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Abstract. The combination of complex, multiple minero-
genic stages and mineral superposition during geological
processes has resulted in dynamic spatial distributions and
nonstationarity of geological variables. For example, geo-
chemical elements exhibit clear spatial variability and trends
with coverage type changes. Thus, bias is likely to occur un-
der these conditions when general regression models are ap-
plied to mineral prospectivity mapping (MPM). In this study,
we used a spatially weighted technique to improve general
logistic regression and developed an improved model, i.e.,
the improved logistic regression model, based on a spatially
weighted technique (ILRBSWT, version 1.0). The capabili-
ties and advantages of ILRBSWT are as follows: (1) it is a
geographically weighted regression (GWR) model, and thus
it has all advantages of GWR when managing spatial trends
and nonstationarity; (2) while the current software employed
for GWR mainly applies linear regression, ILRBSWT is
based on logistic regression, which is more suitable for MPM
because mineralization is a binary event; (3) a missing data
processing method borrowed from weights of evidence is in-
cluded in ILRBSWT to extend its adaptability when man-
aging multisource data; and (4) in addition to geographical
distance, the differences in data quality or exploration level
can be weighted in the new model.

1 Introduction

The main distinguishing characteristic of spatial statistics
compared to classical statistics is that the former has a lo-
cation attribute. Before geographical information systems
were developed, spatial statistical problems were often trans-
formed into general statistical problems in which the spa-
tial coordinates were similar to a sample ID because they
only had an indexing feature. However, even in nonspatial
statistics, the reversal or amalgamation paradox (Pearson et
al., 1899; Yule, 1903; Simpson, 1951), which is commonly
called Simpson’s paradox (Blyth, 1972), has attracted sig-
nificant attention from statisticians and other researchers. In
spatial statistics, some spatial variables exhibit certain trends
and spatial nonstationarity. Thus, it is possible for Simpson’s
paradox to occur when a classical regression model is ap-
plied, and the existence of unknown important variables may
worsen this condition. The influence of Simpson’s paradox
can be fatal. For example, in geology, due to the presence of
cover and other factors that occur post-mineralization, ore-
forming elements in Area I are much lower than those in
Area II, while the actual probability of a mineral in Area I
is higher than that in Area II simply because more de-
posits were discovered in Area I (Agterberg, 1971). In this
case, negative correlations would be obtained between ore-
forming elements and mineralization according to the classi-
cal regression model, whereas high positive correlations can
be obtained in both areas if they are separated. Simpson’s
paradox is an extreme case of bias generated from classical
models, and it is usually not so severe in practice. However,
this type of bias needs to be considered and care needs to be
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taken when applying a classical regression model to a spatial
problem. Several solutions to this issue have been proposed,
which can be divided into three types.

1. Locations are introduced as direct or indirect indepen-
dent variables. This type of model is still a global model,
but space coordinates or distance weights are employed
to adjust the regression estimation between the de-
pendent variable and independent variables (Agterberg,
1964, 1970, 1971; Agterberg and Cabilio, 1969; Agter-
berg and Kelly, 1971; Casetti, 1972; Lesage and Pace,
2009, 2011). For example, Reddy et al. (1991) per-
formed logistic regression by including trend variables
to map the base-metal potential in the Snow Lake area,
Manitoba, Canada; Helbich and Griffith (2016) com-
pared the spatial expansion method (SEM) to other
methods in modeling the house price variation locally
in which the regression parameters are themselves func-
tions of the x and y coordinates and their combinations;
Hao and Liu (2016) used the spatial lag model (SLM)
and spatial error model to control spatial effects in mod-
eling the relationship between PM2.5 concentrations and
per capita GDP in China.

