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Abstract. The computational costs associated with coupled
reactive transport simulations are mostly due to the chemical
subsystem: replacing it with a pre-trained statistical surro-
gate is a promising strategy to achieve decisive speedups at
the price of small accuracy losses and thus to extend the scale
of problems which can be handled. We introduce a hierarchi-
cal coupling scheme in which “full-physics” equation-based
geochemical simulations are partially replaced by surrogates.
Errors in mass balance resulting from multivariate surro-
gate predictions effectively assess the accuracy of multivari-
ate regressions at runtime: inaccurate surrogate predictions
are rejected and the more expensive equation-based simu-
lations are run instead. Gradient boosting regressors such
as XGBoost, not requiring data standardization and being
able to handle Tweedie distributions, proved to be a suit-
able emulator. Finally, we devise a surrogate approach based
on geochemical knowledge, which overcomes the issue of
robustness when encountering previously unseen data and
which can serve as a basis for further development of hybrid
physics–AI modelling.

1 Introduction

Coupled reactive transport simulations (Steefel et al.,
2005, 2015) are very expensive, effectively hampering
their wide applications. While hydrodynamic simulations on
finely resolved spatial discretizations, containing millions of
grid elements, are routinely run on common workstations,
the order of magnitude of the computationally affordable re-
active transport simulations on the same hardware decreases
by a factor of 10 to 100 as soon as chemical reactions are

coupled in (De Lucia et al., 2015; Jatnieks et al., 2016; Laloy
and Jacques, 2019; Leal et al., 2020; Prasianakis et al., 2020).
This usually requires oversimplifications of the subsurface
domain, reduced to 2D or very coarse 3D, and of the geo-
chemical complexity as well.

In classical operator splitting such as the sequential non-
iterative approach (SNIA), the three interacting physical pro-
cesses of hydrodynamic flow, solute transport, and chemical
interactions between solute species and rock-forming min-
erals are solved sequentially. Chemistry usually represents
the bottleneck for coupled simulations, taking up between
90 % and 99 % of compute time (Steefel et al., 2015; He
et al., 2015; De Lucia et al., 2015; Huang et al., 2018; Leal
et al., 2020). The numerical model for geochemical specia-
tion and reactions generally requires the integration of one
stiff differential–algebraic system of equations per grid ele-
ment per simulation time step. Parallelization is thus required
to tackle large spatial discretizations, which is why many
modern codes are developed to run on high-performance
computing (HPC) clusters with many thousands of CPUs
(Hammond et al., 2014; Beisman et al., 2015; Steefel, 2019).
However, the problem of difficult numerical convergence for
the geochemical subprocess routinely encountered by many
practitioners is not solved by parallelization. Furthermore,
large uncertainties affect the phenomenological model itself.
Kinetics rates in natural media span over orders of magni-
tude (Marty et al., 2015); activity models for the brines usu-
ally encountered in the subsurface lack parameterization for
higher temperature, salinity, or for many elements (Dethlef-
sen et al., 2011; Appelo et al., 2013; Moog et al., 2015); and
even larger uncertainty concerns the parameterization of the
subsurface, regarding, for example, the heterogeneity of rock
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mineralogy, which is mostly unknown and hence often disre-
garded (De Lucia et al., 2011; Nissan and Berkowitz, 2019).
It may thus appear unjustified to allocate large computational
resources to solve very expensive yet still actually oversim-
plified or uncertain problems. Removing the computational
cost associated with reactive transport modelling is thus of
paramount importance to ensure its wide application to a
range of otherwise practically unfeasible problems (Prom-
mer et al., 2019).

The much desired speedup of this class of numerical mod-
els has been the focus of intensive research in the last few
years. Among the proposed solutions, Jatnieks et al. (2016)
suggest replacing the full-physics numerical models of the
geochemical subsystem with emulators or surrogates em-
ployed at runtime during the coupled simulations. A surro-
gate in this sense is a statistical multivariate regressor which
has to be trained in advance on a set of pre-calculated full-
physics solutions of the geochemical model at hand, span-
ning the whole parameter range expected for the simulations.
Since the regressors are much quicker to compute than the
setup and integration of a differential–algebraic system of
equations (DAE), this promises a significant speedup and has
thus found resonance in the scientific community (e.g. De
Lucia et al., 2017; Laloy and Jacques, 2019; Guérillot and
Bruyelle, 2020). However, all approximations and especially
purely data-driven surrogates introduce accuracy losses into
the coupled simulations. These must be kept low in order to
generate meaningful simulation results. Ultimately, replac-
ing a fully fledged geochemical simulator with a surrogate
equals trading computational time for accuracy of the simu-
lations. Due to the non-linear nature of geochemical subpro-
cesses, even small errors in surrogate predictions propagate
in successive iterations so that diverging trajectories for the
coupled models originate from only a few time steps, leading
to unphysical results. Mass and charge imbalances, i.e. “cre-
ation” of matter, happen to be the most common source of
unphysicality in our early tests. It is thus of paramount im-
portance to obtain highly accurate surrogates, which in turn
may require very large and densely sampled training datasets
and training times.

The thriving developments in data science and machine
learning in recent years have produced many different and
efficiently implemented regressors readily available and us-
able in high-level programming languages such as Python
or R. Among the most known ones are Gaussian pro-
cesses, support vector machines, artificial neural networks,
and decision-tree-based algorithms such as random forest
or gradient boosting. Most of these algorithms are “black
boxes”, which non-linearly relate many output variables to
many input variables. Their overall accuracy can be statisti-
cally assessed by measuring their performances on the train-
ing dataset or on a subset of the available training data left
out for the specific purpose of testing the models. In any case
these training and/or test datasets must be obtained before-
hand by computing an appropriate number of points with the

full-physics model. Geochemistry is usually largely multi-
variate, meaning that many input and many output variables
are passed to and from the geochemical subsystem at each
time step. In general, different regressors may capture each
output variable in better fashion depending on many factors
(e.g. the problem at hand, in which variables display different
non-linear behaviours; the sampling density of the training
dataset, which may be biased). With algorithms such as artifi-
cial neural networks (ANNs) it is possible to train one single
network and hence in practice one single surrogate model for
all output variables at once. While ANNs in particular usu-
ally require long CPU times for training and quite large train-
ing datasets, they offer large speedups when used for pre-
dictions (Jatnieks et al., 2016; Prasianakis et al., 2020), and
furthermore they can efficiently leverage GPUs (graphic pro-
cessing units) for even larger acceleration. It is, however, dif-
ficult to achieve the required accuracy simultaneously for all
output variables (Kelp et al., 2020). For this reason, we focus
on a more flexible approach of multiple multivariate regres-
sion: one distinct multivariate regressor – i.e. making use of
many or all inputs as predictors – is trained independently for
each distinct output variable. This approach allows using dif-
ferent specialized models from variable to variable, including
different regression methods altogether, but also data prepro-
cessing and hyperparameter tuning, while not necessarily re-
quiring larger computing resources.

This work showcases and analyses two different ap-
proaches for surrogate geochemical modelling in reactive
transport simulations. The first is completely data-driven,
disregarding any possible knowledge about the ongoing pro-
cess. In the second approach, we derive a surrogate which
exploits the actual equations solved by the full-physics rep-
resentation of chemistry. Both are applied and evaluated
on the same 1D benchmark implemented in a simple reac-
tive transport framework. Our implementation of coupled re-
active transport includes a hierarchical submodel coupling
strategy, which is advantageous when different accuracy lev-
els for the predictions of one subprocess are available.

2 Methods: simulation environment and benchmark
problem

The versioned R code used for DecTree v.1.0 model setup
and evaluation is referenced in the section “Code availabil-
ity”. It is based on version v0.0.4 of the RedModRphree
package for the R environment (R Core Team, 2020), which
is also referenced in the section “Code availability”. It
makes use of the geochemical simulator PHREEQC (Ap-
pelo et al., 2013). RedModRphree supersedes the in-house-
developed R-PHREEQC interface Rphree (https://rphree.
r-forge.r-project.org/, last access: 23 July 2021, De Lucia and
Kühn, 2013).

