol optical properties such as ex-
tinction coefficient profiles, AOTs, and mass concentrations,
and these should be applied for further studies in the future.

Himawari-8 AOTs were assimilated to validate the sys-
tem and investigate the effects of assimilation on both AOT
and PM2.5 simulations. A heavy air pollution event occurred
in northern China from 23 to 29 November 2018; there-
fore, this period was chosen for the simulation experiment.
Two comparative experiments with a spin-up time of 24 h
were performed, continuously lasting for a week with a cy-
cle of 24 h. The control experiment took the previous 24 h
aerosol forecasts as an initialization, while the assimilation
experiment employed analyses after assimilating Himawari-
8 AOTs to initialize the simulations. WRF-Chem D02 out-

puts were compared with the assimilated AOTs, independent
MODIS AOTs, AERONET AOT observations, and surface
PM2.5 mass concentration observations.

Background error statistics, including SDs, horizontal cor-
relation length scales, and vertical correlations of 20 control
variables, were estimated using monthly WRF-Chem out-
puts based on the NMC method, which are also necessary
for the assimilation process. Our results showed that back-
ground error statistics distinctly vary among these control
variables, which also illustrates the necessity of building a
multi-variable aerosol DA system.

Assimilation significantly improves AOT analyses and
forecasts. In general, the control experiment without assimi-
lation seriously underestimated AOTs compared with the ob-
served values. The analyses perform better in terms of the
statistical metrics CORR, RMSE, and BIAS in comparison
with both assimilated and independent AOTs than the back-
ground field. The analyses closer to observations improve
AOT simulations, which is of great value in the study of AOT
distribution during high-pollution events. The improvement
in AOT simulations indicates that the system successfully as-
similated AOT observations into the model to form an accu-
rate initial field.

Subject to the basic formulation, the DA process directly
aims to improve aerosol analyses. In terms of statistical met-
rics, assimilating Himawari-8 AOTs improves PM2.5 analy-
ses (but not significantly); in D02 and the assimilation ben-
efits can last more than 24 h. Assimilation significantly en-
larges the underestimated PM2.5 concentrations to be closer
to the real distribution in northern China during heavy pol-
lution. The averaged surface PM2.5 concentrations over D02
were better simulated during the whole pollution period af-
ter assimilation compared with corresponding observations,
which means that AOT assimilation improves regional PM2.5
simulations.

In this study, the observation errors of AOT retrievals were
simply set as a constant. However, they should be determined
by the retrieval uncertainty, or should be variable at least. Ad-
ditionally, different thinning schemes for AOT retrievals may
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have different results. Consequently, these questions should
be studied further. As more aerosol optical property obser-
vations become available, combined assimilation of optical
properties and routine observations, such as aerosol extinc-
tion profiles and mass concentrations, has become popular.
As described above, the system developed in this study has
great potential for assimilating various observations. Assim-
ilating AOTs here is a preliminary study, and combined as-
similation studies should be performed in the future.

Code and data availability. The WRF-Chem model source code
can be downloaded at the WRF model download page (https:
//www2.mmm.ucar.edu/wrf/users/download/get_source.html, last
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