2. Local models are used to replace global models, i.e.,
geographically weighted models (Fotheringham et al.,
2002). Geographically weighted regression (GWR) is
the most popular model among the geographically
weighted models. GWR models were first developed at
the end of the 20th century by Brunsdon et al. (1996)
and Fotheringham et al. (1996, 1997, 2002) for mod-
eling spatially heterogeneous processes and have been
used widely in geosciences (e.g., Buyantuyev and Wu,
2010; Barbet-Massin et al., 2012; Ma et al., 2014;
Brauer et al., 2015).

3. Trends in spatial variables are reduced. For example,
Cheng developed a local singularity analysis technique
and a spectrum–area (S-A) model based on fractal–
multi-fractal theory (Cheng, 1997, 1999). These meth-
ods can remove spatial trends and mitigate the strong ef-
fects on predictions of the variables starting at high and
low values, and thus they are used widely to weaken the
effect of spatial nonstationarity (e.g., Zhang et al., 2016;
Zuo et al., 2016; Xiao et al., 2018).

GWR models can be readily visualized and are intuitive,
which have made them applied in geography and other dis-
ciplines that require spatial data analysis. In general, GWR
is a moving-window-based model in which instead of estab-
lishing a unique and global model for prediction, it predicts
each current location using the surrounding samples, and a
higher weight is given when the sample is located closer.
The theoretical foundation of GWR is Tobler’s observation
that “everything is related to everything else, but near things
are more related than distant things” (Tobler, 1970).

In mineral prospectivity mapping (MPM), the dependent
variables are binary, and logistic regression is used instead
of linear regression; therefore, it is necessary to apply ge-
ographically weighted logistic regression (GWLR) instead.
GWLR is a type of geographically weighed generalized lin-
ear regression model (Fotheringham et al., 2002) that is in-
cluded in the software module GWR 4.09 (Nakaya, 2016).
However, the function module for GWLR in current software
can only manage data in the form of a tabular dataset contain-
ing the fields with dependent and independent variables and
x-y coordinates. Therefore, the spatial layers have to be re-
processed into two-dimensional tables and the resulting data
need to be transformed back into a spatial form.

Another problem with applying GWR 4.09 for MPM is
that it cannot handle missing data (Nakaya, 2016). Weights of
evidence (WofE) is a widely used model for MPM (Bonham-
Carter et al., 1988, 1989; Agterberg, 1989; Agterberg et al.,
1990) that mitigates the effects of missing data. However,
WofE was developed assuming that conditional indepen-
dence is satisfied among evidential layers with respect to the
target layer; otherwise, the posterior probabilities will be bi-
ased, and the number of estimated deposits will be unequal to
the known deposits. Agterberg (2011) combined WofE with
logistic regression and proposed a new model that can ob-
tain an unbiased estimate of the number of deposits while
also avoiding the effect of missing data. In this study, we em-
ployed the Agterberg (2011) solution to account for missing
data.

One more improvement of the ILRBSWT is that a mask
layer is included in the new model to address data quality
and exploration-level differences between samples.

Conceptually, this research originated from the thesis of
Zhang (2015; in Chinese), which showed better efficiency
for mapping intermediate and felsic igneous rocks (Zhang et
al., 2017). This work elaborates on the principles of ILRB-
SWT and provides a detailed algorithm for its design and
implementation process with the code and software module
attached. In addition, processing missing data is not a tech-
nique covered in GWR modeling presented in prior research,
and a solution borrowed from WofE is provided in this study.
Finally, ILRBSWT performance in MPM is tested by pre-
dicting Au ore deposits in the western Meguma terrane, Nova
Scotia, Canada.

2 Models

Linear regression is commonly used for exploring the rela-
tionship between a response variable and one or more ex-
planatory variables. However, in MPM and other fields, the
response variable is binary or dichotomous, so linear regres-
sion is not applicable and thus a logistic model is advanta-
geous.
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2.1 Logistic regression

In MPM, the dependent variable (Y ) is binary because Y can
only take the value of 1 and 0, indicating that mineraliza-
tion occurs and not respectively. Suppose that π represents
the estimation of Y , 0≤ π ≤ 1, then a logit transformation of
π can be made, i.e., logit (π)= ln (π/(1−π)). The logistic
regression function can be obtained as follows:

Logitπ
(
X1,X2, · · ·, Xp

)
= β0+β1X1+ ·· · +βpXp (1)

where X1,X2, · · ·, Xp comprises a sample of p explana-
tory variables x1,x2, · · ·, xp, β0 is the intercept, and
β1,β2, · · ·, βp represents regression coefficients.