The benchmarks and the performance measurements re-
fer to computations run on a recent desktop workstation

Geosci. Model Dev., 14, 4713–4730, 2021 https://doi.org/10.5194/gmd-14-4713-2021

https://rphree.r-forge.r-project.org/
https://rphree.r-forge.r-project.org/


M. De Lucia and M. Kühn: Surrogates in reactive transport 4715

equipped with an Intel Xeon W-2133 CPU with clock at
3.60 GHz and DDR4 RAM at 2.666 GHz under Linux ker-
nel 5.9.14 and R version 4.0.3. If not otherwise specified,
only one CPU core is employed for all computational tasks.
Since in an operator-splitting approach the simulation of geo-
chemical subprocess is inherently an embarrassing parallel
task, in which at each time step one geochemical simulation
per grid element is required completely independent of the
neighbours, the speedup achieved on a single CPU as in this
work will transfer on parallel computations in which each
CPU is assigned a comparable number of grid elements up
to the overhead required to dispatch and collect the results in
a parallel environment.

2.1 Numerical simulation of flow and transport

We consider a stationary, fully saturated, incompressible,
isothermal 1D Darcy flow in a homogeneous medium. Trans-
port is restricted to pure advection, and the feedback of min-
eral precipitation and dissolution on porosity and permeabil-
ity is also disregarded; the fluid density is considered con-
stant. Advection is numerically computed via a forward Eu-
ler explicit resolution scheme:

Ci(x, t + 1)= Ci(x, t)− u ·1t
Ci(x, t)−Ci(x− 1, t)

1x
, (1)

where u is the module of Darcy velocity, Ci(x, t) the vol-
umetric concentration (molality) of the ith solute species at
point x and time t , and 1x the size of a grid element. For
this scheme, the Courant–Friedrichs–Lewy stability condi-
tion (CFL) imposes that the Courant number ν be less than
or equal to 1:

ν =
u ·1t

1x
≤ 1. (2)

For Courant numbers less than 1, numerical dispersion
arises; the scheme is unstable for ν > 1. The only both sta-
ble and precise solution for advection is with ν = 1. Thus,
the CFL condition is very limiting in 1t : a factor of 2 re-
finement in the spatial discretization corresponds to a factor
of 2 decrease in 1t , thus requiring twice the coupling itera-
tions. Note that porosity is not considered in Eq. (1) so that
effectively the Darcy velocity is to be assumed equal to the
seepage velocity or, alternatively, porosity is equal to unity.
This assumption does not have any impact on the calcula-
tions beside the volumetric scaling that has to be considered
for the minerals. In the code the mineral amounts are always
treated as moles per kilogramme of solvent.

The implemented advection relies on transport of total ele-
mental concentrations instead of the actual dissolved species,
an allowable simplification since all solutes are subjected
to the same advection equation (Parkhurst and Wissmeier,
2015). Total dissolved O, H, and solution charge should be
included among the state variables and thus transported, but
since this problem is redox-insensitive, we can disregard

charge imbalance and only transport pH instead of H and
O, disregarding changes in water mass. The pH is defined in
terms of activity of protons,

pH=−log10
(
[H+]

)
,

and is hence not additive. If we further assume that the activ-
ity coefficient of protons stays constant throughout the sim-
ulation, the activity [H+] can actually be transported. The
resulting simplified advective model shows negligible devi-
ations from the results of the same problem simulated with
PHREEQC’s ADVECTION keyword (not shown).

2.2 The chemical benchmark

The chemical benchmark used throughout this work is in-
spired by Engesgaard and Kipp (1992) and is well known,
with many variants, in the reactive transport community (e.g.
Shao et al., 2009; Leal et al., 2020). It was chosen since it
has been studied by many different authors and is challeng-
ing enough from a computational point of view.

At the inlet of a column, conventionally on the left side
in the pictures throughout this work, a 0.001 molal mag-
nesium chloride (MgCl2) solution is injected into a porous
medium whose initial solution is at thermodynamic equilib-
rium with calcite. With the movement of the reactive front,
calcite starts to dissolve and dolomite is transiently precipi-
tated. Kinetic control is imposed on all mineral reactions fol-
lowing a Lasaga rate expression from Palandri and Kharaka
(2004), which is limited to only neutral and H+ mechanisms
(parameters are summarized in Table 1) and constant reac-
tive surfaces; hence, it is independent of the actual amounts
of minerals. Precipitation rate – relevant only for dolomite
– is set equal to the rate of dissolution. Temperature is set
for simplicity at a constant 25 ◦C in disregard to actual phys-
ical meaningfulness of the model concerning dolomite pre-
cipitation (Möller and De Lucia, 2020). Detailed initial and
boundary conditions are summarized in Table 2.

To achieve a complete description of the chemical sys-
tem at any time, seven input variables are required: pH, C,
Ca, Mg, Cl, calcite, and dolomite – those can be consid-
ered state variables, since they constitute the necessary and
sufficient inputs of the geochemical subsystem, and all reac-
tions only depend on them. The outcome of the full-physics
calculations is completely defined (at least with the sim-
plifications discussed above) by four distinct quantities: the
amounts of reaction affecting the two minerals calcite (i) and
dolomite (ii) in the given time step, from which the changes
in solutes Ca, Mg, and C can be back-calculated; Cl (iii),
which is actually non-reactive; and pH (iv). In a completely
process-agnostic, data-driven framework, however, the rela-
tionships between minerals and aqueous concentrations are
disregarded, and the output of the chemical subsystem is ex-
pressed solely in terms of the input variables.
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Table 1. Parameters for kinetic control for dissolution and precipitation of calcite and dolomite. k is given in mol m−2 s−1, Ea in kJ mol−1,
and reactive surface in m2 kgH2O

−1.

Mineral H+ mechanism Neutral mechanism

log k Ea H+ order log k Ea Reactive surface

Calcite −0.30 14.4 1 −5.81 23.5 3.20
Dolomite −3.19 36.1 0.5 −7.53 52.2 0.32

Table 2. Initial conditions (ICs) and boundary conditions (BCs) for the benchmark problem.

C Ca Cl Mg pH Calcite Dolomite

molal molal molal molal – mol mol

IC 1.2279× 10−4 1.2279× 10−4 0.00 0.00 9.91 2.07× 10−3 0.00
BC 0.00 0.00 0.2× 10−2 0.1× 10−2 7

2.3 Reference simulations and training data

For the remainder of this work, the geochemical benchmark
described above is solved on a 1D column of length 0.5 m,
with a constant fluid velocity of u= 9.375×10−6 ms−1. The
domain is discretized with grid refinements ranging between
50 and 500 grid elements. Higher refinements have a double
effect: on one side larger grids obviously increase the overall
computational load, in particular for chemistry; on the other
side, given the restriction of the implemented forward Euler
explicit advection scheme, the time stepping required for the
coupled simulations in order to be free of numerical disper-
sion decreases accordingly. Smaller time steps decrease the
computational load for geochemistry for each iteration, since
they require shorter time integrations, but they also require
more coupled iterations to reach the same simulation time.
More iterations also mean that there are more chances for
errors introduced by surrogates to further propagate into the
simulations in both space and time. In the presence of sig-
nificant overhead due to e.g. data passing between different
software or the setup of geochemical simulations, the advan-
tage due to shorter time steps vanishes. However, these as-
pects become more relevant in the context of parallelization
of geochemistry and are not addressed in the present work.

