Articles | Volume 14, issue 12
https://doi.org/10.5194/gmd-14-7673-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/gmd-14-7673-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
SNICAR-ADv3: a community tool for modeling spectral snow albedo
Department of Climate and Space Sciences and Engineering, University of Michigan, Ann Arbor, MI, USA
Julian B. Arnheim
Department of Earth and Atmospheric Sciences, Cornell University, Ithaca, NY, USA
Joseph M. Cook
Department of Environmental Science, Aarhus University, Roskilde, Denmark
Cheng Dang
Joint Center For Satellite Data Assimilation, UCAR, Boulder, CO, USA
Cenlin He
Research Applications Laboratory, National Center for Atmospheric Research, Boulder, CO, USA
Xianglei Huang
Department of Climate and Space Sciences and Engineering, University of Michigan, Ann Arbor, MI, USA
Deepak Singh
Centre of Studies in Resources Engineering, Indian Institute of Technology Bombay, Mumbai, Maharashtra, India
S. McKenzie Skiles
Department of Geography, University of Utah, Salt Lake City, UT, USA
Chloe A. Whicker
Department of Climate and Space Sciences and Engineering, University of Michigan, Ann Arbor, MI, USA
Charles S. Zender
Department of Earth System Science, University of California, Irvine, CA, USA
Related authors
Cynthia H. Whaley, Kathy S. Law, Jens Liengaard Hjorth, Henrik Skov, Stephen R. Arnold, Joakim Langner, Jakob Boyd Pernov, Garance Bergeron, Ilann Bourgeois, Jesper H. Christensen, Rong-You Chien, Makoto Deushi, Xinyi Dong, Peter Effertz, Gregory Faluvegi, Mark Flanner, Joshua S. Fu, Michael Gauss, Greg Huey, Ulas Im, Rigel Kivi, Louis Marelle, Tatsuo Onishi, Naga Oshima, Irina Petropavlovskikh, Jeff Peischl, David A. Plummer, Luca Pozzoli, Jean-Christophe Raut, Tom Ryerson, Ragnhild Skeie, Sverre Solberg, Manu A. Thomas, Chelsea Thompson, Kostas Tsigaridis, Svetlana Tsyro, Steven T. Turnock, Knut von Salzen, and David W. Tarasick
Atmos. Chem. Phys., 23, 637–661, https://doi.org/10.5194/acp-23-637-2023, https://doi.org/10.5194/acp-23-637-2023, 2023
Short summary
Short summary
This study summarizes recent research on ozone in the Arctic, a sensitive and rapidly warming region. We find that the seasonal cycles of near-surface atmospheric ozone are variable depending on whether they are near the coast, inland, or at high altitude. Several global model simulations were evaluated, and we found that because models lack some of the ozone chemistry that is important for the coastal Arctic locations, they do not accurately simulate ozone there.
Zachary Fair, Mark Flanner, Adam Schneider, and S. McKenzie Skiles
The Cryosphere, 16, 3801–3814, https://doi.org/10.5194/tc-16-3801-2022, https://doi.org/10.5194/tc-16-3801-2022, 2022
Short summary
Short summary
Snow grain size is important to determine the age and structure of snow, but it is difficult to measure. Snow grain size can be found from airborne and spaceborne observations by measuring near-infrared energy reflected from snow. In this study, we use the SNICAR radiative transfer model and a Monte Carlo model to examine how snow grain size measurements change with snow structure and solar zenith angle. We show that improved understanding of these variables improves snow grain size precision.
Cynthia H. Whaley, Rashed Mahmood, Knut von Salzen, Barbara Winter, Sabine Eckhardt, Stephen Arnold, Stephen Beagley, Silvia Becagli, Rong-You Chien, Jesper Christensen, Sujay Manish Damani, Xinyi Dong, Konstantinos Eleftheriadis, Nikolaos Evangeliou, Gregory Faluvegi, Mark Flanner, Joshua S. Fu, Michael Gauss, Fabio Giardi, Wanmin Gong, Jens Liengaard Hjorth, Lin Huang, Ulas Im, Yugo Kanaya, Srinath Krishnan, Zbigniew Klimont, Thomas Kühn, Joakim Langner, Kathy S. Law, Louis Marelle, Andreas Massling, Dirk Olivié, Tatsuo Onishi, Naga Oshima, Yiran Peng, David A. Plummer, Olga Popovicheva, Luca Pozzoli, Jean-Christophe Raut, Maria Sand, Laura N. Saunders, Julia Schmale, Sangeeta Sharma, Ragnhild Bieltvedt Skeie, Henrik Skov, Fumikazu Taketani, Manu A. Thomas, Rita Traversi, Kostas Tsigaridis, Svetlana Tsyro, Steven Turnock, Vito Vitale, Kaley A. Walker, Minqi Wang, Duncan Watson-Parris, and Tahya Weiss-Gibbons
Atmos. Chem. Phys., 22, 5775–5828, https://doi.org/10.5194/acp-22-5775-2022, https://doi.org/10.5194/acp-22-5775-2022, 2022
Short summary
Short summary
Air pollutants, like ozone and soot, play a role in both global warming and air quality. Atmospheric models are often used to provide information to policy makers about current and future conditions under different emissions scenarios. In order to have confidence in those simulations, in this study we compare simulated air pollution from 18 state-of-the-art atmospheric models to measured air pollution in order to assess how well the models perform.
Chloe A. Whicker, Mark G. Flanner, Cheng Dang, Charles S. Zender, Joseph M. Cook, and Alex S. Gardner
The Cryosphere, 16, 1197–1220, https://doi.org/10.5194/tc-16-1197-2022, https://doi.org/10.5194/tc-16-1197-2022, 2022
Short summary
Short summary
Snow and ice surfaces are important to the global climate. Current climate models use measurements to determine the reflectivity of ice. This model uses physical properties to determine the reflectivity of snow, ice, and darkly pigmented impurities that reside within the snow and ice. Therefore, the modeled reflectivity is more accurate for snow/ice columns under varying climate conditions. This model paves the way for improvements in the portrayal of snow and ice within global climate models.
Zachary Fair, Mark Flanner, Kelly M. Brunt, Helen Amanda Fricker, and Alex Gardner
The Cryosphere, 14, 4253–4263, https://doi.org/10.5194/tc-14-4253-2020, https://doi.org/10.5194/tc-14-4253-2020, 2020
Short summary
Short summary
Ice on glaciers and ice sheets may melt and pond on ice surfaces in summer months. Detection and observation of these meltwater ponds is important for understanding glaciers and ice sheets, and satellite imagery has been used in previous work. However, image-based methods struggle with deep water, so we used data from the Ice, Clouds, and land Elevation Satellite-2 (ICESat-2) and the Airborne Topographic Mapper (ATM) to demonstrate the potential for lidar depth monitoring.
Siyu Zhao, Rong Fu, Kelly Núñez Ocasio, Robert Nystrom, Cenlin He, and Jiaying Zhang
EGUsphere, https://doi.org/10.5194/egusphere-2025-3591, https://doi.org/10.5194/egusphere-2025-3591, 2025
This preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).
Short summary
Short summary
The Congo Basin has frequent organized thunderstorms producing much of the region’s rainfall, yet their development remains unclear due to limited data. Using a high-resolution global model, it shows the long-lasting storm is supported by vertical wind shear up to 400 km ahead, explaining up to 65 % of its variance, with the mid-level jet stream playing a role in maintaining the shear. The findings highlight the value of such model in data-sparse regions for examining storms and their impacts.
Yanyan Cheng, Kalli Furtado, Cenlin He, Fei Chen, Alan Ziegler, Song Chen, Matteo Detto, Yuna Mao, Baoxiang Pan, Yoshiko Kosugi, Marryanna Lion, Shoji Noguchi, Satoru Takanashi, Lulie Melling, and Baoqing Zhang
EGUsphere, https://doi.org/10.5194/egusphere-2025-3898, https://doi.org/10.5194/egusphere-2025-3898, 2025
This preprint is open for discussion and under review for Geoscientific Model Development (GMD).
Short summary
Short summary
Tropical land surface processes shape the Earth’s climate, but models often lack accuracy in the tropics due to limited data for validation. We improved the Noah-MP land surface model for the tropics using data from forests in Panama and Malaysia, and an urban site in Singapore. Calibration enhanced simulations of energy and water fluxes, and revealed key vegetation and soil parameters, as well as future directions for model improvement in tropical regions.
Chayan Roychoudhury, Cenlin He, Rajesh Kumar, and Avelino F. Arellano Jr.
Earth Syst. Dynam., 16, 1237–1266, https://doi.org/10.5194/esd-16-1237-2025, https://doi.org/10.5194/esd-16-1237-2025, 2025
Short summary
Short summary
We present a novel data-driven approach to understand how pollution and weather processes interact to influence snowmelt in Asian glaciers and how these interactions are represented in three climate models. Our findings show where models need improvement in predicting snowmelt, particularly dust and its transport. This method can support future model development for reliable predictions in climate-vulnerable regions.
Rajesh Kumar, Piyush Bhardwaj, Cenlin He, Jennifer Boehnert, Forrest Lacey, Stefano Alessandrini, Kevin Sampson, Matthew Casali, Scott Swerdlin, Olga Wilhelmi, Gabriele G. Pfister, Benjamin Gaubert, and Helen Worden
Earth Syst. Sci. Data, 17, 1807–1834, https://doi.org/10.5194/essd-17-1807-2025, https://doi.org/10.5194/essd-17-1807-2025, 2025
Short summary
Short summary
We have created a 14-year hourly air quality dataset at 12 km resolution by combining satellite observations of atmospheric composition with air quality models over the contiguous United States (CONUS). The dataset has been found to reproduce key observed features of air quality over the CONUS. To enable easy visualization and interpretation of county-level air quality measures and trends by stakeholders, an ArcGIS air quality dashboard has also been developed.
Parag Joshi, Tzu-Shun Lin, Cenlin He, and Katia Lamer
EGUsphere, https://doi.org/10.5194/egusphere-2025-1751, https://doi.org/10.5194/egusphere-2025-1751, 2025
Short summary
Short summary
Study revisits urban representation (using canopy models & bulk parameterization) in the Weather Research & Forecasting model. We propose methods to identify evaluable parameters via field measurements and found inconsistencies between UCM physics and code implementation. Simulations reveal small errors can significantly impact outputs, highlighting the need for precise physics implementation.