If there are n samples, we can obtain n linear equations
with p+1 unknowns based on Eq. (1). Furthermore, if we
suppose that the observed values for Y are Y1,Y2, · · · ,Yn
and these observations are independent of each other, then a
likelihood function can be established:

L(β)=
n∏
i=1

(
π
Yi
i (1−πi)

1−Yi
)
, (2)

where πi = π
(
Xi1,Xi2, · · ·, Xip

)
=

e
β0+β1Xi1+ ··· +βpXip

1+eβ0+β1Xi1+ ··· +βpXip
.

The best estimate can be obtained only if Eq. (2) takes
the maximum. Then the problem is converted into solving
β1,β2, · · ·, βp. Equation (2) can be further transformed into
the following log-likelihood function:

lnL(β)=
∑n

i=1
(Yiπi + (1−Yi)(1−πi)). (3)

The solution can be obtained by taking the first partial
derivative of βi (i = 0 to p), which should be equal to 0:
f (β0)=

∑n
i=0(Yi −πi)Xi0 = 0

f (β1)=
∑n
i=0(Yi −πi)Xi1 = 0

...

f
(
βp
)
=
∑n
i=0(Yi −πi)Xip = 0,

(4)

where Xi0 = 1, i takes the value from 1 to n, and Eq. (4) is
obtained in the form of matrix operations.

XT (Y −π)= 0 (5)

The Newton iterative method can be used to solve the non-
linear equations:

β̂ (t + 1)= β̂ (t)+H−1U , (6)

where H= XTV(t)X, U = XT (Y −π (t)), t represents the
number of iterations, and V(t), X, Y , π(t), and β̂ (t) are ob-
tained as follows:

V(t)=
π1 (t) (1−π1 (t))

π2 (t) (1−π2 (t))
. . .

πn (t) (1−πn (t))

,

X=


X10 X11 · · · X1p
X20 X21 · · · X2p
...

...
. . .

...

Xn0 Xn1 · · · Xnp

 ,Y =

Y1
Y1
...

Yn

 ,

π(t)=


π1(t)

π2(t)
...

πn(t)

 , and β̂(t)=


β̂1(t)

β̂2(t)
...

β̂n(t)

 .
For a more detailed description of the derivations of
Eqs. (1) to (6), see Hosmer et al. (2013).

2.2 Weighted logistic regression

In practice, vector data are often used, and sample size (area)
has to be considered. In this condition, weighted logistic re-
gression modeling should be used instead of a general lo-
gistic regression. It is also preferable to use a weighted lo-
gistic regression model when a logical regression should
be performed for large sample data because weighted logi-
cal regression can significantly reduce matrix size and im-
prove computational efficiency (Agterberg, 1992). Assum-
ing that there are four binary explanatory variable layers
and the study area consists of 1000× 1000 grid points, the
matrix size for normal logic regression modeling would be
106
× 106; however, if weighted logistic regression is used,

the matrix size would be 32× 32 at most. This condition
arises because the sample classification process is contained
in the weighted logistic regression, and all samples are clas-
sified into classes with the same values as the dependent and
independent variables. The samples with the same dependent
and independent variables form certain continuous and dis-
continuous patterns in space, which are called “unique con-
dition” units. Each unique condition unit is then treated as a
sample, and the area (grid number) for it is taken as weight in
the weighed logistic regression. Thus, for the weighted logi-
cal regression, Eqs. (2) to (5) in Sect. 2.1 need to be changed
to Eqs. (7) to (10) as follows.