All coupled simulations, both reference (full physics) and
with surrogates, are run with a constant time step either hon-
ouring the CFL condition with ν = 1, and thus free of numer-
ical dispersion, or, when assessing how the speedup scales
with larger grids, a fixed time step small enough for the CFL
condition (Eq. 2) to be satisfied for every discretization. As
previously noted, the resulting simulations will be affected
by grid-dependent numerical dispersion, which we do not ac-
count for in the present work. This makes the results incom-
parable in terms of transport across grids. However, since
the focus is on the acceleration of geochemistry through pre-
computed surrogates, this is an acceptable simplification.

The comparison between the reference simulations ob-
tained by coupling of transport with the PHREEQC simu-
lator and those obtained with surrogates is based on an er-
ror measure composed as the geometric mean of the relative
root mean square errors (RMSEs) of each variable i using the
variable’s maximum at a given time step as a norm:

Errort = exp

 1
m

m∑
i

ln

√
1
n

∑n
j (refi,j − predi,j )2

maxt (predi)

 , (3)

where m is the number of variables to compare, n the grid
dimension, and t the particular time step in which the error
is computed.

In this work the datasets used for training the surrogates
are obtained directly by storing all calls to the full-physics
simulator and its responses in the reference coupled reactive
transport simulations, possibly limited to a given simulation
time. This way of proceeding is considered more practical
than e.g. an a priori sampling of a given parameter space;
the bounds of the parameter space are defined by the ranges
of the input/output variables occurring in the reference cou-
pled simulations. This strategy mimics the problem of want-
ing to train surrogates directly at runtime during the coupled
simulations. Furthermore, an a priori statistical sampling of
parameter space, in the absence of restrictions based on the
physical relationships between the variables, would include
unphysical and irrelevant input combinations. By employing
only the input/outputs tables actually required by the full-
physics simulations, this issue is automatically solved; how-
ever, the resulting datasets will be generally skewed, multi-
modal, and highly inhomogeneously distributed within the
parameter space, with highly dense samples in some regions
and even larger empty ones.
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2.4 Hierarchical coupling of chemistry

In this work we consider only a sequential non-iterative ap-
proach (SNIA) coupling scheme, meaning that the subpro-
cess flow, transport, and chemistry are solved numerically
one after another before advancing to the next simulation
step. For the sake of simplicity, we let the CFL condition (2)
for advection dictate the allowable time step for the coupled
simulations.

Replacing the time-consuming, equation-based numerical
simulator for geochemistry with an approximated but quick
surrogate introduces inaccuracies into the coupled simula-
tions. These may quickly propagate in space and time during
the coupled simulations and lead to ultimately incongruent
and unusable results.

A way to mitigate error propagation, and thus to reduce
the accuracy required of the surrogates, is represented by a
hierarchy of models used to compute chemistry at each time
step during the coupled simulations. The idea is to first ask
the surrogate for predictions, then identify implausible or un-
physical ones, and finally run the full-physics chemical sim-
ulator for the rejected ones. This way, the surrogate can be
tuned to capture the bulk of the training data with good ac-
curacy, and no particular attention needs to be paid to the
most difficult “corner cases”. For the highly non-linear sys-
tems usually encountered in geochemistry, this is of great ad-
vantage. In practice, however, there is still a need to have a
reliable and cheap error estimation of surrogate predictions
at runtime.

It is important to understand that the criteria employed to
accept or reject the surrogate predictions depend strictly on
the architecture of the multivariate surrogate and on the ac-
tual regression method used. Methods such as kriging offer
error variances based on the distance of the target estimation
point from the data used for estimation for a given variogram
model. However, in the general case, any error estimation
first requires the training and then the evaluation at runtime of
a second “hidden” model. Both steps can be time-consuming;
furthermore, in the general case one can only guarantee that
the error is expected – in a probabilistic sense – to be lower
than a given threshold.

In a completely data-driven surrogate approach whereby
each of the output variables is independently approximated
by a different multivariate regressor, checking mass conser-
vation is a very inexpensive way to estimate the reliability of
a given surrogate prediction, since it only requires the evalua-
tion of linear combinations across predictors and predictions.
Other constraints may be added that are suited to the chem-
ical problem at hand, such as charge balance. However, we
only use mass balance in the present work. Figure 1 illus-
trates this simple hierarchical coupling schematically.

For the chemical benchmark of Sect. 2.2, three mass bal-
ance equations can be written, one for each element C, Ca,
and Mg, accounting for the stoichiometry of the minerals’
brute formulas. If a surrogate prediction exceeds a given pre-

Figure 1. Schematic view of hierarchical sequential non-iterative
coupling. The decision on whether or not to accept the predictions
of a multiple multivariate surrogate is based on computing the mass
balances for the three elements forming dolomite and calcite before
and after reaction and computing their mean absolute error. If this
error exceeds a given threshold, the more expensive equation-based
geochemical simulator is run instead.

determined tolerance on the mean absolute error of the bal-
ance equations, that particular prediction is rejected and a
more expensive full-physics simulation is run instead.

This approach moderates the need for extremely accurate
regressions, especially in instances of non-linear behaviour
of the chemical models, for example when a mineral pre-
cipitates for the first time or when it is completely depleted,
which are hard things for regressors to capture. However, the
number of rejected simulations must be low to produce rele-
vant speedups; it is effectively a trade-off between the accu-
racy of the surrogates (and the effort and time which go into
it) and the speedup achieved in coupled simulations.

3 Fully data-driven approach

The first approach is a completely general one that is fully
data-driven and thus process-agnostic: it can be employed
for any kind of numerical model or process which can be ex-
pressed in the form of input and output tables. In our case, the
tables produced by the geochemical subprocess during the
reference coupled simulations are used to train seven multi-
ple multivariate regressors, one for each output.

The reference simulations, and hence the dataset for train-
ing the surrogate, are fully coupled simulations on grids 50,
100, and 200 with a fixed time step of 210 s run until 33 600 s
or else 161 total coupling iterations. The time step is cho-
sen to result in ν = 1 in the largest grid. As previously noted,
these simulations are then not comparable among themselves
due to the introduction of numerical dispersion in the lower-
resolution grids; however, from the point of view of geo-
chemical processes, this strategy has the advantage of spread-
ing the sampling of the parameter space for the chemical sub-
process, while eliminating the time step as a free variable. In
this setting, one single trained surrogate can be employed on
all grids and time steps.

Instead of the usual random split of the dataset into train-
ing and testing subsets, which is customary in the machine-
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learning community, we retained only the data resulting from
the first 101 iterations for training the surrogates and evalu-
ated the resulting reactive transport simulations until itera-
tion 161, during which the geochemical surrogate is faced
with 60 iterations on unseen or “out-of-sample” geochemi-
cal data. The training dataset comprises tables with 13 959
unique rows or input combinations. All simulations, includ-
ing the reference and those with surrogates, are run on a sin-
gle CPU core. No further filtering, i.e. elimination of data
points very near each other, has been performed. The data
do not display clear collinearity, which is expected with geo-
chemistry being a non-linear process.

The choice of the regressor for each output is actually arbi-
trary, and nothing forbids having different regressors for each
variables or even different regressors in different regions of
parameter space of each variable. Without going into detail
on all the kinds of algorithms that we tested, we found that
decision-tree-based methods such as random forest and their
recent gradient boosting evolutions appear to be the most
flexible and successful for our purposes. Their edge can in
our opinion be resumed by (1) implicit feature selection by
construction, meaning that the algorithm automatically rec-
ognizes which input variables are most important for the es-
timation of the output. Note that colinearity is usually not
an issue for geochemical simulations; (2) there is no need
for standardization (e.g. centring, scaling) of inputs and out-
puts, which helps preserve the physical meaning of variables.
(3) They are fairly quick to train with sensible hyperparame-
ter defaults, although they are slower to evaluate than neural
networks. (4) There is robustness, since they revert to mean
value when evaluating points outside of training data.