Lou-Anne Chevrollier, Adrien Wehrlé, Joseph M. Cook, Norbert Pirk, Liane G. Benning, Alexandre M. Anesio, and Martyn Tranter
The Cryosphere, 19, 1527–1538, https://doi.org/10.5194/tc-19-1527-2025, https://doi.org/10.5194/tc-19-1527-2025, 2025
Short summary
Short summary
Light-absorbing particles (LAPs) are often present as a mixture on snow surfaces and are important to disentangle because their darkening effects vary but also because the processes governing their presence and accumulation on snow surfaces are different. This study presents a novel method to retrieve the concentration and albedo-reducing effect of different LAPs present at the snow surface from surface spectral albedo. The method is then successfully applied to ground observations on seasonal snow.
Mohamed Hamitouche, Giorgia Fosser, Alessandro Anav, Cenlin He, and Tzu-Shun Lin
Hydrol. Earth Syst. Sci., 29, 1221–1240, https://doi.org/10.5194/hess-29-1221-2025, https://doi.org/10.5194/hess-29-1221-2025, 2025
Short summary
Short summary
This study evaluates how different methods of simulating runoff impact river flow predictions globally. By comparing seven approaches within the Noah-Multi-parameterisation (Noah-MP) land surface model, we found significant differences in accuracy, with some methods underestimating or overestimating runoff. The results are crucial for improving water resource management and flood prediction. Our work highlights the need for precise modelling to better prepare for climate-related challenges.
Cenlin He, Tzu-Shun Lin, David M. Mocko, Ronnie Abolafia-Rosenzweig, Jerry W. Wegiel, and Sujay V. Kumar
EGUsphere, https://doi.org/10.5194/egusphere-2024-4176, https://doi.org/10.5194/egusphere-2024-4176, 2025
Short summary
Short summary
This study integrates the refactored community Noah-MP version 5.0 model with the NASA Land Information System (LIS) version 7.5.2 to streamline the synchronization, development, and maintenance of Noah-MP within LIS and to enhance their interoperability and applicability. The model benchmarking and evaluation results reveal key model strengths and weaknesses in simulating land surface quantities and show implications for future model improvements.
Dario Di Santo, Cenlin He, Fei Chen, and Lorenzo Giovannini
Geosci. Model Dev., 18, 433–459, https://doi.org/10.5194/gmd-18-433-2025, https://doi.org/10.5194/gmd-18-433-2025, 2025
Short summary
Short summary
This paper presents the Machine Learning-based Automated Multi-method Parameter Sensitivity and Importance analysis Tool (ML-AMPSIT), a computationally efficient tool that uses machine learning algorithms for sensitivity analysis in atmospheric models. It is tested with the Weather Research and Forecasting (WRF) model coupled with the Noah-Multiparameterization (Noah-MP) land surface model to investigate sea breeze circulation sensitivity to vegetation-related parameters.
Ian E. McDowell, Kaitlin M. Keegan, S. McKenzie Skiles, Christopher P. Donahue, Erich C. Osterberg, Robert L. Hawley, and Hans-Peter Marshall
The Cryosphere, 18, 1925–1946, https://doi.org/10.5194/tc-18-1925-2024, https://doi.org/10.5194/tc-18-1925-2024, 2024
Short summary
Short summary
Accurate knowledge of firn grain size is crucial for many ice sheet research applications. Unfortunately, collecting detailed measurements of firn grain size is difficult. We demonstrate that scanning firn cores with a near-infrared imager can quickly produce high-resolution maps of both grain size and ice layer distributions. We map grain size and ice layer stratigraphy in 14 firn cores from Greenland and document changes to grain size and ice layer content from the extreme melt summer of 2012.
Brian Kahn, Cameron Bertossa, Xiuhong Chen, Brian Drouin, Erin Hokanson, Xianglei Huang, Tristan L'Ecuyer, Kyle Mattingly, Aronne Merrelli, Tim Michaels, Nate Miller, Federico Donat, Tiziano Maestri, and Michele Martinazzo
EGUsphere, https://doi.org/10.5194/egusphere-2023-2463, https://doi.org/10.5194/egusphere-2023-2463, 2023
Preprint archived
Short summary
Short summary
A cloud detection mask algorithm is developed for the upcoming Polar Radiant Energy in the Far Infrared Experiment (PREFIRE) satellite mission to be launched by NASA in May 2024. The cloud mask is compared to "truth" and is capable of detecting over 90 % of all clouds globally tested with simulated data, and about 87 % of all clouds in the Arctic region.
Wenfu Tang, Louisa K. Emmons, Helen M. Worden, Rajesh Kumar, Cenlin He, Benjamin Gaubert, Zhonghua Zheng, Simone Tilmes, Rebecca R. Buchholz, Sara-Eva Martinez-Alonso, Claire Granier, Antonin Soulie, Kathryn McKain, Bruce C. Daube, Jeff Peischl, Chelsea Thompson, and Pieternel Levelt
Geosci. Model Dev., 16, 6001–6028, https://doi.org/10.5194/gmd-16-6001-2023, https://doi.org/10.5194/gmd-16-6001-2023, 2023
Short summary
Short summary
The new MUSICAv0 model enables the study of atmospheric chemistry across all relevant scales. We develop a MUSICAv0 grid for Africa. We evaluate MUSICAv0 with observations and compare it with a previously used model – WRF-Chem. Overall, the performance of MUSICAv0 is comparable to WRF-Chem. Based on model–satellite discrepancies, we find that future field campaigns in an eastern African region (30°E–45°E, 5°S–5°N) could substantially improve the predictive skill of air quality models.
Cenlin He, Prasanth Valayamkunnath, Michael Barlage, Fei Chen, David Gochis, Ryan Cabell, Tim Schneider, Roy Rasmussen, Guo-Yue Niu, Zong-Liang Yang, Dev Niyogi, and Michael Ek
Geosci. Model Dev., 16, 5131–5151, https://doi.org/10.5194/gmd-16-5131-2023, https://doi.org/10.5194/gmd-16-5131-2023, 2023
Short summary
Short summary
Noah-MP is one of the most widely used open-source community land surface models in the world, designed for applications ranging from uncoupled land surface and ecohydrological process studies to coupled numerical weather prediction and decadal climate simulations. To facilitate model developments and applications, we modernize Noah-MP by adopting modern Fortran code and data structures and standards, which substantially enhance model modularity, interoperability, and applicability.
Qi Tang, Jean-Christophe Golaz, Luke P. Van Roekel, Mark A. Taylor, Wuyin Lin, Benjamin R. Hillman, Paul A. Ullrich, Andrew M. Bradley, Oksana Guba, Jonathan D. Wolfe, Tian Zhou, Kai Zhang, Xue Zheng, Yunyan Zhang, Meng Zhang, Mingxuan Wu, Hailong Wang, Cheng Tao, Balwinder Singh, Alan M. Rhoades, Yi Qin, Hong-Yi Li, Yan Feng, Yuying Zhang, Chengzhu Zhang, Charles S. Zender, Shaocheng Xie, Erika L. Roesler, Andrew F. Roberts, Azamat Mametjanov, Mathew E. Maltrud, Noel D. Keen, Robert L. Jacob, Christiane Jablonowski, Owen K. Hughes, Ryan M. Forsyth, Alan V. Di Vittorio, Peter M. Caldwell, Gautam Bisht, Renata B. McCoy, L. Ruby Leung, and David C. Bader
Geosci. Model Dev., 16, 3953–3995, https://doi.org/10.5194/gmd-16-3953-2023, https://doi.org/10.5194/gmd-16-3953-2023, 2023
Short summary
Short summary
High-resolution simulations are superior to low-resolution ones in capturing regional climate changes and climate extremes. However, uniformly reducing the grid size of a global Earth system model is too computationally expensive. We provide an overview of the fully coupled regionally refined model (RRM) of E3SMv2 and document a first-of-its-kind set of climate production simulations using RRM at an economic cost. The key to this success is our innovative hybrid time step method.
Zhe Zhang, Yanping Li, Fei Chen, Phillip Harder, Warren Helgason, James Famiglietti, Prasanth Valayamkunnath, Cenlin He, and Zhenhua Li
Geosci. Model Dev., 16, 3809–3825, https://doi.org/10.5194/gmd-16-3809-2023, https://doi.org/10.5194/gmd-16-3809-2023, 2023
Short summary
Short summary
Crop models incorporated in Earth system models are essential to accurately simulate crop growth processes on Earth's surface and agricultural production. In this study, we aim to model the spring wheat in the Northern Great Plains, focusing on three aspects: (1) develop the wheat model at a point scale, (2) apply dynamic planting and harvest schedules, and (3) adopt a revised heat stress function. The results show substantial improvements and have great importance for agricultural production.
Wenfu Tang, Simone Tilmes, David M. Lawrence, Fang Li, Cenlin He, Louisa K. Emmons, Rebecca R. Buchholz, and Lili Xia
Atmos. Chem. Phys., 23, 5467–5486, https://doi.org/10.5194/acp-23-5467-2023, https://doi.org/10.5194/acp-23-5467-2023, 2023
Short summary
Short summary
Globally, total wildfire burned area is projected to increase over the 21st century under scenarios without geoengineering and decrease under the two geoengineering scenarios. Geoengineering reduces fire by decreasing surface temperature and wind speed and increasing relative humidity and soil water. However, geoengineering also yields reductions in precipitation, which offset some of the fire reduction.
Cynthia H. Whaley, Kathy S. Law, Jens Liengaard Hjorth, Henrik Skov, Stephen R. Arnold, Joakim Langner, Jakob Boyd Pernov, Garance Bergeron, Ilann Bourgeois, Jesper H. Christensen, Rong-You Chien, Makoto Deushi, Xinyi Dong, Peter Effertz, Gregory Faluvegi, Mark Flanner, Joshua S. Fu, Michael Gauss, Greg Huey, Ulas Im, Rigel Kivi, Louis Marelle, Tatsuo Onishi, Naga Oshima, Irina Petropavlovskikh, Jeff Peischl, David A. Plummer, Luca Pozzoli, Jean-Christophe Raut, Tom Ryerson, Ragnhild Skeie, Sverre Solberg, Manu A. Thomas, Chelsea Thompson, Kostas Tsigaridis, Svetlana Tsyro, Steven T. Turnock, Knut von Salzen, and David W. Tarasick
Atmos. Chem. Phys., 23, 637–661, https://doi.org/10.5194/acp-23-637-2023, https://doi.org/10.5194/acp-23-637-2023, 2023
Short summary
Short summary
This study summarizes recent research on ozone in the Arctic, a sensitive and rapidly warming region. We find that the seasonal cycles of near-surface atmospheric ozone are variable depending on whether they are near the coast, inland, or at high altitude. Several global model simulations were evaluated, and we found that because models lack some of the ozone chemistry that is important for the coastal Arctic locations, they do not accurately simulate ozone there.