Lnew (β)=

n∏
i=1

(
π
NiYi
i (1−πi)Ni (1−Yi )

)
(7)

lnLnew (β)=
∑n

i=1
(NiYiπi +Ni (1−Yi)(1−πi)) (8)


fnew (β0)=

∑n
i=0(Yi −πi)Xi0 = 0

fnew (β1)=
∑n
i=0(Yi −πi)Xi1 = 0

...

fnew
(
βp
)
=
∑n
i=0(Yi −πi)Xip = 0

(9)

XTW(Y −π)= 0 (10)
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Ni is the weight for the ith unique condition unit, i takes the
value from 1 to n, and n is the number of unique condition
units. W is a diagonal matrix that is expressed as follows:

W=


N1

N2
. . .

Nn.


In addition, new values of H and U should be used in Eq. (6)
to perform Newton iteration as part of the weighted logis-
tic regression, i.e., Hnew = XTWV(t)X, Unew = XTW(Y −

π (t)).

2.3 Geographically weighted logistic regression

GWLR is a local-window-based model in which logistic re-
gression is established at each current location in the GWLR.
The current location is changed using the moving window
technique with a loop program. Suppose that u represents
the current location, which can be uniquely determined by a
pair of column and row numbers, x denotes p explanatory
variables x1,x2, · · ·, xp that take values of X1,X2, · · ·, Xp,
respectively, and π (x,u) is the Y estimate, i.e., the probabil-
ity that Y takes a value of 1, and then the following function
can be obtained.

Logitπ (x,u)= β0 (u)+β1 (u)x1+β2 (u)x2

+ ·· · +βp(u)xp, (11)

where, β0 (u), β1 (u) , · · ·, βp (u) indicate that these parame-
ters are obtained at the location of u. Logitπ (x,u), the pre-
dicted probability for the current location u, can be obtained
under the condition that the values of all independent vari-
ables are known at the current location and all parameters are
also calculated based on the samples within the current local
window. According to Eq. (6) in Sect. 2.1, the parameters for
GWLR can be estimated with Eq. (12):

β̂(u)t+1 = β̂(u)t +
(
XTW(u)V(t)X

)−1XTW(u)
(Y −π(t)), (12)

where t represents the number of iterations; X is a matrix
that includes the values of all independent variables, and all
elements in the first column are 1; W(u) is a diagonal ma-
trix in which the diagonal elements are geographical weights,
which can be calculated according to distance, whereas the
other elements are all 0; V(t) is also a diagonal matrix and
the diagonal element can be expressed as πi(t)(1−πi(t));
and Y is a column vector representing the values taken by
the dependent variable.

2.4 Improved logistic regression model based on the
spatially weighted technique

As mentioned in the Introduction, there are primarily two im-
provements for ILRBSWT compared to GWLR: the capacity

to manage different types of weights and the special handling
of missing data.

2.4.1 Integration of different weights

If a diagonal element in W(u) is only for one sample, i.e.,
the grid point in raster data, Sect. 2.3 is an improvement on
Sect. 2.1; i.e., samples are weighted according to their loca-
tion. If samples are first reclassified according to the unique
condition mentioned in Sect. 2.2, and corresponding weights
are then summarized according to each sample’s geograph-
ical weight, we can obtain an improved logistic regression
model considering both sample size and geographical dis-
tance. The new model reflects both the spatial distribution of
samples and reduces the matrix size, which is discussed in
the following section.

In addition to geographic factors, representativeness of a
sample, e.g., differences in the level of exploration, is also
considered in this study.

