Articles | Volume 14, issue 12
https://doi.org/10.5194/gmd-14-7527-2021
https://doi.org/10.5194/gmd-14-7527-2021
Model description paper
 | Highlight paper
 | 
08 Dec 2021
Model description paper | Highlight paper |  | 08 Dec 2021

SELF v1.0: a minimal physical model for predicting time of freeze-up in lakes

Marco Toffolon, Luca Cortese, and Damien Bouffard

Related authors

Using automatic calibration to improve the physics behind complex numerical models: an example from a 3D lake model using Delft3D (v6.02.10) and DYNO-PODS (v1.0)
Marina Amadori, Abolfazl Irani Rahaghi, Damien Bouffard, and Marco Toffolon
Geosci. Model Dev., 18, 3473–3486, https://doi.org/10.5194/gmd-18-3473-2025,https://doi.org/10.5194/gmd-18-3473-2025, 2025
Short summary
Frictional interactions between tidal constituents in tide-dominated estuaries
Huayang Cai, Marco Toffolon, Hubert H. G. Savenije, Qingshu Yang, and Erwan Garel
Ocean Sci., 14, 769–782, https://doi.org/10.5194/os-14-769-2018,https://doi.org/10.5194/os-14-769-2018, 2018
The open boundary equation
D. Diederen, H. H. G. Savenije, and M. Toffolon
Ocean Sci. Discuss., https://doi.org/10.5194/osd-12-925-2015,https://doi.org/10.5194/osd-12-925-2015, 2015
Revised manuscript not accepted
Linking the river to the estuary: influence of river discharge on tidal damping
H. Cai, H. H. G. Savenije, and M. Toffolon
Hydrol. Earth Syst. Sci., 18, 287–304, https://doi.org/10.5194/hess-18-287-2014,https://doi.org/10.5194/hess-18-287-2014, 2014
A simple lumped model to convert air temperature into surface water temperature in lakes
S. Piccolroaz, M. Toffolon, and B. Majone
Hydrol. Earth Syst. Sci., 17, 3323–3338, https://doi.org/10.5194/hess-17-3323-2013,https://doi.org/10.5194/hess-17-3323-2013, 2013

Related subject area

Hydrology
A reach-integrated hydraulic modelling approach for large-scale and real-time inundation mapping
Robert Chlumsky, James R. Craig, and Bryan A. Tolson
Geosci. Model Dev., 18, 3387–3403, https://doi.org/10.5194/gmd-18-3387-2025,https://doi.org/10.5194/gmd-18-3387-2025, 2025
Short summary
Graphical representation of global water models
Hannes Müller Schmied, Simon Newland Gosling, Marlo Garnsworthy, Laura Müller, Camelia-Eliza Telteu, Atiq Kainan Ahmed, Lauren Seaby Andersen, Julien Boulange, Peter Burek, Jinfeng Chang, He Chen, Lukas Gudmundsson, Manolis Grillakis, Luca Guillaumot, Naota Hanasaki, Aristeidis Koutroulis, Rohini Kumar, Guoyong Leng, Junguo Liu, Xingcai Liu, Inga Menke, Vimal Mishra, Yadu Pokhrel, Oldrich Rakovec, Luis Samaniego, Yusuke Satoh, Harsh Lovekumar Shah, Mikhail Smilovic, Tobias Stacke, Edwin Sutanudjaja, Wim Thiery, Athanasios Tsilimigkras, Yoshihide Wada, Niko Wanders, and Tokuta Yokohata
Geosci. Model Dev., 18, 2409–2425, https://doi.org/10.5194/gmd-18-2409-2025,https://doi.org/10.5194/gmd-18-2409-2025, 2025
Short summary
LM4-SHARC v1.0: resolving the catchment-scale soil–hillslope aquifer–river continuum for the GFDL Earth system modeling framework
Minki Hong, Nathaniel Chaney, Sergey Malyshev, Enrico Zorzetto, Anthony Preucil, and Elena Shevliakova
Geosci. Model Dev., 18, 2275–2301, https://doi.org/10.5194/gmd-18-2275-2025,https://doi.org/10.5194/gmd-18-2275-2025, 2025
Short summary
SWAT+MODFLOW: A New Hydrologic Model for Simulating Surface-Subsurface Flow in Managed Watersheds
Ryan Bailey, Salam Abbas, Jeffrey Arnold, and Michael White
EGUsphere, https://doi.org/10.5194/egusphere-2025-300,https://doi.org/10.5194/egusphere-2025-300, 2025
Short summary
Selecting a conceptual hydrological model using Bayes' factors computed with replica-exchange Hamiltonian Monte Carlo and thermodynamic integration
Damian N. Mingo, Remko Nijzink, Christophe Ley, and Jack S. Hale
Geosci. Model Dev., 18, 1709–1736, https://doi.org/10.5194/gmd-18-1709-2025,https://doi.org/10.5194/gmd-18-1709-2025, 2025
Short summary

Cited articles

Bilello, M. A.: Method for predicting river and lake ice formation, J. Appl. Meteorol. Clim., 3, 38–44, 1964. a
Bouffard, D.: Silvaplanersee_T-Mooring, Eawag: Swiss Federal Institute of Aquatic Science and Technology [data set], https://doi.org/10.25678/0000QQ, 2016. a
Bouffard, D.: Sihlsee_T-Mooring, Eawag: Swiss Federal Institute of Aquatic Science and Technology [data set], https://doi.org/10.25678/0000MM, 2019a. a
Bouffard, D.: Silsersee_T-Mooring, Eawag: Swiss Federal Institute of Aquatic Science and Technology [data set], https://doi.org/10.25678/0000PP, 2019b. a
Bouffard, D.: St.Moritzersee_T-Mooring, Eawag: Swiss Federal Institute of Aquatic Science and Technology [data set], https://doi.org/10.25678/0000KK, 2019c. a
Download
Short summary
The time when lakes freeze varies considerably from year to year. A common way to predict it is to use negative degree days, i.e., the sum of air temperatures below 0 °C, a proxy for the heat lost to the atmosphere. Here, we show that this is insufficient as the mixing of the surface layer induced by wind tends to delay the formation of ice. To do so, we developed a minimal model based on a simplified energy balance, which can be used both for large-scale analyses and short-term predictions.
Share