Joachim Meyer, John Horel, Patrick Kormos, Andrew Hedrick, Ernesto Trujillo, and S. McKenzie Skiles
Geosci. Model Dev., 16, 233–250, https://doi.org/10.5194/gmd-16-233-2023, https://doi.org/10.5194/gmd-16-233-2023, 2023
Short summary
Short summary
Freshwater resupply from seasonal snow in the mountains is changing. Current water prediction methods from snow rely on historical data excluding the change and can lead to errors. This work presented and evaluated an alternative snow-physics-based approach. The results in a test watershed were promising, and future improvements were identified. Adaptation to current forecast environments would improve resilience to the seasonal snow changes and helps ensure the accuracy of resupply forecasts.
Dalei Hao, Gautam Bisht, Karl Rittger, Edward Bair, Cenlin He, Huilin Huang, Cheng Dang, Timbo Stillinger, Yu Gu, Hailong Wang, Yun Qian, and L. Ruby Leung
Geosci. Model Dev., 16, 75–94, https://doi.org/10.5194/gmd-16-75-2023, https://doi.org/10.5194/gmd-16-75-2023, 2023
Short summary
Short summary
Snow with the highest albedo of land surface plays a vital role in Earth’s surface energy budget and water cycle. This study accounts for the impacts of snow grain shape and mixing state of light-absorbing particles with snow on snow albedo in the E3SM land model. The findings advance our understanding of the role of snow grain shape and mixing state of LAP–snow in land surface processes and offer guidance for improving snow simulations and radiative forcing estimates in Earth system models.
Chengzhu Zhang, Jean-Christophe Golaz, Ryan Forsyth, Tom Vo, Shaocheng Xie, Zeshawn Shaheen, Gerald L. Potter, Xylar S. Asay-Davis, Charles S. Zender, Wuyin Lin, Chih-Chieh Chen, Chris R. Terai, Salil Mahajan, Tian Zhou, Karthik Balaguru, Qi Tang, Cheng Tao, Yuying Zhang, Todd Emmenegger, Susannah Burrows, and Paul A. Ullrich
Geosci. Model Dev., 15, 9031–9056, https://doi.org/10.5194/gmd-15-9031-2022, https://doi.org/10.5194/gmd-15-9031-2022, 2022
Short summary
Short summary
Earth system model (ESM) developers run automated analysis tools on data from candidate models to inform model development. This paper introduces a new Python package, E3SM Diags, that has been developed to support ESM development and use routinely in the development of DOE's Energy Exascale Earth System Model. This tool covers a set of essential diagnostics to evaluate the mean physical climate from simulations, as well as several process-oriented and phenomenon-based evaluation diagnostics.
Huilin Huang, Yun Qian, Ye Liu, Cenlin He, Jianyu Zheng, Zhibo Zhang, and Antonis Gkikas
Atmos. Chem. Phys., 22, 15469–15488, https://doi.org/10.5194/acp-22-15469-2022, https://doi.org/10.5194/acp-22-15469-2022, 2022
Short summary
Short summary
Using a clustering method developed in the field of artificial neural networks, we identify four typical dust transport patterns across the Sierra Nevada, associated with the mesoscale and regional-scale wind circulations. Our results highlight the connection between dust transport and dominant weather patterns, which can be used to understand dust transport in a changing climate.
Zachary Fair, Mark Flanner, Adam Schneider, and S. McKenzie Skiles
The Cryosphere, 16, 3801–3814, https://doi.org/10.5194/tc-16-3801-2022, https://doi.org/10.5194/tc-16-3801-2022, 2022
Short summary
Short summary
Snow grain size is important to determine the age and structure of snow, but it is difficult to measure. Snow grain size can be found from airborne and spaceborne observations by measuring near-infrared energy reflected from snow. In this study, we use the SNICAR radiative transfer model and a Monte Carlo model to examine how snow grain size measurements change with snow structure and solar zenith angle. We show that improved understanding of these variables improves snow grain size precision.
Chaman Gul, Shichang Kang, Siva Praveen Puppala, Xiaokang Wu, Cenlin He, Yangyang Xu, Inka Koch, Sher Muhammad, Rajesh Kumar, and Getachew Dubache
Atmos. Chem. Phys., 22, 8725–8737, https://doi.org/10.5194/acp-22-8725-2022, https://doi.org/10.5194/acp-22-8725-2022, 2022
Short summary
Short summary
This work aims to understand concentrations, spatial variability, and potential source regions of light-absorbing impurities (black carbon aerosols, dust particles, and organic carbon) in the surface snow of central and western Himalayan glaciers and their impact on snow albedo and radiative forcing.
Cynthia H. Whaley, Rashed Mahmood, Knut von Salzen, Barbara Winter, Sabine Eckhardt, Stephen Arnold, Stephen Beagley, Silvia Becagli, Rong-You Chien, Jesper Christensen, Sujay Manish Damani, Xinyi Dong, Konstantinos Eleftheriadis, Nikolaos Evangeliou, Gregory Faluvegi, Mark Flanner, Joshua S. Fu, Michael Gauss, Fabio Giardi, Wanmin Gong, Jens Liengaard Hjorth, Lin Huang, Ulas Im, Yugo Kanaya, Srinath Krishnan, Zbigniew Klimont, Thomas Kühn, Joakim Langner, Kathy S. Law, Louis Marelle, Andreas Massling, Dirk Olivié, Tatsuo Onishi, Naga Oshima, Yiran Peng, David A. Plummer, Olga Popovicheva, Luca Pozzoli, Jean-Christophe Raut, Maria Sand, Laura N. Saunders, Julia Schmale, Sangeeta Sharma, Ragnhild Bieltvedt Skeie, Henrik Skov, Fumikazu Taketani, Manu A. Thomas, Rita Traversi, Kostas Tsigaridis, Svetlana Tsyro, Steven Turnock, Vito Vitale, Kaley A. Walker, Minqi Wang, Duncan Watson-Parris, and Tahya Weiss-Gibbons
Atmos. Chem. Phys., 22, 5775–5828, https://doi.org/10.5194/acp-22-5775-2022, https://doi.org/10.5194/acp-22-5775-2022, 2022
Short summary
Short summary
Air pollutants, like ozone and soot, play a role in both global warming and air quality. Atmospheric models are often used to provide information to policy makers about current and future conditions under different emissions scenarios. In order to have confidence in those simulations, in this study we compare simulated air pollution from 18 state-of-the-art atmospheric models to measured air pollution in order to assess how well the models perform.
Matthew K. Laffin, Charles S. Zender, Melchior van Wessem, and Sebastián Marinsek
The Cryosphere, 16, 1369–1381, https://doi.org/10.5194/tc-16-1369-2022, https://doi.org/10.5194/tc-16-1369-2022, 2022
Short summary
Short summary
The collapses of the Larsen A and B ice shelves on the Antarctic Peninsula (AP) occurred while the ice shelves were covered with large melt lakes, and ocean waves damaged the ice shelf fronts, triggering collapse. Observations show föhn winds were present on both ice shelves and increased surface melt and drove sea ice away from the ice front. Collapsed ice shelves experienced enhanced surface melt driven by föhn winds, whereas extant ice shelves are affected less by föhn-wind-induced melt.
Chloe A. Whicker, Mark G. Flanner, Cheng Dang, Charles S. Zender, Joseph M. Cook, and Alex S. Gardner
The Cryosphere, 16, 1197–1220, https://doi.org/10.5194/tc-16-1197-2022, https://doi.org/10.5194/tc-16-1197-2022, 2022
Short summary
Short summary
Snow and ice surfaces are important to the global climate. Current climate models use measurements to determine the reflectivity of ice. This model uses physical properties to determine the reflectivity of snow, ice, and darkly pigmented impurities that reside within the snow and ice. Therefore, the modeled reflectivity is more accurate for snow/ice columns under varying climate conditions. This model paves the way for improvements in the portrayal of snow and ice within global climate models.
Cheng-Hsuan Lu, Quanhua Liu, Shih-Wei Wei, Benjamin T. Johnson, Cheng Dang, Patrick G. Stegmann, Dustin Grogan, Guoqing Ge, Ming Hu, and Michael Lueken
Geosci. Model Dev., 15, 1317–1329, https://doi.org/10.5194/gmd-15-1317-2022, https://doi.org/10.5194/gmd-15-1317-2022, 2022
Short summary
Short summary
This article is a technical note on the aerosol absorption and scattering calculations of the Community Radiative Transfer Model (CRTM) v2.2 and v2.3. It also provides guidance for prospective users of the CRTM aerosol option and Gridpoint Statistical Interpolation (GSI) aerosol-aware radiance assimilation. Scientific aspects of aerosol-affected BT in atmospheric data assimilation are also briefly discussed.
Christopher Donahue, S. McKenzie Skiles, and Kevin Hammonds
The Cryosphere, 16, 43–59, https://doi.org/10.5194/tc-16-43-2022, https://doi.org/10.5194/tc-16-43-2022, 2022
Short summary
Short summary
The amount of water within a snowpack is important information for predicting snowmelt and wet-snow avalanches. From within a controlled laboratory, the optimal method for measuring liquid water content (LWC) at the snow surface or along a snow pit profile using near-infrared imagery was determined. As snow samples melted, multiple models to represent wet-snow reflectance were assessed against a more established LWC instrument. The best model represents snow as separate spheres of ice and water.
Adrian Chappell, Nicholas Webb, Mark Hennen, Charles Zender, Philippe Ciais, Kerstin Schepanski, Brandon Edwards, Nancy Ziegler, Sandra Jones, Yves Balkanski, Daniel Tong, John Leys, Stephan Heidenreich, Robert Hynes, David Fuchs, Zhenzhong Zeng, Marie Ekström, Matthew Baddock, Jeffrey Lee, and Tarek Kandakji
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2021-337, https://doi.org/10.5194/gmd-2021-337, 2021
Revised manuscript not accepted
Short summary
Short summary
Dust emissions influence global climate while simultaneously reducing the productive potential and resilience of landscapes to climate stressors, together impacting food security and human health. Our results indicate that tuning dust emission models to dust in the atmosphere has hidden dust emission modelling weaknesses and its poor performance. Our new approach will reduce uncertainty and driven by prognostic albedo improve Earth System Models of aerosol effects on future environmental change.