Suppose that there are n grid points in the current local
window, Si is the ith grid, Wi(g) is the geographical weight
of Si , and Wi (d) represents the individual difference weight
or non-geographical weight. In some cases, there may be
differences in quality or the exploration level among sam-
ples, but Wi (d) takes a value of 1 if there is no difference,
where i takes a value from 1 to n. Furthermore, if we sup-
pose that there are N unique conditions after overlaying all
layers (N ≤ n) and Cj denotes the j th unique condition unit,
then we can obtain the final weight for each unique condition
unit in the current local window:

Wj (t)=

n∑
i=1

[
Wi (g) ·Wi (d) · dfi

]
, (13)

where
{

dfi = 1 ifSi ∈ Cj
dfi = 0 ifSi 6∈ Cj

, i takes a value from 1 to n, j

takes a value from 1 to N , and Wj (t) represents the to-
tal weight (by combining both Wi (g) and Wi (d)) for each
unique condition unit. We can use the final weight calculated
in Eq. (13) to replace the original weight in Eq. (12), which
is an advantage of ILRBSWT.

2.4.2 Missing data processing

Missing data are a problem in all statistics-related research
fields. In MPM, missing data are also prevalent due to
ground coverage and limitations of the exploration tech-
nique and measurement accuracy. Agterberg and Bonham-
Carter (1999) compared the following commonly used miss-
ing data processing solutions: (1) removing variables con-
taining missing data, (2) deleting samples with missing data,
(3) using 0 to replace missing data, and (4) replacing miss-
ing data with the mean of the corresponding variable. To ef-
ficiently use existing data, both (1) and (2) are clearly not
good solutions as more data will be lost. Solution (3) is supe-
rior to (4) in the condition that work has not been done and
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real data are unknown; with respect to missing data caused
by detection limits, solution (4) is clearly a better choice.
Missing data are primarily caused by the latter in MPM, and
Agterberg (2011) pointed out that missing data were better
addressed in a WofE model. In WofE, the evidential variable
takes the value of positive weight (W+) if it is favorable for
the target variable (e.g., mineralization), while the evidential
variable takes the value of negative weight (W−) if it is un-
favorable for the target variable; automatically, the evidential
variable takes the value of “0” if there are missing data:

W+ = ln
D1
D

A1−D1
A−D

, (14)

W− = ln
D2
D

A2−D2
A−D

, (15)

whereA is an evidential layer,A1 is the area (or grid number,
similarly hereinafter) that A takes the value of 1, and A2 is
the area that A takes the value of 0; A3 is the area with miss-
ing data, and A1+A2 is smaller than the total study area if
missing data exist.D1,D2, andD3 are areas where the target
variables take the value of 1 in A1, A2, and A3, respectively.
A3 and D3 are not used in Eq. (15) because no information
is provided in area A3.

If “1” and “0” are still used to represent the binary con-
dition of the independent variable instead of W+ and W−,
Eq. (16) can be used to replace missing data in logistic re-
gression modeling.

M =
−W−

W+−W−
=

ln D
A−D
− ln D2

A2−D2

ln D1
A1−D1

− ln D2
A2−D2

(16)

3 Design of the ILRBSWT algorithm

3.1 Local window design

A raster dataset is used for ILRBSWT modeling. With reg-
ular grids, the distance between any two grid points can be
calculated easily and distance templates within a certain win-
dow scope can be obtained, which is highly efficient for data
processing. The circle and ellipse are used for isotropic and
anisotropic local window designs, respectively.

1. Circular local window design. Suppose that W repre-
sents a local circular window in which the minimum
bounding rectangle is R, then the geographical weights
can be calculated only inside R. Clearly, the grid points
inside R but outside of W should be weighted as 0, and
the weight for the grid with a center inside W should
be calculated according to the distance from its cur-
rent location. Because R is a square, we can also as-
sume that there are n columns and rows in it, where
n is an odd number. If we take east and south as the

Figure 1. Weight template for a circular local window with a half-
window size of nine grids in which w1 to w30 represent different
weight classes that decrease with distances and 0 indicates that the
grid is weighted as 0. Gradient colors ranging from red to green are
used to distinguish the weight classes for grid points.

