Articles | Volume 12, issue 4
https://doi.org/10.5194/gmd-12-1267-2019
https://doi.org/10.5194/gmd-12-1267-2019
Model description paper
 | Highlight paper
 | 
03 Apr 2019
Model description paper | Highlight paper |  | 03 Apr 2019

Terrainbento 1.0: a Python package for multi-model analysis in long-term drainage basin evolution

Katherine R. Barnhart, Rachel C. Glade, Charles M. Shobe, and Gregory E. Tucker

Related authors

The Influence of Large Woody Debris on Post-Wildfire Debris Flow Sediment Storage
Francis K. Rengers, Luke A. McGuire, Katherine R. Barnhart, Ann M. Youberg, Daniel Cadol, Alexander N. Gorr, Olivia Hoch, Rebecca Beers, and Jason W. Kean
EGUsphere, https://doi.org/10.5194/egusphere-2022-1398,https://doi.org/10.5194/egusphere-2022-1398, 2022
Short summary
Steady-state forms of channel profiles shaped by debris-flow and fluvial processes
Luke A. McGuire, Scott W. McCoy, Odin Marc, William Struble, and Katherine R. Barnhart
Earth Surf. Dynam. Discuss., https://doi.org/10.5194/esurf-2022-47,https://doi.org/10.5194/esurf-2022-47, 2022
Revised manuscript under review for ESurf
Short summary
CSDMS: a community platform for numerical modeling of Earth surface processes
Gregory E. Tucker, Eric W. H. Hutton, Mark D. Piper, Benjamin Campforts, Tian Gan, Katherine R. Barnhart, Albert J. Kettner, Irina Overeem, Scott D. Peckham, Lynn McCready, and Jaia Syvitski
Geosci. Model Dev., 15, 1413–1439, https://doi.org/10.5194/gmd-15-1413-2022,https://doi.org/10.5194/gmd-15-1413-2022, 2022
Short summary
Short communication: Landlab v2.0: a software package for Earth surface dynamics
Katherine R. Barnhart, Eric W. H. Hutton, Gregory E. Tucker, Nicole M. Gasparini, Erkan Istanbulluoglu, Daniel E. J. Hobley, Nathan J. Lyons, Margaux Mouchene, Sai Siddhartha Nudurupati, Jordan M. Adams, and Christina Bandaragoda
Earth Surf. Dynam., 8, 379–397, https://doi.org/10.5194/esurf-8-379-2020,https://doi.org/10.5194/esurf-8-379-2020, 2020
Short summary
The SPACE 1.0 model: a Landlab component for 2-D calculation of sediment transport, bedrock erosion, and landscape evolution
Charles M. Shobe, Gregory E. Tucker, and Katherine R. Barnhart
Geosci. Model Dev., 10, 4577–4604, https://doi.org/10.5194/gmd-10-4577-2017,https://doi.org/10.5194/gmd-10-4577-2017, 2017
Short summary

Related subject area

Hydrology
Continental-scale evaluation of a fully distributed coupled land surface and groundwater model, ParFlow-CLM (v3.6.0), over Europe
Bibi S. Naz, Wendy Sharples, Yueling Ma, Klaus Goergen, and Stefan Kollet
Geosci. Model Dev., 16, 1617–1639, https://doi.org/10.5194/gmd-16-1617-2023,https://doi.org/10.5194/gmd-16-1617-2023, 2023
Short summary
Evaluating a global soil moisture dataset from a multitask model (GSM3 v1.0) with potential applications for crop threats
Jiangtao Liu, David Hughes, Farshid Rahmani, Kathryn Lawson, and Chaopeng Shen
Geosci. Model Dev., 16, 1553–1567, https://doi.org/10.5194/gmd-16-1553-2023,https://doi.org/10.5194/gmd-16-1553-2023, 2023
Short summary
SERGHEI (SERGHEI-SWE) v1.0: a performance-portable high-performance parallel-computing shallow-water solver for hydrology and environmental hydraulics
Daniel Caviedes-Voullième, Mario Morales-Hernández, Matthew R. Norman, and Ilhan Özgen-Xian
Geosci. Model Dev., 16, 977–1008, https://doi.org/10.5194/gmd-16-977-2023,https://doi.org/10.5194/gmd-16-977-2023, 2023
Short summary
A simple, efficient, mass-conservative approach to solving Richards' equation (openRE, v1.0)
Andrew M. Ireson, Raymond J. Spiteri, Martyn P. Clark, and Simon A. Mathias
Geosci. Model Dev., 16, 659–677, https://doi.org/10.5194/gmd-16-659-2023,https://doi.org/10.5194/gmd-16-659-2023, 2023
Short summary
Customized deep learning for precipitation bias correction and downscaling
Fang Wang, Di Tian, and Mark Carroll
Geosci. Model Dev., 16, 535–556, https://doi.org/10.5194/gmd-16-535-2023,https://doi.org/10.5194/gmd-16-535-2023, 2023
Short summary

Cited articles

Ahnert, F.: Brief description of a comprehensive three-dimensional process-response model of landform development, Z. Geomorfol., Supplementband, 25, 29–49, 1976.
Andrews, D. J. and Bucknam, R. C.: Fitting degradation of shoreline scarps by a nonlinear diffusion model, J. Geophys. Res., 92, 12857–12867, https://doi.org/10.1029/JB092iB12p12857, 1987.
Andrews, D. J. and Hanks, T. C.: Scarp degraded by linear diffusion: Inverse solution for age, J. Geophys. Res., 90, 10193–10208, https://doi.org/10.1029/JB090iB12p10193, 1985.
Attal, M., Tucker, G. E., Whittaker, A. C., Cowie, P. A., and Roberts, G. P.: Modeling fluvial incision and transient landscape evolution: Influence of dynamic channel adjustment, J. Geophys. Res., 113, F03013, https://doi.org/10.1029/2007JF000893, 2008.
Attal, M., Cowie, P., Whittaker, A., Hobley, D., Tucker, G., and Roberts, G.: Testing fluvial erosion models using the transient response of bedrock rivers to tectonic forcing in the Apennines, Italy, J. Geophys. Res., 116, F02005, https://doi.org/10.1029/2010JF001875, 2011.
Download
Short summary
Terrainbento 1.0 is a Python package for modeling the evolution of the surface of the Earth over geologic time (e.g., thousands to millions of years). Despite many decades of effort by the geomorphology community, there is no one established governing equation for the evolution of topography. Terrainbento 1.0 thus provides 28 alternative models that support hypothesis testing and multi-model analysis in landscape evolution.