Joachim Meyer, McKenzie Skiles, Jeffrey Deems, Kat Boremann, and David Shean
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2021-281, https://doi.org/10.5194/hess-2021-281, 2021
Revised manuscript not accepted
Short summary
Short summary
Seasonally accumulated snow in the mountains forms a natural water reservoir which is challenging to measure in the rugged and remote terrain. Here, we use overlapping aerial images that model surface elevations using software to map snow depth by calculating the difference in surface elevations between two dates, one with snow and one without. Results demonstrate the utility of aerial images to improve our ability to capture the amount of water held as snow in remote and inaccessible locations.
Joachim Meyer, S. McKenzie Skiles, Jeffrey Deems, Kat Bormann, and David Shean
The Cryosphere Discuss., https://doi.org/10.5194/tc-2021-34, https://doi.org/10.5194/tc-2021-34, 2021
Manuscript not accepted for further review
Short summary
Short summary
Snow that accumulates seasonally in mountains forms a natural water reservoir and is difficult to measure in the rugged and remote landscapes. Here, we use modern software that models surface elevations from overlapping aerial images to map snow depth by calculating the difference in surface elevations between two dates, one with snow and one without. Results demonstrate the potential value of aerial images for understanding the amount of water held as snow in remote and inaccessible locations.
Julián Gelman Constantin, Lucas Ruiz, Gustavo Villarosa, Valeria Outes, Facundo N. Bajano, Cenlin He, Hector Bajano, and Laura Dawidowski
The Cryosphere, 14, 4581–4601, https://doi.org/10.5194/tc-14-4581-2020, https://doi.org/10.5194/tc-14-4581-2020, 2020
Short summary
Short summary
We present the results of two field campaigns and modeling activities on the impact of atmospheric particles on Alerce Glacier (Argentinean Andes). We found that volcanic ash remains at different snow layers several years after eruption, increasing light absorption on the glacier surface (with a minor contribution of soot). This leads to 36 % higher annual glacier melting. We find remarkably that volcano eruptions in 2011 and 2015 have a relevant effect on the glacier even in 2016 and 2017.
Zachary Fair, Mark Flanner, Kelly M. Brunt, Helen Amanda Fricker, and Alex Gardner
The Cryosphere, 14, 4253–4263, https://doi.org/10.5194/tc-14-4253-2020, https://doi.org/10.5194/tc-14-4253-2020, 2020
Short summary
Short summary
Ice on glaciers and ice sheets may melt and pond on ice surfaces in summer months. Detection and observation of these meltwater ponds is important for understanding glaciers and ice sheets, and satellite imagery has been used in previous work. However, image-based methods struggle with deep water, so we used data from the Ice, Clouds, and land Elevation Satellite-2 (ICESat-2) and the Airborne Topographic Mapper (ATM) to demonstrate the potential for lidar depth monitoring.
Wenfu Tang, Benjamin Gaubert, Louisa Emmons, Yonghoon Choi, Joshua P. DiGangi, Glenn S. Diskin, Xiaomei Xu, Cenlin He, Helen Worden, Simone Tilmes, Rebecca Buchholz, Hannah S. Halliday, and Avelino F. Arellano
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2020-864, https://doi.org/10.5194/acp-2020-864, 2020
Revised manuscript not accepted
Short summary
Short summary
A specific demonstration of the potential use of correlative information from carbon monoxide to refine estimates of regional carbon dioxide emissions from fossil fuel combustion.
Cited articles
Andreae, M. O. and Gelencsér, A.: Black carbon or brown carbon? The nature of light-absorbing carbonaceous aerosols, Atmos. Chem. Phys., 6, 3131–3148, https://doi.org/10.5194/acp-6-3131-2006, 2006. a
Aoki, T., Aoki, T., Fukabori, M., and Uchiyama, A.: Numerical simulations of
the atmospheric effects on snow albedo with a multiple scattering radiative
transfer model for the snow–atmosphere system, J. Meteorol. Soc. Jpn., 77,
595–614, 1999. a
Aoki, T., Kuchiki, K., Niwano, M., Kodama, Y., Hosaka, M., and Tanaka, T.:
Physically based snow albedo model for calculating broadband albedos and the
solar heating profile in snowpack for general circulation models, J. Geophys. Res., 116, D11114, https://doi.org/10.1029/2010JD015507, 2011. a
Bair, E. H., Rittger, K., Skiles, S. M., and Dozier, J.: An Examination of Snow
Albedo Estimates From MODIS and Their Impact on Snow Water Equivalent
Reconstruction, Water Resour. Res., 55, 7826–7842,
https://doi.org/10.1029/2019WR024810, 2019. a
Balkanski, Y., Schulz, M., Claquin, T., and Guibert, S.: Reevaluation of Mineral aerosol radiative forcings suggests a better agreement with satellite and AERONET data, Atmos. Chem. Phys., 7, 81–95, https://doi.org/10.5194/acp-7-81-2007, 2007. a
Bohren, C. F. and Huffman, D. R.: Absorption and Scattering of Light by Small
Particles, Professional Paperback Edition, John Wiley & Sons, New York, NY, USA, 544 pp., https://doi.org/10.1002/9783527618156, 1983. a, b, c
Bond, T. C. and Bergstrom, R. W.: Light absorption by carbonaceous particles:
An investigative review, Aerosol Sci. Tech., 40, 27–67,
https://doi.org/10.1080/02786820500421521, 2006. a, b
Bond, T. C., Habib, G., and Bergstrom, R. W.: Limitations in the enhancement of visible light absorption due to mixing state, J. Geophys. Res., 111, D20211, https://doi.org/10.1029/2006JD007315, 2006a. a
Bond, T. C., Wehner, B., Plewka, A., Wiedensohler, A., Heintzenberg, J., and
Charlson, R. J.: Climate-relevant properties of primary particulate emissions
from oil and natural gas combustion, Atmos. Environ., 40, 3574–3587, https://doi.org/10.1016/j.atmosenv.2005.12.030, 2006b. a
Bond, T. C., Zarzycki, C., Flanner, M. G., and Koch, D. M.: Quantifying immediate radiative forcing by black carbon and organic matter with the Specific Forcing Pulse, Atmos. Chem. Phys., 11, 1505–1525, https://doi.org/10.5194/acp-11-1505-2011, 2011. a
Bruggeman, D. A.: Berechnung verschiedener physikalischer Konstanten von
heterogenen Substanzen, Ann. Phys.-Leipzig, 24, 636–679, 1935. a
Bukowiecki, N., Zieger, P., Weingartner, E., Jurányi, Z., Gysel, M., Neininger, B., Schneider, B., Hueglin, C., Ulrich, A., Wichser, A., Henne, S., Brunner, D., Kaegi, R., Schwikowski, M., Tobler, L., Wienhold, F. G., Engel, I., Buchmann, B., Peter, T., and Baltensperger, U.: Ground-based and airborne in-situ measurements of the Eyjafjallajökull volcanic aerosol plume in Switzerland in spring 2010, Atmos. Chem. Phys., 11, 10011–10030, https://doi.org/10.5194/acp-11-10011-2011, 2011. a
Cappa, C. D., Zhang, X., Russell, L. M., Collier, S., Lee, A. K. Y., Chen,
C.-L., Betha, R., Chen, S., Liu, J., Price, D. J., Sanchez, K. J., McMeeking,
G. R., Williams, L. R., Onasch, T. B., Worsnop, D. R., Abbatt, J., and Zhang,
Q.: Light Absorption by Ambient Black and Brown Carbon and its Dependence on
Black Carbon Coating State for Two California, USA, Cities in Winter and
Summer, J. Geophys. Res.-Atmos., 124, 1550–1577,
https://doi.org/10.1029/2018JD029501, 2019. a
Carmagnola, C. M., Domine, F., Dumont, M., Wright, P., Strellis, B., Bergin, M., Dibb, J., Picard, G., Libois, Q., Arnaud, L., and Morin, S.: Snow spectral albedo at Summit, Greenland: measurements and numerical simulations based on physical and chemical properties of the snowpack, The Cryosphere, 7, 1139–1160, https://doi.org/10.5194/tc-7-1139-2013, 2013. a, b, c
Chang, H. and Charalampopoulos, T. T.: Determination of the wavelength
dependence of refractive indices of flame soot, P. Roy. Soc. Lond. A Mat., 430, 577–591, 1990. a
Chen, Y. and Bond, T. C.: Light absorption by organic carbon from wood combustion, Atmos. Chem. Phys., 10, 1773–1787, https://doi.org/10.5194/acp-10-1773-2010, 2010. a
Chýlek, P. and Srivastava, V.: Dielectric constant of a composite
inhomogeneous medium, Phys. Rev. B, 27, 5098–5106,
https://doi.org/10.1103/PhysRevB.27.5098, 1983. a
Conway, H., Gades, A., and Raymond, C. F.: Albedo of Dirty Snow During
Conditions of Melt, Water Resour. Res., 32, 1713–1718, 1996. a
Cook, J., Chevrollier, L., and niklasbohn: jmcook1186/BioSNICAR_GO_PY: v1.0, Zenodo [code], https://doi.org/10.5281/zenodo.5783032, 2021. a
Cook, J. M., Hodson, A. J., Gardner, A. S., Flanner, M., Tedstone, A. J., Williamson, C., Irvine-Fynn, T. D. L., Nilsson, J., Bryant, R., and Tranter, M.: Quantifying bioalbedo: a new physically based model and discussion of empirical methods for characterising biological influence on ice and snow albedo, The Cryosphere, 11, 2611–2632, https://doi.org/10.5194/tc-11-2611-2017, 2017. a, b, c, d, e, f, g, h, i, j, k
Cook, J. M., Tedstone, A. J., Williamson, C., McCutcheon, J., Hodson, A. J., Dayal, A., Skiles, M., Hofer, S., Bryant, R., McAree, O., McGonigle, A., Ryan, J., Anesio, A. M., Irvine-Fynn, T. D. L., Hubbard, A., Hanna, E., Flanner, M., Mayanna, S., Benning, L. G., van As, D., Yallop, M., McQuaid, J. B., Gribbin, T., and Tranter, M.: Glacier algae accelerate melt rates on the south-western Greenland Ice Sheet, The Cryosphere, 14, 309–330, https://doi.org/10.5194/tc-14-309-2020, 2020. a, b, c, d, e, f
Dang, C., Fu, Q., and Warren, S. G.: Effect of Snow Grain Shape on Snow Albedo,
J. Atmos. Sci., 73, 3573–3583,
https://doi.org/10.1175/JAS-D-15-0276.1, 2016. a, b, c, d
Dang, C., Zender, C. S., and Flanner, M. G.: Intercomparison and improvement of two-stream shortwave radiative transfer schemes in Earth system models for a unified treatment of cryospheric surfaces, The Cryosphere, 13, 2325–2343, https://doi.org/10.5194/tc-13-2325-2019, 2019. a, b, c, d, e, f, g, h, i
Dauchet, J., Blanco, S., Cornet, J.-F., and Fournier, R.: Calculation of the
radiative properties of photosynthetic microorganisms, J.
