Articles | Volume 11, issue 10
https://doi.org/10.5194/gmd-11-4139-2018
https://doi.org/10.5194/gmd-11-4139-2018
Model evaluation paper
 | 
12 Oct 2018
Model evaluation paper |  | 12 Oct 2018

Global hydro-climatic biomes identified via multitask learning

Christina Papagiannopoulou, Diego G. Miralles, Matthias Demuzere, Niko E. C. Verhoest, and Willem Waegeman

Related authors

A non-linear Granger-causality framework to investigate climate–vegetation dynamics
Christina Papagiannopoulou, Diego G. Miralles, Stijn Decubber, Matthias Demuzere, Niko E. C. Verhoest, Wouter A. Dorigo, and Willem Waegeman
Geosci. Model Dev., 10, 1945–1960, https://doi.org/10.5194/gmd-10-1945-2017,https://doi.org/10.5194/gmd-10-1945-2017, 2017
Short summary

Related subject area

Earth and space science informatics
Remote-sensing-based forest canopy height mapping: some models are useful, but might they provide us with even more insights when combined?
Nikola Besic, Nicolas Picard, Cédric Vega, Jean-Daniel Bontemps, Lionel Hertzog, Jean-Pierre Renaud, Fajwel Fogel, Martin Schwartz, Agnès Pellissier-Tanon, Gabriel Destouet, Frédéric Mortier, Milena Planells-Rodriguez, and Philippe Ciais
Geosci. Model Dev., 18, 337–359, https://doi.org/10.5194/gmd-18-337-2025,https://doi.org/10.5194/gmd-18-337-2025, 2025
Short summary
Checking the consistency of 3D geological models
Marion N. Parquer, Eric A. de Kemp, Boyan Brodaric, and Michael J. Hillier
Geosci. Model Dev., 18, 71–100, https://doi.org/10.5194/gmd-18-71-2025,https://doi.org/10.5194/gmd-18-71-2025, 2025
Short summary
The effect of lossy compression of numerical weather prediction data on data analysis: a case study using enstools-compression 2023.11
Oriol Tintó Prims, Robert Redl, Marc Rautenhaus, Tobias Selz, Takumi Matsunobu, Kameswar Rao Modali, and George Craig
Geosci. Model Dev., 17, 8909–8925, https://doi.org/10.5194/gmd-17-8909-2024,https://doi.org/10.5194/gmd-17-8909-2024, 2024
Short summary
GNNWR: an open-source package of spatiotemporal intelligent regression methods for modeling spatial and temporal nonstationarity
Ziyu Yin, Jiale Ding, Yi Liu, Ruoxu Wang, Yige Wang, Yijun Chen, Jin Qi, Sensen Wu, and Zhenhong Du
Geosci. Model Dev., 17, 8455–8468, https://doi.org/10.5194/gmd-17-8455-2024,https://doi.org/10.5194/gmd-17-8455-2024, 2024
Short summary
Can AI be enabled to dynamical downscaling? A Latent Diffusion Model to mimic km-scale COSMO5.0_CLM9 simulations
Elena Tomasi, Gabriele Franch, and Marco Cristoforetti
EGUsphere, https://doi.org/10.48550/arXiv.2406.13627,https://doi.org/10.48550/arXiv.2406.13627, 2024
Short summary

Cited articles

Ando, R. K. and Zhang, T.: A framework for learning predictive structures from multiple tasks and unlabeled data, J. Mach. Learn. Res., 6, 1817–1853, 2005.
Baker, B., Diaz, H., Hargrove, W., and Hoffman, F.: Use of the Köppen–Trewartha climate classification to evaluate climatic refugia in statistically derived ecoregions for the People's Republic of China, Climatic Change, 98, 113, https://doi.org/10.1007/s10584-009-9622-2, 2009.
Bartholomé, E. and Belward, A. S.: GLC2000: a new approach to global land cover mapping from Earth observation data, Int. J. Remote Sens., 26, 1959–1977, 2005.
Barzilai, A. and Crammer, K.: Convex multi-task learning by clustering, in: Artificial Intelligence and Statistics, San Diego, California, USA, 9–12 May 2015, 65–73, 2015.
Baxter, J.: A Bayesian/information theoretic model of learning to learn via multiple task sampling, Mach. Learn., 28, 7–39, 1997.
Download
Short summary
Common global land cover and climate classifications are based on vegetation–climatic characteristics derived from observational data, ignoring the interaction between the local climate and biome. Here, we model the interplay between vegetation and local climate by discovering spatial relationships among different locations. The resulting global hydro-climatic biomes correspond to regions of coherent climate–vegetation interactions that agree well with traditional global land cover maps.