Articles | Volume 13, issue 12
https://doi.org/10.5194/gmd-13-6149-2020
https://doi.org/10.5194/gmd-13-6149-2020
Model description paper
 | 
03 Dec 2020
Model description paper |  | 03 Dec 2020

A spatiotemporal weighted regression model (STWR v1.0) for analyzing local nonstationarity in space and time

Xiang Que, Xiaogang Ma, Chao Ma, and Qiyu Chen

Related authors

OpenMindat v1.0.0 R package: A machine interface to Mindat open data to facilitate data-intensive geoscience discoveries
Xiang Que, Jiyin Zhang, Weilin Chen, Jolyon Ralph, and Xiaogang Ma
EGUsphere, https://doi.org/10.5194/egusphere-2024-1141,https://doi.org/10.5194/egusphere-2024-1141, 2024
Short summary
Locality-based 3-D multiple-point statistics reconstruction using 2-D geological cross sections
Qiyu Chen, Gregoire Mariethoz, Gang Liu, Alessandro Comunian, and Xiaogang Ma
Hydrol. Earth Syst. Sci., 22, 6547–6566, https://doi.org/10.5194/hess-22-6547-2018,https://doi.org/10.5194/hess-22-6547-2018, 2018
Short summary

Related subject area

Earth and space science informatics
The effect of lossy compression of numerical weather prediction data on data analysis: a case study using enstools-compression 2023.11
Oriol Tintó Prims, Robert Redl, Marc Rautenhaus, Tobias Selz, Takumi Matsunobu, Kameswar Rao Modali, and George Craig
Geosci. Model Dev., 17, 8909–8925, https://doi.org/10.5194/gmd-17-8909-2024,https://doi.org/10.5194/gmd-17-8909-2024, 2024
Short summary
GNNWR: an open-source package of spatiotemporal intelligent regression methods for modeling spatial and temporal nonstationarity
Ziyu Yin, Jiale Ding, Yi Liu, Ruoxu Wang, Yige Wang, Yijun Chen, Jin Qi, Sensen Wu, and Zhenhong Du
Geosci. Model Dev., 17, 8455–8468, https://doi.org/10.5194/gmd-17-8455-2024,https://doi.org/10.5194/gmd-17-8455-2024, 2024
Short summary
Random forests with spatial proxies for environmental modelling: opportunities and pitfalls
Carles Milà, Marvin Ludwig, Edzer Pebesma, Cathryn Tonne, and Hanna Meyer
Geosci. Model Dev., 17, 6007–6033, https://doi.org/10.5194/gmd-17-6007-2024,https://doi.org/10.5194/gmd-17-6007-2024, 2024
Short summary
An improved global pressure and zenith wet delay model with optimized vertical correction considering the spatiotemporal variability in multiple height-scale factors
Chunhua Jiang, Xiang Gao, Huizhong Zhu, Shuaimin Wang, Sixuan Liu, Shaoni Chen, and Guangsheng Liu
Geosci. Model Dev., 17, 5939–5959, https://doi.org/10.5194/gmd-17-5939-2024,https://doi.org/10.5194/gmd-17-5939-2024, 2024
Short summary
kNNDM CV: k-fold nearest-neighbour distance matching cross-validation for map accuracy estimation
Jan Linnenbrink, Carles Milà, Marvin Ludwig, and Hanna Meyer
Geosci. Model Dev., 17, 5897–5912, https://doi.org/10.5194/gmd-17-5897-2024,https://doi.org/10.5194/gmd-17-5897-2024, 2024
Short summary

Cited articles

Akaike, H.: Information theory and an extension of the maximum likelihood principle, in: Selected papers of hirotugu akaike, Springer, 1998. 
Akaike, H.: Maximum likelihood identification of Gaussian autoregressive moving average models, Biometrika, 60, 255–265, 1973. 
Atkinson, P. M., German, S. E., Sear, D. A., and Clark, M. J.: Exploring the relations between riverbank erosion and geomorphological controls using geographically weighted logistic regression, Geogr. Anal., 35, 58–82, 2003. 
Bowman, A. W.: An alternative method of cross-validation for the smoothing of density estimates, Biometrika, 71, 353–360, 1984. 
Bowen, G.: Waterisotopes Database, available at: https://wateriso.utah.edu/waterisotopes/pages/spatial_db/SPATIAL_DB.html, last access: 13 October 2019. 
Download
Short summary
This paper presents a spatiotemporal weighted regression (STWR) model for exploring nonstationary spatiotemporal processes in nature and socioeconomics. A value change rate is introduced in the temporal kernel, which presents significant model fitting and accuracy in both simulated and real-world data. STWR fully incorporates observed data in the past and outperforms geographic temporal weighted regression (GTWR) and geographic weighted regression (GWR) models in several experiments.