Points (2)–(4) cannot be overlooked. Data normalization
or standardization techniques, also called “preprocessing”
in machine-learning lingo, are redundant with decision-tree-
based algorithms, whereas they have a significant impact on
results and training efficiency with other regressors such as
support vector machines and artificial neural networks. The
distributions displayed by the variables in the geochemical
data are extremely variable and cannot be assumed to be
uniform, Gaussian, or lognormal in general. We found that
the Tweedie distribution is suited to reproduce many of the
variables in the training dataset. The Tweedie distribution is
a special case of exponential dispersion models introduced
by Tweedie (1984) and thoroughly described by Jørgensen
(1987), which finds application in many actuarial and sig-
nal processing processes (Hassine et al., 2017). A random
variable Y is a Tweedie distribution of parameter p if Y ≥ 0,
E[Y ] = µ and Var(Y )= σ 2µp. This means that it is a fam-
ily depending on p: Gaussian if p = 0, Poisson if p = 1,
gamma if p = 2, and inverse Gaussian if p = 3. The inter-
esting case, which is normally referred to when using the
term “Tweedie”, is when 1≤ p ≤ 2. This distribution rep-
resents positive variables with positive mass at zero, mean-
ing that this distribution preserves the “physical meaning” of
zero. It is intuitively an important property when modelling

solute concentrations and mineral abundances: the geochem-
ical system solved by the full-physics simulator is radically
different when e.g. a mineral is present or not.

Extreme gradient boosting or XGBoost (Chen and
Guestrin, 2016) is a decision-tree-based algorithm which has
enjoyed enormous success in the machine-learning commu-
nity in recent years. Out of the box, it has the capability to
perform regression of Tweedie variables and is extremely
efficient in both training and prediction. The package has
support for GPU computing but we did not use it in the
present work. Using the target Tweedie regression with fixed
p = 1.2, max tree depth of 20, the default η = 0.3, and 1000
boosting iterations with early stopping at 50, all results in the
dataset are reproduced with great accuracy and the training
itself takes around 20 s for all seven outputs on our worksta-
tion using four CPU cores. Contrary to the expectation and
specific statements in the software package, we found that
scaling – not re-centring – the labels by their maximum value
divided by 1× 10−5, thus spreading the range of the scaled
outputs from 0 to 105, greatly improves the accuracy. We
did not pursue a more in-depth analysis of this issue, since
it probably depends on this specific software, or on the small
values of the labels for our geochemical problem. The default
evaluation metric when performing Tweedie regression is the
root mean squared log error:

rmsle=

√
1
N
[ln(pred+ 1)− ln(label+ 1)]2. (4)

In the previous section it was claimed that in the framework
of hierarchical coupling there is no practical need to further
refine the regressions. This could be achieved by hyperpa-
rameter tuning and by using a different and more adapted
probability distribution for each label including proper fitting
of parameter p for the Tweedie variables. While this would
of course be beneficial, we proceed now by plugging such a
rough surrogate into the reactive transport simulations. The
coupled simulations with surrogates are performed on the
three grids for 161 iterations, setting the tolerance on mass
balance to 10−5, 10−6, and only relying on the surrogate,
meaning with no call to PHREEQC even if a large mass bal-
ance error is detected.

In Fig. 2 the variable profiles for grid 100 and tolerance
10−6 are exemplarily displayed at two different time steps in
iteration 101, which is the last one within the training dataset,
and at the end of the simulation time after 60 coupling itera-
tions in “unseen territory” for the surrogates. The accuracy of
the surrogate simulations is excellent for the 101st iteration,
but by iteration 161, while still acceptable, some discrepan-
cies start to show.

The number of rejected surrogate responses at each time
step does not remain constant during the simulations but in-
creases steadily. An overview of all the simulations is given
in Fig. 3 (top frame). The more stringent mass balance toler-
ance of 10−6 (solid lines) obviously rejects many more sim-
ulations, which goes hand in hand with the excellent accu-
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Figure 2. Profiles of total concentrations, pH, and minerals for ref-
erence and hierarchical coupling 1D simulations with tolerance on
mass balance error set to 10−6 for grid 100. The axes are anno-
tated in these figures: all aqueous and mineral concentrations are
given in terms of moles per kilogramme of solvent, while pH in its
adimensional units. (a) The last in-sample time step; (b) the last
simulated time step after 60 iterations for which the surrogate was
out-of-sample.

racy of the results (Fig. 3, bottom panel; error measured with
formula of Eq. 3 excluding pH). It was expected, and it is
demonstrated by the evaluation, that starting with the first
out-of-sample time step the accuracy of the surrogates sig-
nificantly drops, which triggers a steep increase in rejected
predictions and conversely of calls to PHREEQC. The hier-
archical coupling ensures that the errors in the surrogate sim-
ulations do not follow the same steep increase, but from this
moment on there is a loss of computational efficiency visi-
ble in the simulations with tolerance 10−6, which makes all
the surrogate predictions actually useless in terms of speedup
even before making them so inaccurate to be useless. It is
also apparent from the error panel in Fig. 3 (bottom) that er-
rors introduced in the coupled simulations at early time steps
propagate through the rest of the simulations so that the over-
all discrepancy between reference and surrogate simulations
also steadily increases. Note that this “diverging behaviour”
also tends to bring the geochemistry out-of-sample in the
sense of seen vs. unseen geochemical data, since the training
data only comprise “physical” input combinations, but, due
to the introduced inaccuracies, we are asking the surrogate
for more and more predictions based on slightly “unphysi-
cal” input combinations. Having highly accurate surrogates
would hence also be beneficial in this regard.

It is difficult to discriminate “a priori” between acceptable
and unacceptable simulation results based on a threshold of
an error measure such as that of Eq. (3), which can be roughly
interpreted as “mean percentage error”. This is also a point
on which in our opinion further research is needed. Rely-
ing on the visualization of the surrogate simulation results
and the reference, we can summarize the tolerance on mass
balance of 10−6 (solid lines in Fig. 3) as producing accu-
rate coupled simulations, excellent accuracy within the time
steps of the training data, and good accuracy after the 60 out-
of-sample iterations. The tolerance of 10−5 and the simula-
tions based solely on surrogates produce acceptable accuracy
in-sample but unusable and rapidly diverging results out-of-
sample.

For the given chemical problem, the 10−6 tolerance on
mass balance could be relaxed, whereas the 10−5 is too op-
timistic. The optimal value, at least for the considered time
steps, lies between these two values.

The overall speedup – in terms of total wall-clock time of
the coupled simulations, thus also including CPU time used
for advection and all the overheads, although both are much
less computationally intensive than chemistry and therefore
termed pseudo-speedup – with respect to the reference sim-
ulations is summarized in Fig. 4. Here all 161 iterations,
including the out-of-sample ones, are considered. Pseudo-
speedup increases with grid size as expected. The accurate
10−6 simulations are not accelerated on grid 50 (pseudo-
speedup of 0.86), but they reach 1.33 on the 200 grid.

The surrogate-only speedup starts at around 2.6 for the
50 grid and reaches 4.2 for the 200 grid. Considering only
the first 101 iterations, the 10−6 simulations would achieve
speedup slightly larger than one already on the 50-element
grid and would be well over 2 on the 200 grid.

4 Surrogates based on geochemical knowledge

The fully data-driven approach presented above disregards
any domain knowledge or known physical relationships be-
tween variables besides those which are picked up automat-
ically by the multivariate algorithms operating on the in-
put/outputs in the training data.

We start a second approach by considering the actual
“true” degrees of freedom for the geochemical problem,
which is fully described by seven inputs and four outputs:
1calcite, 1dolomite, Cl, and pH. This means that we will
have to calculate back the changes in concentrations for C,
Ca, and Mg, risking a quicker propagation of errors if the
reaction rates of the minerals are incorrectly predicted but
honouring by construction the mass balance.

