Articles | Volume 11, issue 10
https://doi.org/10.5194/gmd-11-4139-2018
https://doi.org/10.5194/gmd-11-4139-2018
Model evaluation paper
 | 
12 Oct 2018
Model evaluation paper |  | 12 Oct 2018

Global hydro-climatic biomes identified via multitask learning

Christina Papagiannopoulou, Diego G. Miralles, Matthias Demuzere, Niko E. C. Verhoest, and Willem Waegeman

Related authors

A non-linear Granger-causality framework to investigate climate–vegetation dynamics
Christina Papagiannopoulou, Diego G. Miralles, Stijn Decubber, Matthias Demuzere, Niko E. C. Verhoest, Wouter A. Dorigo, and Willem Waegeman
Geosci. Model Dev., 10, 1945–1960, https://doi.org/10.5194/gmd-10-1945-2017,https://doi.org/10.5194/gmd-10-1945-2017, 2017
Short summary

Related subject area

Earth and space science informatics
The OpenMindat v1.0.0 R package: a machine interface to Mindat open data to facilitate data-intensive geoscience discoveries
Xiang Que, Jiyin Zhang, Weilin Chen, Jolyon Ralph, and Xiaogang Ma
Geosci. Model Dev., 18, 4455–4467, https://doi.org/10.5194/gmd-18-4455-2025,https://doi.org/10.5194/gmd-18-4455-2025, 2025
Short summary
A time-dependent three-dimensional dayside magnetopause model based on quasi-elastodynamic theory
Yaxin Gu, Yi Wang, Fengsi Wei, Xueshang Feng, Andrey Samsonov, Xiaojian Song, Boyi Wang, Pingbing Zuo, Chaowei Jiang, Yalan Chen, Xiaojun Xu, and Zilu Zhou
Geosci. Model Dev., 18, 4215–4229, https://doi.org/10.5194/gmd-18-4215-2025,https://doi.org/10.5194/gmd-18-4215-2025, 2025
Short summary
DustNet (v1): skilful neural network predictions of dust aerosols over the Saharan desert
Trish E. Nowak, Andy T. Augousti, Benno I. Simmons, and Stefan Siegert
Geosci. Model Dev., 18, 3509–3532, https://doi.org/10.5194/gmd-18-3509-2025,https://doi.org/10.5194/gmd-18-3509-2025, 2025
Short summary
RiverBedDynamics v1.0: a Landlab component for computing two-dimensional sediment transport and river bed evolution
Angel D. Monsalve, Samuel R. Anderson, Nicole M. Gasparini, and Elowyn M. Yager
Geosci. Model Dev., 18, 3427–3451, https://doi.org/10.5194/gmd-18-3427-2025,https://doi.org/10.5194/gmd-18-3427-2025, 2025
Short summary
A GPU parallelization of the neXtSIM-DG dynamical core (v0.3.1)
Robert Jendersie, Christian Lessig, and Thomas Richter
Geosci. Model Dev., 18, 3017–3040, https://doi.org/10.5194/gmd-18-3017-2025,https://doi.org/10.5194/gmd-18-3017-2025, 2025
Short summary

Cited articles

Ando, R. K. and Zhang, T.: A framework for learning predictive structures from multiple tasks and unlabeled data, J. Mach. Learn. Res., 6, 1817–1853, 2005.
Baker, B., Diaz, H., Hargrove, W., and Hoffman, F.: Use of the Köppen–Trewartha climate classification to evaluate climatic refugia in statistically derived ecoregions for the People's Republic of China, Climatic Change, 98, 113, https://doi.org/10.1007/s10584-009-9622-2, 2009.
Bartholomé, E. and Belward, A. S.: GLC2000: a new approach to global land cover mapping from Earth observation data, Int. J. Remote Sens., 26, 1959–1977, 2005.
Barzilai, A. and Crammer, K.: Convex multi-task learning by clustering, in: Artificial Intelligence and Statistics, San Diego, California, USA, 9–12 May 2015, 65–73, 2015.
Baxter, J.: A Bayesian/information theoretic model of learning to learn via multiple task sampling, Mach. Learn., 28, 7–39, 1997.
Download
Short summary
Common global land cover and climate classifications are based on vegetation–climatic characteristics derived from observational data, ignoring the interaction between the local climate and biome. Here, we model the interplay between vegetation and local climate by discovering spatial relationships among different locations. The resulting global hydro-climatic biomes correspond to regions of coherent climate–vegetation interactions that agree well with traditional global land cover maps.
Share