Quant. Spectrosc. Ra., 161, 60–84,
https://doi.org/10.1016/j.jqsrt.2015.03.025, 2015. a, b, c, d
Doherty, S. J., Grenfell, T. C., Forsstrom, S., Hegg, D. L., Brandt, R. E., and
Warren, S. G.: Observed vertical redistribution of black carbon and other
insoluble light-absorbing particles in melting snow, J. Geophys. Res.-Atmos.,
118, 5553–5569, https://doi.org/10.1002/jgrd.50235, 2013. a
Draine, B. T. and Flatau, P. J.: Discrete-Dipole Approximation For Scattering
Calculations, J. Opt. Soc. Am. A, 11, 1491–1499,
https://doi.org/10.1364/JOSAA.11.001491, 1994. a
Dumont, M., Brissaud, O., Picard, G., Schmitt, B., Gallet, J.-C., and Arnaud, Y.: High-accuracy measurements of snow Bidirectional Reflectance Distribution Function at visible and NIR wavelengths – comparison with modelling results, Atmos. Chem. Phys., 10, 2507–2520, https://doi.org/10.5194/acp-10-2507-2010, 2010. a, b
Dumont, M., Flin, F., Malinka, A., Brissaud, O., Hagenmuller, P., Lapalus, P., Lesaffre, B., Dufour, A., Calonne, N., Rolland du Roscoat, S., and Ando, E.: Experimental and model-based investigation of the links between snow bidirectional reflectance and snow microstructure, The Cryosphere, 15, 3921–3948, https://doi.org/10.5194/tc-15-3921-2021, 2021. a, b, c
Egan, W. G. and Hilgeman, T. W.: Optical Properties of Inhomogeneous
Materials: Applications to Geology, Astronomy, Chemistry, and Engineering, 1st edn.,
Academic Press, San Diego, California, USA, 250 pp., ISBN 1001-24335993, 1979. a
Egan, W. G., Hilgeman, T., and Pang, K.: Ultraviolet Complex Refractive index
of Martian Dusts: Laboratory Measurements of Terrestrial Analogs, Icarus,
25, 344–355, https://doi.org/10.1016/0019-1035(75)90029-9, 1975. a
Flanner, M. G. and Zender, C. S.: Snowpack Radiative Heating: Influence on
Tibetan Plateau Climate, Geophys. Res. Lett., 32, L06501,
https://doi.org/10.1029/2004GL022076, 2005. a
Flanner, M. G., Zender, C. S., Randerson, J. T., and Rasch, P. J.: Present day
climate forcing and response from black carbon in snow, J. Geophys. Res.,
112, D11202, https://doi.org/10.1029/2006JD008003, 2007. a
Flanner, M. G., Zender, C. S., Hess, P. G., Mahowald, N. M., Painter, T. H., Ramanathan, V., and Rasch, P. J.: Springtime warming and reduced snow cover from carbonaceous particles, Atmos. Chem. Phys., 9, 2481–2497, https://doi.org/10.5194/acp-9-2481-2009, 2009. a, b
Flanner, M. G., Liu, X., Zhou, C., Penner, J. E., and Jiao, C.: Enhanced solar energy absorption by internally-mixed black carbon in snow grains, Atmos. Chem. Phys., 12, 4699–4721, https://doi.org/10.5194/acp-12-4699-2012, 2012. a, b, c, d
Flanner, M. G., Arnheim, J., Cook, J. M., Dang, C., He, C., Huang, X., Singh, D., Skiles, S. M., Whicker, C. A., and Zender, C. S.: Source code and input data for “SNICAR-AD v3”, Zenodo [code], https://doi.org/10.5281/zenodo.5176213, 2021a. a
Flanner, M. G., Arnheim, J., Cook, J. M., Dang, C., He, C., Huang, X., Singh, D., Skiles, S. M., Whicker, C. A., and Zender, C. S.: Scripts and data used to generate all plots published in “SNICAR-AD v3: A Community Tool for Modeling Spectral Snow Albedo”, Zenodo [data set], https://doi.org/10.5281/zenodo.5707933, 2021b. a
Flanner, M. G., Arnheim, J., Cook, J. M., Dang, C., He, C., Huang, X., Singh, D., Skiles, S. M., Whicker, C. A., and Zender, C. S.: The web-based model SNICAR-AD v3, available at: http://snow.engin.umich.edu/, last access: 15 December 2021c. a
France, J. L., King, M. D., and MacArthur, A.: A photohabitable zone in the
martian snowpack? A laboratory and radiative-transfer study of dusty
water–ice snow, Icarus, 207, 133–139, https://doi.org/10.1016/j.icarus.2009.11.026, 2010. a
France, J. L., King, M. D., Frey, M. M., Erbland, J., Picard, G., Preunkert, S., MacArthur, A., and Savarino, J.: Snow optical properties at Dome C (Concordia), Antarctica; implications for snow emissions and snow chemistry of reactive nitrogen, Atmos. Chem. Phys., 11, 9787–9801, https://doi.org/10.5194/acp-11-9787-2011, 2011. a
France, J. L., Reay, H. J., King, M. D., Voisin, D., Jacobi, H. W., Domine, F.,
Beine, H., Anastasio, C., MacArthur, A., and Lee-Taylor, J.: Hydroxyl
radical and NOx production rates, black carbon concentrations and
light-absorbing impurities in snow from field measurements of light
penetration and nadir reflectivity of onshore and offshore coastal Alaskan
snow, J. Geophys. Res.-Atmos., 117, D00R12, https://doi.org/10.1029/2011JD016639, 2012. a
Gardner, A. S. and Sharp, M. J.: A review of snow and ice albedo and the
development of a new physically based broadband albedo parameterization, J.
Geophys. Res., 115, F01009, https://doi.org/10.1029/2009JF001444, 2010. a
Gelman Constantin, J., Ruiz, L., Villarosa, G., Outes, V., Bajano, F. N., He, C., Bajano, H., and Dawidowski, L.: Measurements and modeling of snow albedo at Alerce Glacier, Argentina: effects of volcanic ash, snow grain size, and cloudiness, The Cryosphere, 14, 4581–4601, https://doi.org/10.5194/tc-14-4581-2020, 2020. a, b
Gleason, K. E., McConnell, J. R., Arienzo, M. M., Chellman, N., and Calvin,
W. M.: Four-fold increase in solar forcing on snow in western U.S. burned
forests since 1999, Nat. Commun., 10, 2026, https://doi.org/10.1038/s41467-019-09935-y, 2019. a
Grenfell, T. C. and Perovich, D. K.: Radiation absorption coefficients of
polycrystalline ice from 400–1400 nm, J. Geophys. Res.-Oceans, 86,
7447–7450, https://doi.org/10.1029/JC086iC08p07447, 1981. a
Grenfell, T. C., Neshyba, S. P., and Warren, S. G.: Representation of a
nonspherical ice particle by a collection of independent spheres for
scattering and absorption of radiation: 3. Hollow columns and plates, J.
Geophys. Res., 110, D17203, https://doi.org/10.1029/2005JD005811, 2005. a
Grundy, W. M. and Schmitt, B.: The temperature-dependent near-infrared
absorption spectrum of hexagonal H2O ice, J. Geophys. Res.-Planet., 103, 25809–25822, https://doi.org/10.1029/98JE00738, 1998. a
Hansen, G. B.: The infrared absorption spectrum of carbon dioxide ice from 1.8 to 333 µm, J. Geophys. Res.-Planet., 102, 21569–21587,
https://doi.org/10.1029/97JE01875, 1997. a
Hansen, G. B.: Ultraviolet to near-infrared absorption spectrum of carbon
dioxide ice from 0.174 to 1.8 µm, J. Geophy. Res., 110, E11003,
https://doi.org/10.1029/2005JE002531, 2005. a, b
He, C., Takano, Y., Liou, K.-N., Yang, P., Li, Q., and Chen, F.: Impact of Snow
Grain Shape and Black Carbon-Snow Internal Mixing on Snow Optical Properties:
Parameterizations for Climate Models, J. Climate, 30, 10019–10036,
https://doi.org/10.1175/JCLI-D-17-0300.1, 2017. a, b, c, d, e, f, g, h, i, j, k, l, m, n
He, C., Flanner, M. G., Chen, F., Barlage, M., Liou, K.-N., Kang, S., Ming, J., and Qian, Y.: Black carbon-induced snow albedo reduction over the Tibetan Plateau: uncertainties from snow grain shape and aerosol–snow mixing state based on an updated SNICAR model, Atmos. Chem. Phys., 18, 11507–11527, https://doi.org/10.5194/acp-18-11507-2018, 2018. a, b, c, d, e, f
Hervo, M., Quennehen, B., Kristiansen, N. I., Boulon, J., Stohl, A., Fréville, P., Pichon, J.-M., Picard, D., Labazuy, P., Gouhier, M., Roger, J.-C., Colomb, A., Schwarzenboeck, A., and Sellegri, K.: Physical and optical properties of 2010 Eyjafjallajökull volcanic eruption aerosol: ground-based, Lidar and airborne measurements in France, Atmos. Chem. Phys., 12, 1721–1736, https://doi.org/10.5194/acp-12-1721-2012, 2012. a
Hess, M., Koepke, P., and Schult, I.: Optical Properties of Aerosols and
Clouds: The Software Package OPAC, B. Am. Meteorol. Soc., 79,
831–844, 1998. a
Hoffer, A., Gelencsér, A., Guyon, P., Kiss, G., Schmid, O., Frank, G. P., Artaxo, P., and Andreae, M. O.: Optical properties of humic-like substances (HULIS) in biomass-burning aerosols, Atmos. Chem. Phys., 6, 3563–3570, https://doi.org/10.5194/acp-6-3563-2006, 2006. a
Jiao, C., Flanner, M. G., Balkanski, Y., Bauer, S. E., Bellouin, N., Berntsen, T. K., Bian, H., Carslaw, K. S., Chin, M., De Luca, N., Diehl, T., Ghan, S. J., Iversen, T., Kirkevåg, A., Koch, D., Liu, X., Mann, G. W., Penner, J. E., Pitari, G., Schulz, M., Seland, Ø., Skeie, R. B., Steenrod, S. D., Stier, P., Takemura, T., Tsigaridis, K., van Noije, T., Yun, Y., and Zhang, K.: An AeroCom assessment of black carbon in Arctic snow and sea ice, Atmos. Chem. Phys., 14, 2399–2417, https://doi.org/10.5194/acp-14-2399-2014, 2014. a
Kaempfer, T. U., Hopkins, M. A., and Perovich, D. K.: A three-dimensional
microstructure-based photon-tracking model of radiative transfer in snow, J.