orientations of the x axis and y axis, respectively, and
the position of the northwest corner grid is defined as
(x = 1, y = 1), then a local rectangular coordinate sys-
tem can be established and the position of the cur-
rent location grid can be expressed as O (x = n+1

2 , y =
n+1

2 ). The distance between any grid inside W and
the current location grid can be expressed as do−ij =√(
i− n+1

2

)2
+

(
j − n+1

2

)2
, where i and j take values

ranging from 1 to n. The geographical weight is a func-
tion of distance, so it is convenient to calculate wij with
do−ij . Figure 1 shows the weight template for a circular
local window with a half-window size of nine grids.

Suppose that there are T _n columns and T _m rows in
the study area, and current (T_i, T_j) represents the cur-
rent location, where T_i takes values from 1 to T _n and
T_j takes values from 1 to T _m, then the current lo-
cal window can be established by selecting the range of
rows T _i− n−1

2 to T _i+ n−1
2 and columns T _j − n−1

2
to T _j + n−1

2 from the total research area. Next, we
can establish a local rectangular coordinate system ac-
cording to the previously described steps; we subtract
T _i− n−1

2 and Tj − n−1
2 on the x and y coordinates, re-

spectively, for all grids in the range. The corresponding
relationship can then be established between the weight
template and current window. Global weights can also
be included via the matrix product between the global
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Figure 2. Construction of the distance template based on an elliptic local window: a = 11 grid points, r = 0.5, and the azimuths for the
semi-major axis are 0◦ (a), 45◦ (b), 90◦ (c), and 135◦ (d).

weight layer and local weight template within the local
window. In addition, special care should be taken when
the weight template covers some area outside the study
area, i.e., T _i− n−1

2 <, T _i+ n−1
2 > T _n, T _j− n−1

2 <,
and T _j + n−1

2 > T _m.

2. Elliptic local window design. In most cases, the spatial
tendency of the spatial variable may vary with differ-
ent directions and an elliptic local window may better
describe the changes in weights in space. To simplify
the calculation, we can convert the distances in different
directions into equivalent distances, and an anisotropic
problem is then converted into an isotropic problem. For
any grid, the equivalent distance is the semi-major axis
length of the ellipse that is centered at the current lo-
cation and passes through the grid, while the parame-
ters for the ellipse can be determined using the kriging
method.

We still use W to represent the local elliptic window
and a, r , and θ are defined as the semi-major axis, the
ratio of the semi-minor axis relative to the semi-major
axis, and the azimuth of the semi-major axis, respec-
tively. Then, W can be covered by a square R whose
side length is 2a−1 and center is the same asW . There
are (2a− 1)× (2a− 1) grids in R. We establish the
rectangular coordinates as described above and suppose
that the center of the top left grid in R is located at
(x = 1, y = 1), and thus the center of W should be
O(x0 = a,y0 = a). According to the definition of the
ellipse, two of the elliptical focuses are located at
F1

(
x1 = a+ sin(θ)

√
a2− (a · r)2, y1 = a− con(θ)√

a2− (a · r)2
)

and F2(x2 = a−

sin(θ)
√
a2− (a · r)2,y2 = a+ con(θ)

√
a2− (a · r)2).

The summed distances between a point and
two focus points can be expressed as lij =

Geosci. Model Dev., 11, 2525–2539, 2018 www.geosci-model-dev.net/11/2525/2018/
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(i− x1)

2
+ (j − y1)

2
+

√
(i− x2)

2
+ (j − y2)

2,
where i and j take values from 1 to 2a− 1. According
to the elliptical focus equation, for any grid in R, if
the sum of the distances between the two focal points
and a grid center is greater than 2a, the grid is located
within W , and vice versa. For the grids outside of
W , the weight is assigned as 0, and we only need to
calculate the equivalent distances for the grids within
W . As mentioned above, the parameters for the ellipse
can be determined using the kriging method. In ellipse
W, where the semi-major axis is a, and r and θ are
maintained as constants, then we obtain countless
ellipses centered at the center of W , and the equivalent
distance is the same on the same elliptical orbit. Thus,
the equivalent distance template can be obtained for the
local elliptic window. Figure 2 shows the equivalent
distance templates under the conditions that a = 11
grids, r = 0.5, and the azimuths for the semi-major axis
are 0, 45, 90, and 135◦.

