Articles | Volume 11, issue 6
https://doi.org/10.5194/gmd-11-2525-2018
https://doi.org/10.5194/gmd-11-2525-2018
Model description paper
 | 
25 Jun 2018
Model description paper |  | 25 Jun 2018

An improved logistic regression model based on a spatially weighted technique (ILRBSWT v1.0) and its application to mineral prospectivity mapping

Daojun Zhang, Na Ren, and Xianhui Hou

Related authors

FZStats v1.0: a raster statistics toolbox for simultaneous management of spatial stratified heterogeneity and positional dependence in Python
Na Ren, Daojun Zhang, and Qiuming Cheng
EGUsphere, https://doi.org/10.5194/egusphere-2024-2461,https://doi.org/10.5194/egusphere-2024-2461, 2024
Short summary

Related subject area

Earth and space science informatics
A GPU parallelization of the neXtSIM-DG dynamical core (v0.3.1)
Robert Jendersie, Christian Lessig, and Thomas Richter
Geosci. Model Dev., 18, 3017–3040, https://doi.org/10.5194/gmd-18-3017-2025,https://doi.org/10.5194/gmd-18-3017-2025, 2025
Short summary
The Earth System Grid Federation (ESGF) Virtual Aggregation (CMIP6 v20240125)
Ezequiel Cimadevilla, Bryan N. Lawrence, and Antonio S. Cofiño
Geosci. Model Dev., 18, 2461–2478, https://doi.org/10.5194/gmd-18-2461-2025,https://doi.org/10.5194/gmd-18-2461-2025, 2025
Short summary
Can AI be enabled to perform dynamical downscaling? A latent diffusion model to mimic kilometer-scale COSMO5.0_CLM9 simulations
Elena Tomasi, Gabriele Franch, and Marco Cristoforetti
Geosci. Model Dev., 18, 2051–2078, https://doi.org/10.5194/gmd-18-2051-2025,https://doi.org/10.5194/gmd-18-2051-2025, 2025
Short summary
DNS (v1.0): An open source ray-tracing tool for space geodetic techniques
Florian Zus, Kyriakos Balidakis, Ali Hasan Dogan, Rohith Thundathil, Galina Dick, and Jens Wickert
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2024-237,https://doi.org/10.5194/gmd-2024-237, 2025
Revised manuscript accepted for GMD
Short summary
Moving beyond post hoc explainable artificial intelligence: a perspective paper on lessons learned from dynamical climate modeling
Ryan J. O'Loughlin, Dan Li, Richard Neale, and Travis A. O'Brien
Geosci. Model Dev., 18, 787–802, https://doi.org/10.5194/gmd-18-787-2025,https://doi.org/10.5194/gmd-18-787-2025, 2025
Short summary

Cited articles

Agterberg, F. P.: Methods of trend surface analysis, Colorado School Mines Q., 59, 111–130, 1964. 
Agterberg, F. P.: Multivariate prediction equations in geology, J. Int. Ass. Math. Geol., 1970, 319–324, 1970. 
Agterberg, F. P.: A probability index for detecting favourable geological environments, CIM An. Conf., 10, 82–91, 1971. 
Agterberg, F. P.: Computer Programs for Mineral Exploration, Science, 245, 76–81, 1989. 
Agterberg, F. P.: Combining indicator patterns in weights of evidence modeling for resource evaluation, Nonrenewal Resources, 1, 35–50, 1992. 
Download
Short summary
Geographically weighted regression is a widely used method to deal with spatial heterogeneity, which is common in geostatistics. However, most existing software does not support logistic regression and cannot deal with missing data, which exist extensively in mineral prospectivity mapping. This work generalized logistic regression to spatial statistics based on a spatially weighted technique. The new model also supports an anisotropic local window, which is another innovative point.
Share