Geophys. Res., 112, D24113, https://doi.org/10.1029/2006JD008239, 2007. a
Kaspari, S. D., Schwikowski, M., Gysel, M., Flanner, M. G., Kang, S., Hou, S.,
and Mayewski, P. A.: Recent increase in black carbon concentrations from a
Mt. Everest ice core spanning 1860–2000 AD, Geophys. Res. Lett., 38,
L04703, https://doi.org/10.1029/2010GL046096, 2011. a
Kaspari, S. D., Pittenger, D., Jenk, T. M., Morgenstern, U., Schwikowski, M.,
Buenning, N., and Stott, L.: Twentieth Century Black Carbon and Dust
Deposition on South Cascade Glacier, Washington State, USA, as
Reconstructed From a 158-m-Long Ice Core, J. Geophys. Res.-Atmos., 125,
e2019JD031126, https://doi.org/10.1029/2019JD031126, 2020. a
Kirchstetter, T. W., Novakov, T., and Hobbs, P. V.: Evidence that the spectral
dependence of light absorption by aerosols is affected by organic carbon, J.
Geophys. Res., 109, D21208, https://doi.org/10.1029/2004JD004999, 2004. a, b, c
Kokhanovsky, A. A. and Zege, E. P.: Scattering optics of snow, Appl. Optics, 43, 1589–1602, https://doi.org/10.1364/AO.43.001589, 2004. a, b
Lack, D. A., Langridge, J. M., Bahreini, R., Cappa, C. D., Middlebrook, A. M.,
and Schwarz, J. P.: Brown carbon and internal mixing in biomass burning
particles, P. Natl. Acad. Sci. USA, 109, 14802–14807,
https://doi.org/10.1073/pnas.1206575109, 2012. a
Larue, F., Picard, G., Arnaud, L., Ollivier, I., Delcourt, C., Lamare, M., Tuzet, F., Revuelto, J., and Dumont, M.: Snow albedo sensitivity to macroscopic surface roughness using a new ray-tracing model, The Cryosphere, 14, 1651–1672, https://doi.org/10.5194/tc-14-1651-2020, 2020. a, b
Laskin, A., Laskin, J., and Nizkorodov, S. A.: Chemistry of Atmospheric Brown
Carbon, Chem. Rev., 115, 4335–4382, https://doi.org/10.1021/cr5006167, 2015. a, b, c
Lawrence, D., Fisher, R., Koven, C., Oleson, K., Swenson, S., Vertenstein, M.,
Andre, B., Bonan, G., Ghimire, B., Kennedy, D., Kluzek, E., Knox, R.,
Lawrence, P., Li, F., Li, H., Lombardozzi, D., Lu, Y., Peket, J., Riley, W.,
and Xu, C.: CLM5.0 Technical Description, National Center for
Atmospheric Research, Boulder, CO, USA,
available at: http://www.cesm.ucar.edu/models/cesm2/land/CLM50_Tech_Note.pdf (last access: 15 December 2021), 2018. a
Lawrence, D. M., Oleson, K. W., Flanner, M. G., Fletcher, C. G., Lawrence,
P. J., Levis, S., Swenson, S. C., and Bonan, G. B.: The CCSM4 land
simulation, 1850–2005: Assessment of surface climate and new capabilities,
J. Climate, 25, 2240–2260, https://doi.org/10.1175/JCLI-D-11-00103.1, 2012. a
Lee-Taylor, J. and Madronich, S.: Calculation of actinic fluxes with a coupled
atmosphere–snow radiative transfer model, J. Geophys. Res.-Atmos.,
107, 4796, https://doi.org/10.1029/2002JD002084, 2002. a
Leroux, C., Deuzé, J.-L., Goloub, P., Sergent, C., and Fily, M.: Ground
measurements of the polarized bidirectional reflectance of snow in the
near-infrared spectral domain: Comparisons with model results, J. Geophys.
Res., 103, 19721–19731, https://doi.org/10.1029/98JD01146, 1998. a
Li, Y. and Flanner, M. G.: Investigating the impact of aerosol deposition on snowmelt over the Greenland Ice Sheet using a large-ensemble kernel, Atmos. Chem. Phys., 18, 16005–16018, https://doi.org/10.5194/acp-18-16005-2018, 2018. a
Li, S. and Zhou, X.: Modelling and measuring the spectral bidirectional
reflectance factor of snow-covered sea ice: an intercomparison study,
Hydrol. Process., 18, 3559–3581, https://doi.org/10.1002/hyp.5805,
2004. a
Libois, Q., Picard, G., France, J. L., Arnaud, L., Dumont, M., Carmagnola, C. M., and King, M. D.: Influence of grain shape on light penetration in snow, The Cryosphere, 7, 1803–1818, https://doi.org/10.5194/tc-7-1803-2013, 2013. a, b, c, d
Libois, Q., Picard, G., Dumont, M., Arnaud, L., Sergent, C., Pougatch, E.,
Sudul, M., and Vial, D.: Experimental determination of the absorption
enhancement parameter of snow, J. Glaciol., 60, 714–724,
https://doi.org/10.3189/2014JoG14J015, 2014. a
Lin, G., Penner, J. E., Flanner, M. G., Sillman, S., Xu, L., and Zhou, C.:
Radiative forcing of organic aerosol in the atmosphere and on snow: Effects
of SOA and brown carbon, J. Geophys. Res.-Atmos., 119, 7453–7476,
https://doi.org/10.1002/2013JD021186, 2014. a, b
Liou, K.-N. and Yang, P.: Light Scattering by Ice Crystals: Fundamentals and
Applications, Cambridge University Press, Cambridge, UK, 460 pp., https://doi.org/10.1017/CBO9781139030052, 2016. a
Liou, K. N., Takano, Y., and Yang, P.: Light absorption and scattering by
aggregates: Application to black carbon and snow grains, J. Quant. Spectrosc. Ra., 112, 1581–1594,
https://doi.org/10.1016/j.jqsrt.2011.03.007,
2011. a, b, c, d
Liou, K. N., Takano, Y., He, C., Yang, P., Leung, L. R., Gu, Y., and Lee,
W. L.: Stochastic parameterization for light absorption by internally mixed
BC/dust in snow grains for application to climate models, J. Geophys. Res.-Atmos., 119, 7616–7632, https://doi.org/10.1002/2014JD021665,
2014. a
Long, L. L., Querry, M. R., Bell, R. J., and Alexander, R. W.: Optical
properties of calcite and gypsum in crystalline and powdered form in the
infrared and far-infrared, Infrared Phys., 34, 191–201, 1993. a
Lutz, S., Anesio, A. M., Jorge Villar, S. E., and Benning, L. G.: Variations
of algal communities cause darkening of a Greenland glacier, FEMS
Microbiol. Ecol., 89, 402–414, https://doi.org/10.1111/1574-6941.12351, 2014. a, b, c
Mahowald, N. M., Muhs, D. R., Levis, S., Rasch, P. J., Yoshioka, M., Zender,
C. S., and Luo, C.: Change in atmospheric mineral aerosols in response to
climate: Last glacial period, preindustrial, modern, and doubled carbon
dioxide climates, J. Geophys. Res., 111, D10202, https://doi.org/10.1029/2005JD006653,
2006. a
Malinka, A. V.: Light scattering in porous materials: Geometrical optics and
stereological approach, J. Quant. Spectrosc. Ra., 141, 14–23, https://doi.org/10.1016/j.jqsrt.2014.02.022,
2014. a
Marks, A. A. and King, M. D.: The effect of snow/sea ice type on the response of albedo and light penetration depth (e-folding depth) to increasing black carbon, The Cryosphere, 8, 1625–1638, https://doi.org/10.5194/tc-8-1625-2014, 2014. a
Matsui, H., Mahowald, N. M., Moteki, N., Hamilton, D. S., Ohata, S., Yoshida,
A., Koike, M., Scanza, R. A., and Flanner, M. G.: Anthropogenic combustion
iron as a complex climate forcer, Nat. Commun., 9, 1593, 2018. a
Matthes, K., Funke, B., Andersson, M. E., Barnard, L., Beer, J., Charbonneau, P., Clilverd, M. A., Dudok de Wit, T., Haberreiter, M., Hendry, A., Jackman, C. H., Kretzschmar, M., Kruschke, T., Kunze, M., Langematz, U., Marsh, D. R., Maycock, A. C., Misios, S., Rodger, C. J., Scaife, A. A., Seppälä, A., Shangguan, M., Sinnhuber, M., Tourpali, K., Usoskin, I., van de Kamp, M., Verronen, P. T., and Versick, S.: Solar forcing for CMIP6 (v3.2), Geosci. Model Dev., 10, 2247–2302, https://doi.org/10.5194/gmd-10-2247-2017, 2017. a
McConnell, J. R., Edwards, R., Kok, G. L., Flanner, M. G., Zender, C. S.,
Saltzman, E. S., Banta, J. R., Pasteris, D. R., Carter, M. M., and Kahl, J.
