Articles | Volume 14, issue 7
https://doi.org/10.5194/gmd-14-4713-2021
https://doi.org/10.5194/gmd-14-4713-2021
Model evaluation paper
 | 
29 Jul 2021
Model evaluation paper |  | 29 Jul 2021

DecTree v1.0 – chemistry speedup in reactive transport simulations: purely data-driven and physics-based surrogates

Marco De Lucia and Michael Kühn

Related authors

DecTree: a physics-based geochemical surrogate for surface complexation of uranium on clay
Marco De Lucia
Adv. Geosci., 65, 45–54, https://doi.org/10.5194/adgeo-65-45-2024,https://doi.org/10.5194/adgeo-65-45-2024, 2024
Short summary
POET (v0.1): speedup of many-core parallel reactive transport simulations with fast DHT lookups
Marco De Lucia, Michael Kühn, Alexander Lindemann, Max Lübke, and Bettina Schnor
Geosci. Model Dev., 14, 7391–7409, https://doi.org/10.5194/gmd-14-7391-2021,https://doi.org/10.5194/gmd-14-7391-2021, 2021
Short summary
Reactive transport model of kinetically controlled celestite to barite replacement
Morgan Tranter, Maria Wetzel, Marco De Lucia, and Michael Kühn
Adv. Geosci., 56, 57–65, https://doi.org/10.5194/adgeo-56-57-2021,https://doi.org/10.5194/adgeo-56-57-2021, 2021
Short summary
Geochemical and reactive transport modelling in R with the RedModRphree package
Marco De Lucia and Michael Kühn
Adv. Geosci., 56, 33–43, https://doi.org/10.5194/adgeo-56-33-2021,https://doi.org/10.5194/adgeo-56-33-2021, 2021
Short summary
A coupling alternative to reactive transport simulations for long-term prediction of chemical reactions in heterogeneous CO2 storage systems
M. De Lucia, T. Kempka, and M. Kühn
Geosci. Model Dev., 8, 279–294, https://doi.org/10.5194/gmd-8-279-2015,https://doi.org/10.5194/gmd-8-279-2015, 2015

Related subject area

Hydrology
Development and performance of a high-resolution surface wave and storm surge forecast model: application to a large lake
Laura L. Swatridge, Ryan P. Mulligan, Leon Boegman, and Shiliang Shan
Geosci. Model Dev., 17, 7751–7766, https://doi.org/10.5194/gmd-17-7751-2024,https://doi.org/10.5194/gmd-17-7751-2024, 2024
Short summary
Deep dive into hydrologic simulations at global scale: harnessing the power of deep learning and physics-informed differentiable models (δHBV-globe1.0-hydroDL)
Dapeng Feng, Hylke Beck, Jens de Bruijn, Reetik Kumar Sahu, Yusuke Satoh, Yoshihide Wada, Jiangtao Liu, Ming Pan, Kathryn Lawson, and Chaopeng Shen
Geosci. Model Dev., 17, 7181–7198, https://doi.org/10.5194/gmd-17-7181-2024,https://doi.org/10.5194/gmd-17-7181-2024, 2024
Short summary
PyEt v1.3.1: a Python package for the estimation of potential evapotranspiration
Matevž Vremec, Raoul A. Collenteur, and Steffen Birk
Geosci. Model Dev., 17, 7083–7103, https://doi.org/10.5194/gmd-17-7083-2024,https://doi.org/10.5194/gmd-17-7083-2024, 2024
Short summary
Prediction of hysteretic matric potential dynamics using artificial intelligence: application of autoencoder neural networks
Nedal Aqel, Lea Reusser, Stephan Margreth, Andrea Carminati, and Peter Lehmann
Geosci. Model Dev., 17, 6949–6966, https://doi.org/10.5194/gmd-17-6949-2024,https://doi.org/10.5194/gmd-17-6949-2024, 2024
Short summary
Regionalization in global hydrological models and its impact on runoff simulations: a case study using WaterGAP3 (v 1.0.0)
Jenny Kupzig, Nina Kupzig, and Martina Flörke
Geosci. Model Dev., 17, 6819–6846, https://doi.org/10.5194/gmd-17-6819-2024,https://doi.org/10.5194/gmd-17-6819-2024, 2024
Short summary

Cited articles

Altmann, R.: Index reduction for operator differential-algebraic equations in elastodynamics, J. Appl. Math. Mech., 93, 648–664, https://doi.org/10.1002/zamm.201200125, 2013. a
Altmann, R. and Heiland, J.: Finite element decomposition and minimal extension for flow equations, ESAIM Math. Model. Numer. Anal., 49, 1489–1509, https://doi.org/10.1051/m2an/2015029, 2015. a
Appelo, C. A. J., Parkhurst, D. L., and Post, V. E. A.: Equations for calculating hydrogeochemical reactions of minerals and gases such as CO2 at high pressures and temperatures, Geochim. Cosmochim. Ac., 125, 49–67, https://doi.org/10.1016/j.gca.2013.10.003, 2013. a, b
Beisman, J. J., Maxwell, R. M., Navarre-Sitchler, A. K., Steefel, C. I., and Molins, S.: ParCrunchFlow: an efficient, parallel reactive transport simulation tool for physically and chemically heterogeneous saturated subsurface environments, Comput. Geosci., 19, 403–422, https://doi.org/10.1007/s10596-015-9475-x, 2015. a
Chen, T. and Guestrin, C.: XGBoost: A Scalable Tree Boosting System, Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, https://doi.org/10.1145/2939672.2939785, 2016. a
Download
Short summary
DecTree evaluates a hierarchical coupling method for reactive transport simulations in which pre-trained surrogate models are used to speed up the geochemical subprocess, and equation-based full-physics simulations are called only if the surrogate predictions are implausible. Furthermore, we devise and evaluate a decision tree surrogate approach designed to inject domain knowledge of the surrogate by defining engineered features based on law of mass action or stoichiometric reaction equations.