Articles | Volume 12, issue 7
https://doi.org/10.5194/gmd-12-2837-2019
https://doi.org/10.5194/gmd-12-2837-2019
Model description paper
 | 
11 Jul 2019
Model description paper |  | 11 Jul 2019

r.sim.terrain 1.0: a landscape evolution model with dynamic hydrology

Brendan Alexander Harmon, Helena Mitasova, Anna Petrasova, and Vaclav Petras

Related authors

AUTOMATED LAND COVER CHANGE DETECTION THROUGH RAPID UAS UPDATES OF DIGITAL SURFACE MODELS
C. T. White, A. Petrasova, W. Reckling, and H. Mitasova
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLII-3-W11, 155–159, https://doi.org/10.5194/isprs-archives-XLII-3-W11-155-2020,https://doi.org/10.5194/isprs-archives-XLII-3-W11-155-2020, 2020
PROCESSING UAV AND LIDAR POINT CLOUDS IN GRASS GIS
V. Petras, A. Petrasova, J. Jeziorska, and H. Mitasova
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLI-B7, 945–952, https://doi.org/10.5194/isprs-archives-XLI-B7-945-2016,https://doi.org/10.5194/isprs-archives-XLI-B7-945-2016, 2016
OPEN SOURCE APPROACH TO URBAN GROWTH SIMULATION
A. Petrasova, V. Petras, D. Van Berkel, B. A. Harmon, H. Mitasova, and R. K. Meentemeyer
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLI-B7, 953–959, https://doi.org/10.5194/isprs-archives-XLI-B7-953-2016,https://doi.org/10.5194/isprs-archives-XLI-B7-953-2016, 2016
TANGIBLE LANDSCAPE: COGNITIVELY GRASPING THE FLOW OF WATER
B. A. Harmon, A. Petrasova, V. Petras, H. Mitasova, and R. K. Meentemeyer
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLI-B2, 647–653, https://doi.org/10.5194/isprs-archives-XLI-B2-647-2016,https://doi.org/10.5194/isprs-archives-XLI-B2-647-2016, 2016

Related subject area

Hydrology
STORM v.2: A simple, stochastic rainfall model for exploring the impacts of climate and climate change at and near the land surface in gauged watersheds
Manuel F. Rios Gaona, Katerina Michaelides, and Michael Bliss Singer
Geosci. Model Dev., 17, 5387–5412, https://doi.org/10.5194/gmd-17-5387-2024,https://doi.org/10.5194/gmd-17-5387-2024, 2024
Short summary
Fluvial flood inundation and socio-economic impact model based on open data
Lukas Riedel, Thomas Röösli, Thomas Vogt, and David N. Bresch
Geosci. Model Dev., 17, 5291–5308, https://doi.org/10.5194/gmd-17-5291-2024,https://doi.org/10.5194/gmd-17-5291-2024, 2024
Short summary
RoGeR v3.0.5 – a process-based hydrological toolbox model in Python
Robin Schwemmle, Hannes Leistert, Andreas Steinbrich, and Markus Weiler
Geosci. Model Dev., 17, 5249–5262, https://doi.org/10.5194/gmd-17-5249-2024,https://doi.org/10.5194/gmd-17-5249-2024, 2024
Short summary
Coupling a large-scale glacier and hydrological model (OGGM v1.5.3 and CWatM V1.08) – towards an improved representation of mountain water resources in global assessments
Sarah Hanus, Lilian Schuster, Peter Burek, Fabien Maussion, Yoshihide Wada, and Daniel Viviroli
Geosci. Model Dev., 17, 5123–5144, https://doi.org/10.5194/gmd-17-5123-2024,https://doi.org/10.5194/gmd-17-5123-2024, 2024
Short summary
An open-source refactoring of the Canadian Small Lakes Model for estimates of evaporation from medium-sized reservoirs
M. Graham Clark and Sean K. Carey
Geosci. Model Dev., 17, 4911–4922, https://doi.org/10.5194/gmd-17-4911-2024,https://doi.org/10.5194/gmd-17-4911-2024, 2024
Short summary

Cited articles

Barton, C. M., Ullah, I., and Mitasova, H.: Computational Modeling and Neolithic Socioecological Dynamics: a Case Study from Southwest Asia, Am. Antiquity, 75, 364–386, available at: http://www.jstor.org/stable/25766199 (last access: 3 July 2019), 2010. a, b
Bechet, J., Duc, J., Loye, A., Jaboyedoff, M., Mathys, N., Malet, J.-P., Klotz, S., Le Bouteiller, C., Rudaz, B., and Travelletti, J.: Detection of seasonal cycles of erosion processes in a black marl gully from a time series of high-resolution digital elevation models (DEMs), Earth Surf. Dynam., 4, 781–798, https://doi.org/10.5194/esurf-4-781-2016, 2016. a
Braun, J. and Sambridge, M.: Modelling landscape evolution on geological time scales: a new method based on irregular spatial discretization, Basin Res., 9, 27–52, https://doi.org/10.1046/j.1365-2117.1997.00030.x, 1997. a
Brown, L. C. and Foster, G. R.: Storm Erosivity Using Idealized Intensity Distributions, Transactions of the American Society of Agricultural Engineers, 30, 0379–0386, https://doi.org/10.13031/2013.31957, 1987. a, b
Coulthard, T. J., Macklin, M. G., and Kirkby, M. J.: A cellular model of Holocene upland river basin and alluvial fan evolution, Earth Surf. Proc. Land., 27, 269–288, https://doi.org/10.1002/esp.318, 2002. a
Download
Short summary
The numerical model, r.sim.terrain, simulates how overland flows of water and sediment shape topography over short periods of time. We tested the model by comparing runs of the simulation against a time series of airborne lidar surveys for our study landscape. Through these tests, we demonstrated that the model can simulate gully evolution including processes such as channel incision, channel widening, and the development of scour pits, rills, and depositional ridges.