D. W.: 20th-Century industrial black carbon emissions altered Arctic
climate forcing, Science, 317, 1381–1384, https://doi.org/10.1126/science.1144856,
2007. a
mflanner: SNICARv3, GitHub [data set], available at: https://github.com/mflanner/SNICARv3, last access: 15 December 2021. a
Ming, J., Cachier, H., Xiao, C., Qin, D., Kang, S., Hou, S., and Xu, J.: Black carbon record based on a shallow Himalayan ice core and its climatic implications, Atmos. Chem. Phys., 8, 1343–1352, https://doi.org/10.5194/acp-8-1343-2008, 2008. a
Mishchenko, M. I. and Travis, L. D.: Capabilities and limitations of a current
FORTRAN implementation of the T-matrix method for randomly oriented,
rotationally symmetric scatterers, J. Quant. Spectrosc. Ra., 60, 309–324, 1998. a
Mishchenko, M. I., Dlugach, J. M., Yanovitskij, E. G., and Zakharova, N. T.:
Bidirectional reflectance of flat, optically thick particulate layers: an
efficient radiative transfer solution and applications to snow and soil
surfaces, J. Quant. Spectrosc. Ra., 63,
409–432, https://doi.org/10.1016/S0022-4073(99)00028-X,
1999. a
Oaida, C. M., Xue, Y., Flanner, M. G., Skiles, S. M., De Sales, F., and
Painter, T. H.: Improving snow albedo processes in WRF/SSiB regional climate
model to assess impact of dust and black carbon in snow on surface energy
balance and hydrology over western U.S., J. Geophys. Res.-Atmos., 120,
3228–3248, https://doi.org/10.1002/2014JD022444, 2015. a
Painter, T. H. and Dozier, J.: Measurements of the hemispherical-directional
reflectance of snow at fine spectral and angular resolution, J. Geophys.
Res., 109, D18115, https://doi.org/10.1029/2003JD004458, 2004. a
Painter, T. H., Duval, B., Thomas, W. H., Mendez, M., Heintzelman, S., and
Dozier, J.: Detection and Quantification of Snow Algae with an Airborne
Imaging Spectrometer, Appl. Environ. Microb., 67, 5267–5272,
https://doi.org/10.1128/AEM.67.11.5267-5272.2001, 2001. a, b, c
Painter, T. H., Barrett, A. P., Landry, C. C., Neff, J. C., Cassidy, M. P.,
Lawrence, C. R., McBride, K. E., and Farmer, G. L.: Impact of disturbed
desert soils on duration of mountain snow cover, Geophys. Res. Lett., 34,
L12502, https://doi.org/10.1029/2007GL030284, 2007. a
Painter, T. H., Flanner, M. G., Kaser, G., Marzeion, B., VanCuren, R. A., and
Abdalati, W.: End of the Little Ice Age in the Alps forced by industrial
black carbon, Proc. Natl. Acad. Sci., 110, 15216–15221,
https://doi.org/10.1073/pnas.1302570110, 2013. a
Patterson, E. M.: Measurements of the imaginary part of the refractive index
between 300 and 700 nanometers for Mount St. Helens ash, Science, 211,
836–838, 1981. a
Perovich, D. K. and Govoni, J. W.: Absorption Coefficients Of Ice From 250
To 400 nm, Geophys. Res. Lett., 18, 1233–1235, https://doi.org/10.1029/91GL01642,
1991. a, b
Picard, G., Arnaud, L., Domine, F., and Fily, M.: Determining snow specific
surface area from near-infrared reflectance measurements: Numerical study of
the influence of grain shape, Cold Reg. Sci. Technol., 56,
10–17, https://doi.org/10.1016/j.coldregions.2008.10.001,
2009. a
Picard, G., Dumont, M., Lamare, M., Tuzet, F., Larue, F., Pirazzini, R., and Arnaud, L.: Spectral albedo measurements over snow-covered slopes: theory and slope effect corrections, The Cryosphere, 14, 1497–1517, https://doi.org/10.5194/tc-14-1497-2020, 2020. a
Polashenski, C. M., Dibb, J. E., Flanner, M. G., Chen, J. Y., Courville, Z. R.,
Lai, A. M., Schauer, J. J., Shafer, M. M., and Bergin, M.: Neither dust nor
black carbon causing apparent albedo decline in Greenland's dry snow zone:
Implications for MODIS C5 surface reflectance, Geophys. Res. Lett., 42,
9319–9327, https://doi.org/10.1002/2015GL065912, 2015. a, b, c, d, e
Pottier, L., Pruvost, J., Deremetz, J., Cornet, J.-F., Legrand, J., and Dussap,
C.: A fully predictive model for one-dimensional light attenuation by
Chlamydomonas reinhardtii in a torus photobioreactor, Biotechnol.
Bioeng., 91, 569–582, https://doi.org/10.1002/bit.20475,
2005. a, b, c
Pu, W., Cui, J., Shi, T., Zhang, X., He, C., and Wang, X.: The remote sensing of radiative forcing by light-absorbing particles (LAPs) in seasonal snow over northeastern China, Atmos. Chem. Phys., 19, 9949–9968, https://doi.org/10.5194/acp-19-9949-2019, 2019. a
Qian, Y., Flanner, M. G., Leung, L. R., and Wang, W.: Sensitivity studies on the impacts of Tibetan Plateau snowpack pollution on the Asian hydrological cycle and monsoon climate, Atmos. Chem. Phys., 11, 1929–1948, https://doi.org/10.5194/acp-11-1929-2011, 2011. a
Querry, M.: Optical Constants of Minerals and Other Materials from the
Millimeter to the Ultraviolet, CRDEC-CR-88009, Chemical Research Development and Engineering Center, US Army, Aberdeen Proving Ground, MD, USA, 1987. a
Räisänen, P., Kokhanovsky, A., Guyot, G., Jourdan, O., and Nousiainen, T.: Parameterization of single-scattering properties of snow, The Cryosphere, 9, 1277–1301, https://doi.org/10.5194/tc-9-1277-2015, 2015. a, b, c
Remias, D., Schwaiger, S., Aigner, S., Leya, T., Stuppner, H., and Lütz,
C.: Characterization of an UV- and VIS-absorbing, purpurogallin-derived
secondary pigment new to algae and highly abundant in Mesotaenium berggrenii
(Zygnematophyceae, Chlorophyta), an extremophyte living on glaciers, FEMS
Microbiol. Ecol., 79, 638–648, https://doi.org/10.1111/j.1574-6941.2011.01245.x, 2012. a
Rothman, L. S., Rinsland, C. P., Goldman, A., Massie, S. T., Edwards, D. P.,
Flaud, J.-M., Perrin, A., Camy-Peyret, C., Dana, V., Mandin, J.-Y.,
Schroeder, J., McCann, A., Gamache, R. R., Wattson, R. B., Yoshino, K.,
Chance, K. V., Jucks, K. W., Brown, L. R., Nemtchinov, V., and Varanasi, P.:
The HITRAN Molecular Spectroscopic Database and HAWKS (HITRAN
Atmospheric Workstation): 1996 Edition, J. Quant. Spectrosc.
Ra., 60, 665–710, https://doi.org/10.1016/S0022-4073(98)00078-8,
1998. a
Scanza, R. A., Mahowald, N., Ghan, S., Zender, C. S., Kok, J. F., Liu, X., Zhang, Y., and Albani, S.: Modeling dust as component minerals in the Community Atmosphere Model: development of framework and impact on radiative forcing, Atmos. Chem. Phys., 15, 537–561, https://doi.org/10.5194/acp-15-537-2015, 2015. a, b, c, d, e
Schmale, J., Flanner, M., Kang, S., Sprenger, M., Zhang, Q., Guo, J., Li, Y.,
Schwikowski, M., and Farinotti, D.: Modulation of snow reflectance and
snowmelt from Central Asian glaciers by anthropogenic black carbon,
Sci. Rep.-UK, 7, 40501, https://doi.org/10.1038/srep40501, 2017. a
Schneider, A., Flanner, M., De Roo, R., and Adolph, A.: Monitoring of snow surface near-infrared bidirectional reflectance factors with added light-absorbing particles, The Cryosphere, 13, 1753–1766, https://doi.org/10.5194/tc-13-1753-2019, 2019. a
Schumann, U., Weinzierl, B., Reitebuch, O., Schlager, H., Minikin, A., Forster, C., Baumann, R., Sailer, T., Graf, K., Mannstein, H., Voigt, C., Rahm, S., Simmet, R., Scheibe, M., Lichtenstern, M., Stock, P., Rüba, H., Schäuble, D., Tafferner, A., Rautenhaus, M., Gerz, T., Ziereis, H., Krautstrunk, M., Mallaun, C., Gayet, J.-F., Lieke, K., Kandler, K., Ebert, M., Weinbruch, S., Stohl, A., Gasteiger, J., Groß, S., Freudenthaler, V., Wiegner, M., Ansmann, A., Tesche, M., Olafsson, H., and Sturm, K.: Airborne observations of the Eyjafjalla volcano ash cloud over Europe during air space closure in April and May 2010, Atmos. Chem. Phys., 11, 2245–2279, https://doi.org/10.5194/acp-11-2245-2011, 2011. a
Schwarz, J. P., Gao, R. S., Perring, A. E., Spackman, J. R., and Fahey, D. W.:
Black carbon aerosol size in snow, Nature, 3, 1356,
https://doi.org/10.1038/srep01356, 2013. a
Sergent, C., Leroux, C., Pougatch, E., and Guirado, F.:
Hemispherical–directional reflectance measurements of natural snow in the 0.9–1.45 µm spectral range: Comparison with adding–doubling modelling, Ann. Glaciol., 26, 59–63, https://doi.org/10.3189/1998AoG26-1-59-63,
1998. a
Singh, D.: Impact of surface Albedo on Martian photochemistry, Earth
Planet. Phys., 4, 206–211, https://doi.org/10.26464/epp2020025,
2020. a
Sinha, P. R., Kondo, Y., Goto-Azuma, K., Tsukagawa, Y., Fukuda, K., Koike, M.,
Ohata, S., Moteki, N., Mori, T., Oshima, N., Førland, E. J., Irwin, M.,
Gallet, J.-C., and Pedersen, C. A.: Seasonal Progression of the Deposition of
Black Carbon by Snowfall at Ny-Ålesund, Spitsbergen, J. Geophys. Res.-Atmos., 123, 997–1016, https://doi.org/10.1002/2017JD028027, 2018. a
Skiles, S. M. and Painter, T.: Daily evolution in dust and black carbon
content, snow grain size, and snow albedo during snowmelt, Rocky Mountains,
Colorado, J. Glaciol., 63, 118–132, https://doi.org/10.1017/jog.2016.125, 2017. a, b, c, d
