Articles | Volume 14, issue 12
https://doi.org/10.5194/gmd-14-7527-2021
https://doi.org/10.5194/gmd-14-7527-2021
Model description paper
 | Highlight paper
 | 
08 Dec 2021
Model description paper | Highlight paper |  | 08 Dec 2021

SELF v1.0: a minimal physical model for predicting time of freeze-up in lakes

Marco Toffolon, Luca Cortese, and Damien Bouffard

Related authors

Using automatic calibration to improve the physics behind complex numerical models: An example from a 3D lake model using Delft3d (v6.02.10) and DYNO-PODS (v1.0)
Marina Amadori, Abolfazl Irani Rahaghi, Damien Bouffard, and Marco Toffolon
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2024-118,https://doi.org/10.5194/gmd-2024-118, 2024
Preprint under review for GMD
Short summary
Frictional interactions between tidal constituents in tide-dominated estuaries
Huayang Cai, Marco Toffolon, Hubert H. G. Savenije, Qingshu Yang, and Erwan Garel
Ocean Sci., 14, 769–782, https://doi.org/10.5194/os-14-769-2018,https://doi.org/10.5194/os-14-769-2018, 2018
The open boundary equation
D. Diederen, H. H. G. Savenije, and M. Toffolon
Ocean Sci. Discuss., https://doi.org/10.5194/osd-12-925-2015,https://doi.org/10.5194/osd-12-925-2015, 2015
Revised manuscript not accepted
Linking the river to the estuary: influence of river discharge on tidal damping
H. Cai, H. H. G. Savenije, and M. Toffolon
Hydrol. Earth Syst. Sci., 18, 287–304, https://doi.org/10.5194/hess-18-287-2014,https://doi.org/10.5194/hess-18-287-2014, 2014
A simple lumped model to convert air temperature into surface water temperature in lakes
S. Piccolroaz, M. Toffolon, and B. Majone
Hydrol. Earth Syst. Sci., 17, 3323–3338, https://doi.org/10.5194/hess-17-3323-2013,https://doi.org/10.5194/hess-17-3323-2013, 2013

Related subject area

Hydrology
Development and performance of a high-resolution surface wave and storm surge forecast model: application to a large lake
Laura L. Swatridge, Ryan P. Mulligan, Leon Boegman, and Shiliang Shan
Geosci. Model Dev., 17, 7751–7766, https://doi.org/10.5194/gmd-17-7751-2024,https://doi.org/10.5194/gmd-17-7751-2024, 2024
Short summary
Deep dive into hydrologic simulations at global scale: harnessing the power of deep learning and physics-informed differentiable models (δHBV-globe1.0-hydroDL)
Dapeng Feng, Hylke Beck, Jens de Bruijn, Reetik Kumar Sahu, Yusuke Satoh, Yoshihide Wada, Jiangtao Liu, Ming Pan, Kathryn Lawson, and Chaopeng Shen
Geosci. Model Dev., 17, 7181–7198, https://doi.org/10.5194/gmd-17-7181-2024,https://doi.org/10.5194/gmd-17-7181-2024, 2024
Short summary
PyEt v1.3.1: a Python package for the estimation of potential evapotranspiration
Matevž Vremec, Raoul A. Collenteur, and Steffen Birk
Geosci. Model Dev., 17, 7083–7103, https://doi.org/10.5194/gmd-17-7083-2024,https://doi.org/10.5194/gmd-17-7083-2024, 2024
Short summary
Prediction of hysteretic matric potential dynamics using artificial intelligence: application of autoencoder neural networks
Nedal Aqel, Lea Reusser, Stephan Margreth, Andrea Carminati, and Peter Lehmann
Geosci. Model Dev., 17, 6949–6966, https://doi.org/10.5194/gmd-17-6949-2024,https://doi.org/10.5194/gmd-17-6949-2024, 2024
Short summary
Regionalization in global hydrological models and its impact on runoff simulations: a case study using WaterGAP3 (v 1.0.0)
Jenny Kupzig, Nina Kupzig, and Martina Flörke
Geosci. Model Dev., 17, 6819–6846, https://doi.org/10.5194/gmd-17-6819-2024,https://doi.org/10.5194/gmd-17-6819-2024, 2024
Short summary

Cited articles

Bilello, M. A.: Method for predicting river and lake ice formation, J. Appl. Meteorol. Clim., 3, 38–44, 1964. a
Bouffard, D.: Silvaplanersee_T-Mooring, Eawag: Swiss Federal Institute of Aquatic Science and Technology [data set], https://doi.org/10.25678/0000QQ, 2016. a
Bouffard, D.: Sihlsee_T-Mooring, Eawag: Swiss Federal Institute of Aquatic Science and Technology [data set], https://doi.org/10.25678/0000MM, 2019a. a
Bouffard, D.: Silsersee_T-Mooring, Eawag: Swiss Federal Institute of Aquatic Science and Technology [data set], https://doi.org/10.25678/0000PP, 2019b. a
Bouffard, D.: St.Moritzersee_T-Mooring, Eawag: Swiss Federal Institute of Aquatic Science and Technology [data set], https://doi.org/10.25678/0000KK, 2019c. a
Download
Short summary
The time when lakes freeze varies considerably from year to year. A common way to predict it is to use negative degree days, i.e., the sum of air temperatures below 0 °C, a proxy for the heat lost to the atmosphere. Here, we show that this is insufficient as the mixing of the surface layer induced by wind tends to delay the formation of ice. To do so, we developed a minimal model based on a simplified energy balance, which can be used both for large-scale analyses and short-term predictions.