The reference simulations for this part are run with ν = 1
and thus without numerical dispersion on four different grids:
50, 100, 200, and 500 elements, respectively. This implies
that the simulation on grid 500 has 10 times more coupling
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Figure 3. Purely data-driven approach: evaluation of calls to full-physics simulator for the runs with hierarchical coupling for the three
discretizations at 50, 100, and 200 elements and of overall discrepancy between surrogate simulations and the reference. When the surrogate
enters the region of “unseen data”, its accuracy degrades significantly, which causes loss of efficiency rather than accuracy.

Figure 4. Overall pseudo-speedup (total wall-clock time) after 161
iterations for coupled simulations with hierarchical coupling and
only relying on the surrogate.

iterations than the 50 grid or, in other terms, that the allow-
able time step in grid 500 is 1 / 10 of that for grid 50.

A common way to facilitate the task of the regressors
by “injecting” physical knowledge into the learning task of
the algorithms is to perform feature engineering: this simply
means computing new variables defined by non-linear func-
tions of the original ones, which may give further insights
regarding multivariate dependencies, hidden conditions, or
relevant subsets of the original data.

For any geochemical problem involving dissolution or pre-
cipitation of minerals, each mineral’s saturation ratio (SR) or
its logarithm SI (saturation index) discriminates the direction
of the reaction. If SR> 1 (and thus SI> 0) the mineral is
oversaturated and precipitates; it is undersaturated and dis-

solves if SR< 1 (SI< 0) and SR= 1 (SI= 0) implies local
thermodynamic equilibrium. Writing the reaction of calcite
dissolution as

calcite+H+→ Ca+2
+HCO−3 , (5)

the law of mass action (LMA) relates, at equilibrium, the ac-
tivities of the species present in the equation. We conven-
tionally indicate activity with square brackets. For Eq. (5),
the LMA reads

Keq
Cc =

[
Ca+2]

eq · [HCO−3 ]eq

[H+]eq

=

Ca+2
eq ·HCO−3 eq

[H+]eq
· γCa+2γHCO−3

, (6)

where γ stands for the activity coefficient of subscripted
aqueous species. The solubility product Keq

Cc at equilibrium,
tabulated in thermodynamic databases, is a function of tem-
perature and pressure and defines the saturation ratio:

SRCc =
1

Keq
Cc

Ca+2
·HCO−3
[H+]

· γCa+2γHCO−3
. (7)

The estimation of the saturation ratio in Eq. (7) using the
elemental concentrations available in our training data is the
first natural feature engineering we can try. Hereby, a few
assumptions must be made.

Using total elemental concentrations as a proxy for species
activities implies neglecting the actual speciation to estimate
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the ion activity products, but also the difference between con-
centration and activity – true activity [H+] is known from the
pH. For the chemical problem at hand, as will be shown, it
is a viable approximation, but it will not be in the presence
of strong gradients of ionic strength or in general for more
complex or concentrated systems. An exception to this sim-
plification is required for dissolved carbon due to the well-
known buffer. In this case, given that the whole model is at
pH between 7 and 10, we may assume that two single species
dominate the dissolved carbon speciation: CO−2

3 and HCO−3 .
The relationship between the activities of those two species
is always kept at equilibrium in the PHREEQC models and
thus, up to the “perturbation” due to transport, also in our
dataset. This relationship is expressed by the reaction and the
corresponding law of mass action written in Eq. (8):

HCO−3 → CO−2
3 +H+⇒ Keq

carb =
CO−2

3 · [H
+
]

HCO−3
. (8)

The closure equation, expressing the approximation of total
carbon concentration as the sum of two species, gives us the
second equation for the two unknowns:

C= HCO−3 +CO−2
3 . (9)

Combining Eqs. 8 and 9, we get the estimation of dissolved
bicarbonate (the wide tilde indicates that it is an estima-
tion) from the variables’ total carbon and pH comprised in
our dataset and an externally calculated thermodynamic con-
stant:

H̃CO3 :=
C · [H+]

Keq
carb+ [H

+]
. (10)

Now we can approximate the theoretical calcite saturation
ratio S̃R

theor
Cc with the formula

S̃R
theor
Cc :=

Ca · H̃CO3

[H+] ·Keq
Cc
=

Ca ·C
Keq

Cc(K
eq
carb+ [H

+])
. (11)

The two thermodynamic quantities (at 25 ◦C and atmo-
spheric pressure) Keq

carb = 10−10.3288 and Keq
Cc = 10−2.00135

were computed with the CHNOSZ package for the R environ-
ment (Dick, 2019), but may also be derived with simple al-
gebraic calculations from e.g. the same PHREEQC database
employed in the reactive transport simulations.

Do these two newly defined variables, or “engineered fea-
tures” (the bicarbonate and calcite saturation ratio), actually
help to better understand and characterize our dataset? This
can be simply assessed by plotting the 1calcite against the
logarithm of S̃R

theor
Cc , which is the S̃I

theor
Cc (Fig. 5a, leftmost

panel, dataset from the reference simulations on grid 200,
which will be used from now on to illustrate the analysis
since it contains enough data points) in the data. While many
points remarkably lie on a smooth curve (coloured in black),
many others are scattered throughout the graph (in red). It is

easy to observe that those red points are either on the trivial
1calcite= 0 line, implying that calcite is undersaturated but
not present in the system so nothing happens, or the reaction
did not reach the amount which could have been expected
based on its initial undersaturation simply because calcite
has been completely depleted during the time step. All the
red points correspond in fact to simulations with calcite= 0
in the labels (results) dataset. The retained black points, how-
ever, belong to time steps in which the dissolution of calcite
is limited by kinetics and not by its initial amount, and they
can thus be used to estimate the reaction rate.

Figure 5a also displays a problem with the defined S̃R
theor
Cc :

its relationship is not bijective with the 1calcite. This means
that we should proceed now to split the data into two differ-
ent regions above and under the cusp (signalled by the blue
horizontal line). However, simply dropping the denominator
of Eq. (11) solves this problem to a large extent:

S̃RCc := Ca ·C. (12)

The centre panel in Fig. 5b shows the scatter plot of1calcite
versus the simplified S̃ICc. All points now lie on a smooth
curve, and the relation between the two variables is indeed
quite perfectly bijective, with the exception of points very
close to the 1calcite= 0 line, where they are more scat-
tered; but since those points also correspond to the small-
est amounts of reaction, we can deem this to be a success-
ful approximation. Note that dropping the denominator in
the definition of S̃RCc also means that this feature does not
reach 1 at equilibrium (and S̃ICc zero), which is clear observ-
ing the range of the x axis in panels (a) and (b) of Fig. 5.
This, however, has no practical consequence for this prob-
lem: calcite is always undersaturated or at equilibrium in the
benchmark, and we just defined a simple feature which is in
a bijective relationship with the amount of true dissolution in
the data. While it could be possible to derive an analytical
functional dependency between the observed amount of dis-
solved calcite and the estimated S̃ICc, for example by manip-
ulating the kinetic law, we opted to use a regressor instead.
The good bijectivity between the two variables means that
we should be able to regress the first using only the second.
In the rightmost panel of Fig. 5c the in-sample predictions of
a multivariate adaptive regression spline (MARS) model are
plotted in blue (Friedman, 1991, 1993), which are computed
through the earth R package (Milborrow, 2018) based only
on S̃ICc. The accuracy is already acceptable indeed; how-
ever, by including further predictors from the already avail-
able features, in this case pH, Ca, and Mg, a better regression
(in red) is achieved, improving the RMSE by more than a
factor of 2.