Skiles, S. M. and Painter, T. H.: Assessment of Radiative Forcing by
Light-Absorbing Particles in Snow from In Situ Observations with Radiative
Transfer Modeling, J. Hydrometeorol., 19, 1397–1409,
https://doi.org/10.1175/JHM-D-18-0072.1, 2018. a
Skiles, S. M. and Painter, T. H.: Toward Understanding Direct Absorption and
Grain Size Feedbacks by Dust Radiative Forcing in Snow With Coupled Snow
Physical and Radiative Transfer Modeling, Water Resour. Res., 55, 7362–7378,
https://doi.org/10.1029/2018WR024573, 2019. a, b
Sterle, K. M., McConnell, J. R., Dozier, J., Edwards, R., and Flanner, M. G.: Retention and radiative forcing of black carbon in eastern Sierra Nevada snow, The Cryosphere, 7, 365–374, https://doi.org/10.5194/tc-7-365-2013, 2013. a
Stohl, A., Prata, A. J., Eckhardt, S., Clarisse, L., Durant, A., Henne, S., Kristiansen, N. I., Minikin, A., Schumann, U., Seibert, P., Stebel, K., Thomas, H. E., Thorsteinsson, T., Tørseth, K., and Weinzierl, B.: Determination of time- and height-resolved volcanic ash emissions and their use for quantitative ash dispersion modeling: the 2010 Eyjafjallajökull eruption, Atmos. Chem. Phys., 11, 4333–4351, https://doi.org/10.5194/acp-11-4333-2011, 2011. a
Sun, H., Biedermann, L., and Bond, T. C.: The color of brown carbon: A model
for ultraviolet and visible light absorption by organic carbon aerosol,
Geophys. Res. Lett., 34, L17813, https://doi.org/10.1029/2007GL029797, 2007. a, b
Takeuchi, N., Kohshima, S., and Seko, K.: Structure, formation, and darkening
process of albedo-reducing material (cryoconite) on a Himalayan glacier: a
granular algal mat growing on the glacier, Arct. Antarct. Alp. Res., 33, 115–122, 2001. a
Toledano, C., Bennouna, Y., Cachorro, V., Ortiz de Galisteo, J. P., Stohl, A.,
Stebel, K., Kristiansen, N. I., Olmo, F. J., Lyamani, H., Obregón, M. A.,
Estellés, V., Wagner, F., Baldasano, J. M., González-Castanedo, Y.,
Clarisse, L., and de Frutos, A. M.: Aerosol properties of the
Eyjafjallajökull ash derived from sun photometer and satellite
observations over the Iberian Peninsula, Atmos. Environ., 48,
22–32, https://doi.org/10.1016/j.atmosenv.2011.09.072, 2012. a
Torres, C., Suárez, L., Schmitt, C., Schmitt, R., Estevan, R., and Helmig,
D.: Measurement of light absorbing particles in the snow of the
Huaytapallana glacier in the central Andes of Peru and their effect on albedo
and radiative forcing, Opt. Pura Apl., 51, 1–14,
https://doi.org/10.7149/OPA.51.4.51004, 2018. a
Uecker, T. M., Kaspari, S. D., Musselman, K. N., and McKenzie Skiles, S.: The
Post-Wildfire Impact of Burn Severity and Age on Black Carbon Snow Deposition
and Implications for Snow Water Resources, Cascade Range, Washington, J.
Hydrometeorol., 21, 1777–1792, https://doi.org/10.1175/JHM-D-20-0010.1, 2020. a
van Dalum, C. T., van de Berg, W. J., Libois, Q., Picard, G., and van den Broeke, M. R.: A module to convert spectral to narrowband snow albedo for use in climate models: SNOWBAL v1.2, Geosci. Model Dev., 12, 5157–5175, https://doi.org/10.5194/gmd-12-5157-2019, 2019. a
van Dalum, C. T., van de Berg, W. J., Lhermitte, S., and van den Broeke, M. R.: Evaluation of a new snow albedo scheme for the Greenland ice sheet in the Regional Atmospheric Climate Model (RACMO2), The Cryosphere, 14, 3645–3662, https://doi.org/10.5194/tc-14-3645-2020, 2020. a
Wang, S., Tedesco, M., Xu, M., and Alexander, P. M.: Mapping Ice Algal Blooms
in Southwest Greenland From Space, Geophys. Res. Lett., 45, 11779–11788,
https://doi.org/10.1029/2018GL080455,
2018. a, b
Ward, J. L., Flanner, M. G., Bergin, M., Dibb, J. E., Polashenski, C. M., Soja,
A. J., and Thomas, J. L.: Modeled Response of Greenland Snowmelt to the
Presence of Biomass Burning-Based Absorbing Aerosols in the Atmosphere and
Snow, J. Geophys. Res.-Atmos., 123, 11, https://doi.org/10.1029/2017JD027878, 2018. a
Weinzierl, B., Sauer, D., Minikin, A., Reitebuch, O., Dahlkötter, F.,
Mayer, B., Emde, C., Tegen, I., Gasteiger, J., Petzold, A., Veira, A.,
Kueppers, U., and Schumann, U.: On the visibility of airborne volcanic ash
and mineral dust from the pilot's perspective in flight, Phys. Chem. Earth, 45–46, 87–102, https://doi.org/10.1016/j.pce.2012.04.003, 2012. a
Whicker, C. A., Flanner, M. G., Dang, C., Zender, C. S., Cook, J. M., and Gardner, A. S.: SNICAR-ADv4: A physically based radiative transfer model to represent the spectral albedo of glacier ice, The Cryosphere Discuss. [preprint], https://doi.org/10.5194/tc-2021-272, in review, 2021. a, b, c
Williamson, C. J., Cook, J., Tedstone, A., Yallop, M., McCutcheon, J.,
Poniecka, E., Campbell, D., Irvine-Fynn, T., McQuaid, J., Tranter, M.,
Perkins, R., and Anesio, A.: Algal photophysiology drives darkening and melt
of the Greenland Ice Sheet, P. Natl. Acad. Sci. USA, 117, 5694–5705,
https://doi.org/10.1073/pnas.1918412117, 2020. a, b, c
Wolff, M. J., Smith, M. D., Clancy, R. T., Spanovich, N., Whitney, B. A.,
Lemmon, M. T., Bandfield, J. L., Banfield, D., Ghosh, A., Landis, G.,
Christensen, P. R., Bell III, J. F., and Squyres, S. W.: Constraints on dust
aerosols from the Mars Exploration Rovers using MGS overflights and
Mini-TES, J. Geophys. Res.-Planet., 111, E12S17, https://doi.org/10.1029/2006JE002786,
2006. a
Wolff, M. J., Smith, M. D., Clancy, R. T., Arvidson, R., Kahre, M., Seelos IV,
F., Murchie, S., and Savijärvi, H.: Wavelength dependence of dust aerosol
single scattering albedo as observed by the Compact Reconnaissance Imaging
Spectrometer, J. Geophys. Res. Planet., 114, E00D04, https://doi.org/10.1029/2009JE003350,
2009. a, b, c
Wolff, M. J., Todd Clancy, R., Goguen, J. D., Malin, M. C., and Cantor,
B. A.: Ultraviolet dust aerosol properties as observed by MARCI, Icarus, 208,
143–155, https://doi.org/10.1016/j.icarus.2010.01.010,
2010. a
Wu, C., Liu, X., Lin, Z., Rahimi-Esfarjani, S. R., and Lu, Z.: Impacts of absorbing aerosol deposition on snowpack and hydrologic cycle in the Rocky Mountain region based on variable-resolution CESM (VR-CESM) simulations, Atmos. Chem. Phys., 18, 511–533, https://doi.org/10.5194/acp-18-511-2018, 2018. a
Yallop, M. L., Anesio, A. M., Perkins, R. G., Cook, J., Telling, J., Fagan, D.,
MacFarlane, J., Stibal, M., Barker, G., Bellas, C., Hodson, A., Tranter, M., Wadham, J., and Roberts, N. W.: Photophysiology
and albedo-changing potential of the ice algal community on the surface of
the Greenland ice sheet, ISME J., 6, 2302–2313,
https://doi.org/10.1038/ismej.2012.107, 2012. a, b
Yasunari, T. J., Koster, R. D., Lau, K. M., Aoki, T., Sud, Y. C., Yamazaki, T.,
Motoyoshi, H., and Kodama, Y.: Influence of dust and black carbon on the
snow albedo in the NASA Goddard Earth Observing System version 5 land surface
model, J. Geophys. Res., 116, D02210, https://doi.org/10.1029/2010JD014861, 2011. a
Young, C. L., Sokolik, I. N., Flanner, M. G., and Dufek, J.: Surface radiative
impacts of ash deposits from the 2009 eruption of Redoubt volcano, J.
Geophys. Res.-Atmos., 119, 11387–11397, https://doi.org/10.1002/2014JD021949, 2014.
a, b
Zender, C. S.: Global climatology of abundance and solar absorption of oxygen
collision complexes, J. Geophys. Res., 104, 24471–24484,
https://doi.org/10.1029/1999JD900797, 1999. a
Zender, C. S., Bush, B., Pope, S. K., Bucholtz, A., Collins, W. D., Kiehl,
J. T., Valero, F. P. J., and Vitko Jr., J.: Atmospheric absorption during
the Atmospheric Radiation Measurement (ARM) Enhanced Shortwave Experiment
(ARESE), J. Geophys. Res., 102, 29901–29915, 1997. a
Zender, C., Bian, H., and Newman, D.: Mineral Dust Entrainment and Deposition
(DEAD) Model: Description and 1990s dust climatology, J. Geophys. Res.,
108, 4416, https://doi.org/10.1029/2002JD002775, 2003. a
Zhao, C., Hu, Z., Qian, Y., Ruby Leung, L., Huang, J., Huang, M., Jin, J., Flanner, M. G., Zhang, R., Wang, H., Yan, H., Lu, Z., and Streets, D. G.: Simulating black carbon and dust and their radiative forcing in seasonal snow: a case study over North China with field campaign measurements, Atmos. Chem. Phys., 14, 11475–11491, https://doi.org/10.5194/acp-14-11475-2014, 2014. a
Short summary
We present the technical formulation and evaluation of a publicly available code and web-based model to simulate the spectral albedo of snow. Our model accounts for numerous features of the snow state and ambient conditions, including the the presence of light-absorbing matter like black and brown carbon, mineral dust, volcanic ash, and snow algae. Carbon dioxide snow, found on Mars, is also represented. The model accurately reproduces spectral measurements of clean and contaminated snow.
We present the technical formulation and evaluation of a publicly available code and web-based...