3.1.1 Algorithm for ILRBSWT

The ILRBSWT method primarily focuses on two problems,
i.e., spatial nonstationarity and missing data. We use the
moving window technique to establish local models instead
of a global model to overcome spatial nonstationarity. The
spatial t value employed in the WofE method is used to bi-
narize spatial variables based on the local window, which
is quite different from traditional binarization based on the
global range with which missing data can be handled well
because positive and negative weights are used instead of the
original values of “1” and “0”, and missing data are repre-
sented as “0”. Both the isotropy and anisotropy window types
are provided in our new proposed model. The geographical
weight function and window size can be determined by the
users. If the geographic weights are equal and there are no
missing data, ILRBSWT will yield the same posterior prob-
abilities as classical logistic regression; hence, the latter can
be viewed as a special case of the former. The core ILRB-
SWT algorithm is as follows.

– Step 1. Establish a loop for all grids in the study area
according to both the columns and rows. Determine a
basic local window with a size of rmin based on a vari-
ation function or other method. In addition, the max-
imum local window size is set as rmax, with an in-
terval of 1R. Suppose that a geographical weighted
model has already been given in the form of a Gaus-
sian curve determined from variations in geostatistics,
i.e., W (g)= e−λd2, where d is the distance and λ is
the attenuation coefficient, then we can calculate the
geographical weight for any grid in the current local
window. The equivalent radius should be used in the
anisotropic situation. When other types of weights are
considered, e.g., the degree of exploration or research, it

is also necessary to synthesize the geographical weights
with other weights (see Eq. 13).

– Step 2. Establish a loop for all independent variables.
In a circular (elliptical) window with a radius (equiva-
lent radius) of rmin, apply the WofE (Agterberg, 1992)
model according to the grid weight determined in step
1, thereby obtaining a statistical table containing the pa-
rameters W+ij , W−ij , and tij where i is the ith indepen-
dent variable and j denotes the j th binarization.

– Step 2.1. If a maximum tij exists and it is greater than or
equal to the standard t value (e.g., 1.96), record the val-
ues ofW+i−max_t ,W

−

i−max_t , and Bi−max_t , which denote
the positive weight, negative weight, and corresponding
binarization, respectively, under the condition in which
t takes the maximum value. Go to step 2 and apply the
WofE model to the other independent variables.

– Step 2.2. If a maximum tij does not exist or it is smaller
than the standard t value, go to step 3.

– Step 3. In a circular (elliptical) window with a radius
(equivalent radius) of rmax, increase the current local
window radius from rmin according to the algorithm in
step 1.

– Step 3.1. If all independent variables have already been
processed, go to step 4.

– Step 3.2. If the size of the current local window exceeds
the size of rmax, disregard the current independent vari-
able and go to step 2 to consider the remaining indepen-
dent variables.

– Step 3.3. Apply the WofE model according to the grid
weight determined in step 1 in the current local window.
If a maximum tij exists and it is greater than or equal
to the standard t value, record the values of W+i−max_t ,
W−i−max_t , Bi−max_t , and rcurrent, which represent the ra-
dius (equivalent radius) for the current local window.

– Step 3.4. If a maximum tij does not exist or it is smaller
than the standard t value, go to step 3.

– Step 4. Suppose that ns independent variables still re-
main.

– Step 4.1. If ns ≤ 1, calculate the mean value for the de-
pendent variable in the current local window with a ra-
dius size of rmax and retain it as the posterior probability
in the current location. In addition, set the regression co-
efficients for all independent variables as missing data.
Go to step 6.

