Articles | Volume 13, issue 12
Model description paper
03 Dec 2020
Model description paper |  | 03 Dec 2020

A spatiotemporal weighted regression model (STWR v1.0) for analyzing local nonstationarity in space and time

Xiang Que, Xiaogang Ma, Chao Ma, and Qiyu Chen

Related authors

Locality-based 3-D multiple-point statistics reconstruction using 2-D geological cross sections
Qiyu Chen, Gregoire Mariethoz, Gang Liu, Alessandro Comunian, and Xiaogang Ma
Hydrol. Earth Syst. Sci., 22, 6547–6566,,, 2018
Short summary

Related subject area

Earth and space science informatics
SHAFTS (v2022.3): a deep-learning-based Python package for simultaneous extraction of building height and footprint from sentinel imagery
Ruidong Li, Ting Sun, Fuqiang Tian, and Guang-Heng Ni
Geosci. Model Dev., 16, 751–778,,, 2023
Short summary
Bayesian atmospheric correction over land: Sentinel-2/MSI and Landsat 8/OLI
Feng Yin, Philip E. Lewis, and Jose L. Gómez-Dans
Geosci. Model Dev., 15, 7933–7976,,, 2022
Short summary
Twenty-five years of the IPCC Data Distribution Centre at the DKRZ and the Reference Data Archive for CMIP data
Martina Stockhause and Michael Lautenschlager
Geosci. Model Dev., 15, 6047–6058,,, 2022
Short summary
Effectiveness and computational efficiency of absorbing boundary conditions for full-waveform inversion
Daiane Iglesia Dolci, Felipe A. G. Silva, Pedro S. Peixoto, and Ernani V. Volpe
Geosci. Model Dev., 15, 5857–5881,,, 2022
Short summary
LAND-SUITE V1.0: a suite of tools for statistically based landslide susceptibility zonation
Mauro Rossi, Txomin Bornaetxea, and Paola Reichenbach
Geosci. Model Dev., 15, 5651–5666,,, 2022
Short summary

Cited articles

Akaike, H.: Information theory and an extension of the maximum likelihood principle, in: Selected papers of hirotugu akaike, Springer, 1998. 
Akaike, H.: Maximum likelihood identification of Gaussian autoregressive moving average models, Biometrika, 60, 255–265, 1973. 
Atkinson, P. M., German, S. E., Sear, D. A., and Clark, M. J.: Exploring the relations between riverbank erosion and geomorphological controls using geographically weighted logistic regression, Geogr. Anal., 35, 58–82, 2003. 
Bowman, A. W.: An alternative method of cross-validation for the smoothing of density estimates, Biometrika, 71, 353–360, 1984. 
Bowen, G.: Waterisotopes Database, available at:, last access: 13 October 2019. 
Short summary
This paper presents a spatiotemporal weighted regression (STWR) model for exploring nonstationary spatiotemporal processes in nature and socioeconomics. A value change rate is introduced in the temporal kernel, which presents significant model fitting and accuracy in both simulated and real-world data. STWR fully incorporates observed data in the past and outperforms geographic temporal weighted regression (GTWR) and geographic weighted regression (GWR) models in several experiments.