Before moving forward, two considerations are important.
First, the red points in Fig. 5a should not be used when try-
ing to estimate the rate of calcite dissolution, since they re-
sult from a steep and hidden non-linearity or discontinuity in
the underlying model. This is a typical example of data po-
tentially leading to overfitting in a machine-learning sense.
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Figure 5. (a) Scatter plot of1calcite vs. estimated S̃Itheor
Cc . The data points in red cannot be used to estimate the reaction rate from the dataset

since calcite is depleted within the simulation time step. Furthermore, the retained points are not in a bijective relationship with the1calcite,
with the blue horizontal line separating two regions where bijectivity is given. (b)1calcite versus the simplified S̃ICc: bijectivity is achieved.
(c) A MARS regressor is computed for the retained data points based solely on the estimated S̃ICc (in blue) and also using other predictors
to ameliorate the multivariate regression.

Secondly, this “filter” does not need to be applied at runtime
during coupled reactive transport simulations: it suffices to
correctly estimate the reaction rate given the initial state and
then ensure that calcite does not reach negative values.

More interesting and more demanding is the case of
dolomite, which firstly precipitates and then re-dissolves in
the benchmark simulations. In a completely analogous man-
ner as above we define its saturation ratio S̃RDol as

S̃RDol =
Mg ·Ca ·C2

[H+]2 ·Keq
Dol
, (13)

thus using the total elemental dissolved concentration of C
and with Keq

Dol = 103.647 resulting from the reaction

CaMg(CO3)2+ 2H+→ Ca+2
+Mg+2

+ 2HCO−3 . (14)

The theoretical value of Keq
Dol = 103.647 used for calculation

of S̃IDol does not discriminate the initially undersaturated
from the oversaturated samples (dashed vertical black line in
Fig. 6). The “offset” which would serve for a correct discrim-
ination is nothing other than the maximum value of S̃RDol re-
stricted to the region where 1dolomite≤ 0. We correspond-
ingly update the definition of S̃RDol:

S̃RDol =
Mg ·Ca ·C2

[H+]2 ·Keq
Dol
−max(S̃RDol|1dolomite≤0). (15)

Now we are guaranteed that the vertical line S̃RDol= 1
(or equivalently, S̃IDol= 0, plotted with a dashed blue line
in Fig. 6) correctly divides the parameter space into four dis-
tinct quadrants. Note that this offset emerges from the actual
considered data and depends on the perturbation of the con-
centrations due to transport and thus, in our simple advective
scheme, on the grid resolution through the time step. It fol-
lows that a different offset is expected for the other grids, and
a different learning for each grid is necessary.

Figure 6. Scatter plot of 1dolomite vs. estimated S̃IDol. The theo-
retical S̃IDol= 0 does not discriminate the initially undersaturated
from the oversaturated samples (dashed vertical black line) and
must be corrected with an apparent offset (blue dashed line). The
plot identifies three distinct regions in parameter space: initially su-
persaturated and precipitating dolomite (top right, green shading),
initially undersaturated and dissolving (bottom left, blue shading),
and points at which dolomite is initially undersaturated but ends up
precipitating (top left, orange shading).

The green-shaded top right quadrant points to dolomite
precipitation in initially supersaturated samples; the bottom
left blue-shaded quadrant contains solutions initially under-
saturated with respect to dolomite and, if present, dissolving.
The top left orange-shaded quadrant is the most problematic:
dolomite is initially undersaturated but, presumably due to
the concurring dissolution of calcite, it becomes supersatu-
rated during the time step and hence precipitates.

First of all, we note that the initial presence of calcite
is a perfect proxy for S̃IDol. If calcite is initially present in
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Figure 7. Regression of1dolomite vs. estimated S̃IDol for the cases
in which no calcite is initially present. The multivariate regressor
makes use of the predictors S̃RDol, pH, C, Cl, Mg, and dolomite.

points reached by the reactive magnesium chloride solution,
then dolomite precipitates. When calcite is completely de-
pleted, then dolomite starts dissolving again. The dissolution
of dolomite in the absence of calcite follows the same logic as
the dissolution of calcite above: a few points are scattered be-
tween the line 1dolomite= 0 and the envelope of points ly-
ing on a well-defined curve. These scattered points are again
those at which dolomite is depleted within the time step, so
they are excluded. For the remaining points, an XGBoost
regressor based on the predictors S̃IDol, pH, C, Cl, Mg, and
dolomite achieves excellent accuracy (Fig. 7) in reproducing
the observed 1dolomite.

The top right quadrant of Fig. 6, corresponding to the case
of dolomite precipitating while calcite is dissolving, cannot
be explained based only on the estimated S̃IDol since their
relationship is not surjective (Fig. 8a).

Here again we can use a piece of domain knowledge to
engineer a new feature to move forward. The Mg/Ca ratio
is often used to study the thermodynamics of dissolution of
calcite and precipitation of dolomite (Möller and De Lucia,
2020). Effectively, the occurring overall reaction that trans-
forms calcite into dolomite reads

2CaCO3+Mg+2
→ CaMg(CO3)2+Ca+2. (16)

By applying the law of mass action to Eq. (16), it is apparent
that its equilibrium constant is a function of the Mg/Ca ratio
(of its inverse in the form of Eq. 16). Plotting the 1dolomite
versus the initial Mg/Ca ratio, a particular ratio of 7.345 dis-
criminates between two distinct regions for this reaction. In-
cidentally, this splitting value corresponds to the highest ob-
served S̃RDol in the training data; again, as previously noted
for the offset of the estimated saturation index, this numer-
ical value depends on the considered grid and time step. In
the left-hand region we observe a smooth, quasi-linear de-
pendency of the amount of precipitated dolomite on initial

Mg/Ca. This is a simple bijective relationship to which we
can apply a simple monovariate regression. The amount of
precipitated dolomite is accurately predicted by a MARS re-
gressor using only Mg/Ca as a predictor.

The region on the right of the splitting ratio can be best
understood considering the fact that the precipitation of
dolomite is limited in this region by a concurrent amount
of calcite dissolution. The full-physics chemical solver iter-
atively finds the correct amounts of calcite dissolution and
dolomite precipitation while honouring both the kinetic laws
and all the other conditions for a geochemical DAE system
(mass action equations, electroneutrality, positive concentra-
tions, activity coefficients). We cannot reproduce such artic-
ulate and “interdependent” behaviour without knowing the
actual amount of dissolved calcite: we are forced here to em-
ploy the previously estimated 1calcite as a “new feature”
to estimate of the amount of dolomite precipitation, albeit
limited to this particular region of the parameter space. A
surprisingly simple expression, fortunately, captures this re-
lationship quite accurately (Fig. 9).

This implies of course that during coupled simulations first
the1calcite must be computed, and relying on this value, the
1dolomite can be further estimated.

The last parameter space region left to consider is the
orange-shaded, top left quadrant of Fig. 6. Here, although
dolomite is undersaturated at the beginning of the time step,
it still precipitates in the end, following the concurrent dis-
solution of calcite, which changes its saturation state. Since,
however, we already calculated the 1calcite, we can update
the concentrations of dissolved Ca and C of corresponding
amounts. One of these two concentrations, together with that
of Mg, will constitute a limiting factor for the precipitation
of dolomite. Hence, plotting the 1dolomite against the min-
imum value of these three concentrations at each point (C
must be divided by 2 for the stoichiometry of dolomite), we
obtain a piecewise linear relationship with limited non-linear
effects. A very simple regression is hence sufficient to cap-
ture the bulk of the “true model behaviour” for all these data
points (Fig. 10).

Now the behaviour of calcite and dolomite is fully un-
derstood and we dispose of a surrogate for both of them.
Among the remaining output variables, only pH needs to
be regressed: Cl is non-reactive, meaning that the surrogate
is the identity function. For pH, while it could be possible
to derive a simplified regression informed with geochemical
knowledge, we chose for simplicity to use the XGBoost re-
gressor.

Summarizing, we effectively designed a decision tree
based on domain knowledge, which enabled us to make sense
of the true data, to perform physically meaningful feature en-
gineering, and ultimately to define a surrogate model “trans-
lated” to the data domain (Fig. 11).

