Articles | Volume 11, issue 10
Geosci. Model Dev., 11, 4139–4153, 2018
https://doi.org/10.5194/gmd-11-4139-2018
Geosci. Model Dev., 11, 4139–4153, 2018
https://doi.org/10.5194/gmd-11-4139-2018

Model evaluation paper 12 Oct 2018

Model evaluation paper | 12 Oct 2018

Global hydro-climatic biomes identified via multitask learning

Christina Papagiannopoulou et al.

Download

Interactive discussion

Status: closed
Status: closed
AC: Author comment | RC: Referee comment | SC: Short comment | EC: Editor comment
Printer-friendly Version - Printer-friendly version Supplement - Supplement

Peer-review completion

AR: Author's response | RR: Referee report | ED: Editor decision
AR by Christina Papagiannopoulou on behalf of the Authors (21 Aug 2018)  Author's response    Manuscript
ED: Publish as is (29 Aug 2018) by David Topping
Download
Short summary
Common global land cover and climate classifications are based on vegetation–climatic characteristics derived from observational data, ignoring the interaction between the local climate and biome. Here, we model the interplay between vegetation and local climate by discovering spatial relationships among different locations. The resulting global hydro-climatic biomes correspond to regions of coherent climate–vegetation interactions that agree well with traditional global land cover maps.