Articles | Volume 11, issue 10
Geosci. Model Dev., 11, 4139–4153, 2018
https://doi.org/10.5194/gmd-11-4139-2018
Geosci. Model Dev., 11, 4139–4153, 2018
https://doi.org/10.5194/gmd-11-4139-2018

Model evaluation paper 12 Oct 2018

Model evaluation paper | 12 Oct 2018

Global hydro-climatic biomes identified via multitask learning

Christina Papagiannopoulou et al.

Related authors

A non-linear Granger-causality framework to investigate climate–vegetation dynamics
Christina Papagiannopoulou, Diego G. Miralles, Stijn Decubber, Matthias Demuzere, Niko E. C. Verhoest, Wouter A. Dorigo, and Willem Waegeman
Geosci. Model Dev., 10, 1945–1960, https://doi.org/10.5194/gmd-10-1945-2017,https://doi.org/10.5194/gmd-10-1945-2017, 2017
Short summary

Related subject area

Earth and space science informatics
Model calibration using ESEm v1.1.0 – an open, scalable Earth system emulator
Duncan Watson-Parris, Andrew Williams, Lucia Deaconu, and Philip Stier
Geosci. Model Dev., 14, 7659–7672, https://doi.org/10.5194/gmd-14-7659-2021,https://doi.org/10.5194/gmd-14-7659-2021, 2021
Short summary
Turbidity maximum zone index: a novel model for remote extraction of the turbidity maximum zone in different estuaries
Chongyang Wang, Li Wang, Danni Wang, Dan Li, Chenghu Zhou, Hao Jiang, Qiong Zheng, Shuisen Chen, Kai Jia, Yangxiaoyue Liu, Ji Yang, Xia Zhou, and Yong Li
Geosci. Model Dev., 14, 6833–6846, https://doi.org/10.5194/gmd-14-6833-2021,https://doi.org/10.5194/gmd-14-6833-2021, 2021
Short summary
dh2loop 1.0: an open-source Python library for automated processing and classification of geological logs
Ranee Joshi, Kavitha Madaiah, Mark Jessell, Mark Lindsay, and Guillaume Pirot
Geosci. Model Dev., 14, 6711–6740, https://doi.org/10.5194/gmd-14-6711-2021,https://doi.org/10.5194/gmd-14-6711-2021, 2021
Short summary
Copula-based synthetic data augmentation for machine-learning emulators
David Meyer, Thomas Nagler, and Robin J. Hogan
Geosci. Model Dev., 14, 5205–5215, https://doi.org/10.5194/gmd-14-5205-2021,https://doi.org/10.5194/gmd-14-5205-2021, 2021
Short summary
Automated geological map deconstruction for 3D model construction using map2loop 1.0 and map2model 1.0
Mark Jessell, Vitaliy Ogarko, Yohan de Rose, Mark Lindsay, Ranee Joshi, Agnieszka Piechocka, Lachlan Grose, Miguel de la Varga, Laurent Ailleres, and Guillaume Pirot
Geosci. Model Dev., 14, 5063–5092, https://doi.org/10.5194/gmd-14-5063-2021,https://doi.org/10.5194/gmd-14-5063-2021, 2021
Short summary

Cited articles

Ando, R. K. and Zhang, T.: A framework for learning predictive structures from multiple tasks and unlabeled data, J. Mach. Learn. Res., 6, 1817–1853, 2005.
Baker, B., Diaz, H., Hargrove, W., and Hoffman, F.: Use of the Köppen–Trewartha climate classification to evaluate climatic refugia in statistically derived ecoregions for the People's Republic of China, Climatic Change, 98, 113, https://doi.org/10.1007/s10584-009-9622-2, 2009.
Bartholomé, E. and Belward, A. S.: GLC2000: a new approach to global land cover mapping from Earth observation data, Int. J. Remote Sens., 26, 1959–1977, 2005.
Barzilai, A. and Crammer, K.: Convex multi-task learning by clustering, in: Artificial Intelligence and Statistics, San Diego, California, USA, 9–12 May 2015, 65–73, 2015.
Baxter, J.: A Bayesian/information theoretic model of learning to learn via multiple task sampling, Mach. Learn., 28, 7–39, 1997.
Download
Short summary
Common global land cover and climate classifications are based on vegetation–climatic characteristics derived from observational data, ignoring the interaction between the local climate and biome. Here, we model the interplay between vegetation and local climate by discovering spatial relationships among different locations. The resulting global hydro-climatic biomes correspond to regions of coherent climate–vegetation interactions that agree well with traditional global land cover maps.