The training of this decision tree surrogate consists merely
of (1) computing the engineered features, (2) finding the ap-
parent offset for the S̃IDol, (3) finding the split value for the
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Figure 8. Precipitation of dolomite in the presence of calcite. (a) The relationship between1dolomite and its saturation ratio is not surjective.
(b) The Mg/Ca ratio perfectly discriminates two distinct regions in parameter space.

Figure 9. Regression of 1dolomite in the right-hand region of
Fig. 8b.

Figure 10. Piecewise linear regression for the orange-shaded top
left quadrant of Fig. 6 based on the limiting elemental concentration
after having considered calcite dissolution.

Mg/Ca ratio, and (4) performing six distinct regressions on
data subsets, three of which are monovariate and two that
use fewer predictors than the corresponding completely data-
driven counterparts. All of them, excluding pH, only use a
subset of the original training dataset. On our workstation,
this operation takes a few seconds. The resulting surrogate is
valid for the 1t of the corresponding training data.

To evaluate the performance of this surrogate approach, a
decision tree is trained separately for each grid (and hence
1t) using the reference time steps until 42 000 s, whereas the
coupled simulations are prolonged to 60 000 s so that at least
30 % of the simulation time is computed on unseen geochem-
ical data.

The top panel of Fig. 12 shows the results of the coupled
simulation for grid 50 using the surrogate trained on the same
data at the end of the iterations used for training. Discrepan-
cies with respect to the reference full-physics simulation are
already evident. The problem here is that the training dataset
is too small and the time step too large for the decision tree
surrogate to be accurate. However, nothing forbids the per-
formance of “inner iterations” for the chemistry using a sur-
rogate trained on a finer grid, which directly corresponds to
smaller 1t . For grid 50 (1t = 1066 s) we can hence use the
surrogate trained on grid 500 (1t = 106.6 s) just calling it
10 times within each coupling iterations. The bottom panel
of Fig. 12 displays the corresponding results.

The same problem affects grid 100, which also requires
the surrogate trained on grid 500, reiterated five times in this
case. Grids 200 and 500 are fine with their own reference
data, as can be seen in Fig. 13, this time displaying the end
of simulation time at 60 000 s.

In Fig. 14 the errors of the surrogate simulations (top
panel) and the overall pseudo-speedup after 60 000 s (bottom
panel) are summarized. While inaccuracies are indeed intro-
duced in the coupled simulations by the decision tree surro-
gate, crossing the out-of-sample boundary does not provoke
a steep increase in error. Even if the overall error is slightly
larger than the corresponding purely data-driven simulations
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Figure 11. Decision tree for the surrogate based on physical inter-
pretation of the training dataset. The engineered features are used
as splits and as predictors for different regressions depending on
the region of parameter space. The abbreviations “lm” and “pwl”
respectively stand for “linear model” and for “piecewise linear” re-
gression.

with 10−6 tolerance, the physics-based approach has the ma-
jor advantage of being much more robust when encountering
unseen data. Moreover, since no calls to PHREEQC are is-
sued at all during these simulations, the performance of the
coupled simulations will not degrade during the simulation
time. The physics-based surrogates achieve large pseudo-
speedups, starting with 2.7 for grid 50 and reaching 6.8 for
500 grid (Fig. 14, bottom panel).

Note that the decision tree approach has been implemented
in pure high-level R language (up to the calls to the regressors
XGBoost and earth, which are implemented in low-level
languages such as C/C++) and is not optimized. A better im-
plementation would further improve its performance, espe-
cially in the case in which repeated calls to the surrogate are
performed at each coupled iteration.

5 Discussion and future work

The results presented in this work devise some strategies
which can be exploited to speed up reactive transport simu-

Figure 12. Comparison of variable profiles for coupled simulations
using the decision tree approach versus the references at the end of
the time steps used for training for grid 50 (41 coupled iterations).
The axes are the same as in Fig. 2. (a) Decision tree trained on
the data from reference grid 50 (1t = 1066 s). (b) Surrogate sim-
ulations using a decision tree trained on grid 500 (1t = 106.6 s),
repeated 10 times for each coupling time step.

lations. The simplifications concerning the transport and the
coupling itself in the present work are obviously severe: sta-
tionary, incompressible, and isothermal flow; regular, homo-
geneous grids; pure advection with a dispersive full explicit
forward Euler scheme and constant time stepping that per-
tain to hydrodynamics. From the point of view of chemistry,
there is a lack of feedback on porosity and permeability, an
initially homogeneous medium, kinetic rates not depending
on reactive surfaces, and the presence of only two reacting
minerals. However, while it is still to be assessed how both
surrogate approaches will perform once removing these lim-
itations, a number of real-world problems already fall in the
complexity class captured by the benchmarks in this work:
for example, the modelling of laboratory flow-through re-
active transport experiments, which are usually performed
in controlled, simplified settings aimed at evaluating kinetic
rates, or permeability evolution following from mineral reac-
tions (Poonoosamy et al., 2020).

A fully data-driven approach, combined with a hierarchi-
cal coupling in which full-physics simulations are performed
only if surrogate predictions are found implausible, is feasi-
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Figure 13. Variable profiles after 60 000 s (simulation time) for grids 100, 200, and 500. The axes are the same as in Fig. 2.

Figure 14. (a) Errors of surrogate simulations with respect to refer-
ences. (b) Overall pseudo-speedup after 60 000 s.

ble and promises significant speedups for large-scale prob-
lems. The main advantage of this approach is that the same
“code infrastructure” can be used to replace any physical
process, not limited to geochemistry: it is completely gen-
eral, and it could be implemented in any multiphysics tool-
box to be used for any co-simulated process. The hierarchy
of models for process co-simulation is a vast research field
in itself. This idea has to our knowledge never been imple-
mented specifically for reactive transport, but it has been pro-
posed e.g. for particular problem settings in fluid dynamics
and elastomechanics (Altmann, 2013; Altmann and Heiland,
2015) as well as in the broader context of theoretical model
reduction and error control (Domschke et al., 2011). This,
however, is a fertile interdisciplinary research task, and it is
not difficult to foresee that significant progress in this area
will soon be required to facilitate and fully leverage the pow-

erful machine-learning algorithms already available in or-
der to speed up any complex, multiscale numerical simula-
tions. The coupling hierarchy implemented in this work can-
not be directly compared with the works cited above, since
it is merely based on a posteriori evaluation of plausibility
of geochemical simulations. Furthermore, it exploits redun-
dant regressions, which is suboptimal, albeit practical: in ef-
fects, regressing more variables than strictly necessary is not
much different than regressing the true independent variables
and their error models. Since the surrogate predictions are so
cheap compared to the full physics, it would be only slightly
beneficial to first interrogate the error model and then go di-
rectly to the full physics instead of computing all the surro-
gate predictions at once and checking them afterwards. Nev-
ertheless, several improvements can be implemented with re-
spect to the hierarchy presented in this work. The first would
be to add charge balance to the error check at runtime. For
different classes of chemical processes, other criteria may be
required. For example, a check on mass action laws can be
implemented for models requiring explicit speciation, like in
the simulations of radionuclide diffusion and sorption in stor-
age formations. Another one would be to actually eliminate
one or more redundant regressions and base the error check
on the accordance between the overlapping one. As an ex-
ample, one could regress the1dolomite,1calcite, and1Ca,
limiting the mass balance check to one element in practice.

In our opinion there is no point in discussing whether there
is one most suitable or most efficient regression algorithm.
This largely depends on the problem at hand and on the skills
of the modeller. While we rather focused on gradient boost-
ing decision tree regressors for the reasons briefly discussed
in Sect. 3, a consistent number of authors have successfully
applied artificial neural networks to a variety of geochemi-
cal problems and coupled simulations (Laloy and Jacques,
2019; Guérillot and Bruyelle, 2020; Prasianakis et al., 2020).
Transforming geochemistry – as for any other physical pro-
cess – in a pure machine-learning problem requires skills that
are usually difficult for geoscientists to acquire, and it fatally
overlooks domain knowledge that can be used to improve
at least the learning task, which will directly result in accu-
rate and robust predictions, as we demonstrated in Sect. 4.
Feature engineering based on known physical relationships
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and equations should be part of any machine-learning work-
flow anyway; building experience in this matter by devising
suitable strategies for a broad class of geochemical problems
is in our opinion much more profitable than trying to tune
overly complex black-box models of general applicability.
Nevertheless, the popularization of high-level programming
interfaces to generate and train such models, specifically ad-
dressing hyperparameter tuning with methods such as grid
search as well as randomized and Bayesian optimization,
mitigates the difficulty that a domain scientist faces when
dealing with these problems.

A purely data-driven approach has its own rights and
applications. As already noted, it is a completely process-
agnostic approach which can be implemented in any simu-
lator for any process. However, in the absence of physical
knowledge within the surrogate, the training data must cover
all the processes and the scenarios happening in the coupled
simulations beforehand. On-demand training and successive
incremental update of the surrogates at runtime during the
coupled simulations would mitigate this issue. This would
require a careful choice of the regressors, since not all of
them have this capability, and possibly a sophisticated load
balance distribution within the simulator, which is likely vi-
able only in the context of massive parallel computing. In
perspective, however, this is a feature that in our opinion
should be implemented in the numerical simulators. A sec-
ond issue, related to the first, is that a data-driven surrogate
trained on a specific chemical problem (here meaning initial
conditions, concentration of the injected solutions, mineral
abundances, time steps) is not automatically transferable to
different problem settings, even when, for example, only a
single kinetic constant is varied. Again, shaping the surro-
gate following the physical process to be simulated seems to
be the most straightforward way to overcome this issue here,
at least partially. One would in fact dispose of regressions
in specific parameter space regions which could be paramet-
rically varied following changes in underlying variables. A
typical example would be the temperature effect on kinetics,
for which the law is of Lasaga type: assuming negligible in-
fluence of temperature on a mineral’s equilibrium constant
and solutes activities, a surrogate expressing the reaction rate
at 25 ◦C can be transformed to another temperature by just
multiplying it by a factor derived from the Arrhenius term in
the original kinetic law.

It remains to be assessed whether and how it is possible
to generalize and automate the physics-based surrogate ap-
proach devised in Sect. 4 on geochemical problems of higher
complexity, i.e. with many minerals reacting. No claim of
optimality is made about the actual choice of engineered fea-
tures we made for this chemical benchmark: different fea-
tures could possibly explain the data even more simply and
thus the chemical process. The important part is the princi-
ple: identify relationships as bijective as possible between
input and output parameters, compartmentalized in sepa-
rated regions of parameter space, using features derived by

the governing equations. An automation of feature engineer-
ing based on stoichiometry of the considered reactions is a
straightforward extension, since it can be achieved by sim-
ply parsing the thermodynamic database. An automatic ap-
plication of the approach starting with a large number of en-
gineered features may originate forests of trees much like
the well-known random forest or gradient boosting algo-
rithms but specialized in geochemical models: a true hybrid
physics–AI model.

Also, the regressors which constitute the leaves of the deci-
sion tree in Fig. 11 are completely arbitrary and were selected
based on our own experience. A more in-depth breakdown of
the relationships between variables, for example analytical
expressions derived directly from the kinetic law, could re-
duce most or all regressions to simple statistical linear mod-
els, which would even further increase the interpretability of
the surrogate.

In this work fixed time stepping was used for all coupled
simulations. A partial extension to variable time stepping has
been devised with the inner iteration approach demonstrated
with the physics-informed decision tree surrogate: one can
recursively call a surrogate on itself, trained on fixed “train-
ing 1t” until reaching the “required 1t”. This is obviously
valid only for multiples of the training1t ; for non-multiples,
some further (non-linear!) interpolation between the inner it-
erations nearest to the required time step is required. A more
flexible and general approach would be treating the time step
as a free, independent, and non-negative variable. However,
this would require even larger training datasets and hence
training times. Assessing an optimal approach for variable
time stepping remains high priority for future work.

At the moment no conclusive statement can be made
about the general applicability of any surrogate approach to
the complex settings usually encountered in practice or the
achievable overall speedup – they are strictly too problem-
and implementation-dependent to cover them in a general
way.

From inhomogeneous irregular grids with transient flow
regimes to a highly variable initial spatial distribution of min-
eralogy and sharp gradients in ionic strengths, these are all
factors making the learning task more difficult, either be-
cause regression of many more variables (e.g. ionic strength
or even activity coefficients) becomes necessary or because
much more data are needed in order to obtain coverage of
parameter space of higher dimensionality. Embedding do-
main knowledge into the surrogate seems the most natural
way to counter this increase in difficulty. For the second is-
sue, the generation of training data, we believe that the sam-
pling strategy of parameter space used for training should be
further optimized. In the simple approach presented in this
work – also justified by the fact that we deal with small grids
– all the data from the reference simulations were considered,
with the only filtering being the removal of duplicated data
points. In these datasets many points are concentrated near
others, while other regions of parameter space are underrep-
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resented. In problems of increasing complexity and higher
dimensionality it becomes paramount to include only data
with high informative content in the training dataset to speed
up the learning phase. Note that if the training data are taken
from reference, true coupled simulations, we are guaranteed
that the sampling is always physically plausible – this is not
the case if we build the training dataset by pre-computing
geochemistry, for example, on a regularly sampled grid cov-
ering the whole parameter space. This approach can include
physically implausible parameter combinations, which may
introduce bias into the surrogate.

6 Conclusions

Employing surrogates to replace computationally intensive
geochemical calculations is a viable strategy to speed up re-
active transport simulations. A hierarchical coupling of geo-
chemical subprocesses, allowing for the recurrence of “full-
physics” simulations when surrogate predictions are not ac-
curate enough, is advantageous to mitigate the inevitable in-
accuracies introduced by the approximated surrogate solu-
tions. In the case of purely data-driven surrogates, which are
a completely general approach not limited to geochemistry,
regressors operate exclusively on input/output data oblivious
to known relationships. Here, redundant information content
can be effectively employed to obtain a cheap estimation of
the plausibility of surrogate predictions at runtime by check-
ing the errors on mass balance. This estimation works well,
at least for the presented geochemical benchmark. Our tests
show the consistent advantage of decision-tree-based regres-
sion algorithms, especially belonging to the gradient boost-
ing family.

Feature engineering based on domain knowledge, i.e. the
actual governing equations for the chemical problem as
solved by the full-physics simulator, can be used to con-
struct a surrogate approach in which the learning task is enor-
mously reduced. The strategy consists of partitioning the pa-
rameter space based on the engineered features and looking
for bijective relationships within each region. This approach
reduces both the number of distinct required multivariate pre-
dictions and the dimension of the training dataset upon which
each regressor must operate. Algorithmically it can be repre-
sented by a decision tree and has proved to be both accu-
rate and robust, being equipped to handle unseen data and
less sensible to a sparse training dataset, since it embeds and
exploits knowledge about the modelled process. Further re-
search is required in order to generalize it and to automate it,
to deal with more complex chemical problems, and to adapt it
to specific needs such as sensitivity and uncertainty analysis.

Both approaches constitute non-mutually exclusive valid
strategies in the arsenal of modellers dealing with the over-
whelmingly CPU-expensive reactive transport simulations
required by present-day challenges in subsurface utilization.
In particular, we are persuaded that hybrid AI–physics mod-

els will offer the decisive computational advantage needed
to overcome current limitations of classical equation-based
numerical modelling.
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