– Step 4.2. If ns ≥ 1, find the independent variable with
the largest local window and apply the WofE model to
all other independent variables, and then update the val-
ues of W+i−max_t , W

−

i−max_t , and Bi−max_t . Go to step 5.

www.geosci-model-dev.net/11/2525/2018/ Geosci. Model Dev., 11, 2525–2539, 2018



2532 D. Zhang et al.: Improved logistic regression model based on spatial weights

Figure 3. User interface design.

– Step 5. Apply the logistic regression model based on
the previously determined geographic weights, and for
each independent variable (1) use W+i−max_t to replace
all values that are less than or equal to Bi−max_t , (2) use
W−i−max_t to replace all values that are greater than
Bi−max_t , and (3) use 0 to replace no data (“−9999”).
The posterior probability and regression coefficients can
then be obtained for all independent variables at the cur-
rent location. Go to step 6.

– Step 6. Take the next grid as the current location and
repeat steps 2–5.

4 Interface design

Before performing spatially weighted logistical regression
with ILRBSWT 1.0, data preprocessing is performed using
the ArcGIS 10.2 platform and GeoDAS 4.0 software. All
data are originally stored in grid format, which should be
transformed into ASCII files with the ArcToolbox in ArcGIS
10.2; after modeling with ILRBSWT 1.0, the resulting data
will be transformed back into grid format

As shown in Fig. 3, the main interface for ILRBSWT 1.0
is composed of four parts.

The upper left part is for the layer input settings where
independent variable layers, dependent variable layers, and
global weight layers should be assigned. Layer information
is shown at the upper right corner, including row numbers,

column numbers, grid size, ordinate origin, and the expres-
sion for missing data. The local window parameters and
weight attenuation function can be defined as follows. Using
the drop-down list, we prepared a circle or ellipse to repre-
sent various isotropic and anisotropic spatial conditions, re-
spectively. The corresponding window parameters should be
set for each window type. For the ellipse, it is necessary to
set parameters composed of the initial length of the equiv-
alent radius (initial major radius), final length of the equiv-
alent radius (largest major radius), increase in the length of
the equivalent radius (growth rate), threshold of the spatial
t value used to determine the need to enlarge the window,
length ratio of the major and minor axes, orientation of the
ellipse’s major axis, and compensation coefficient for the sill.
We prepared different types of weight attenuation functions
via the drop-down menu to provide choices to users, such
as exponential model, logarithmic model, Gaussian model,
and spherical model, and corresponding parameters can be
set when a certain model is selected. The output file is de-
fined at the bottom and the execution button is at the lower
right corner.

5 Real data testing

5.1 Data source and preprocessing

The test data used in this study were obtained from the
case study reported in Cheng (2008). The study area
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Figure 4. Evidential layers used to map Au deposits in this study: buffer of anticline axes (a), buffer for the contact of Goldenville–Halifax
Formation (b), and background (c) and anomaly (d) separated with the S-A filtering method based on the ore element loadings of the first
component.

(≈ 7780 km2) is located in western Meguma Terrain, Nova
Scotia, Canada. Four independent variables were used in
the WofE model for gold mineral potential mapping by
Cheng (2008), i.e., buffer of anticline axes, buffer for the
contact of Goldenville–Halifax Formation, and background
and anomaly separated with the S-A filtering method based
on ore element loadings of the first component, as shown in
Fig. 4.

The four independent variables described previously were
also used for ILRBSWT modeling in this study (see
Fig. 4a to d), and they were uniformed in the ArcGIS grid
format with a cell size of 1 km× 1 km. To demonstrate the
advantages of the new method for missing data processing,
we designed an artificial situation in Fig. 5; i.e., grids in re-
gion A have values for all four independent variables, while
they only have values for two independent variables and no
values in the two geochemical variables in region B.
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Figure 5. Study area (A and B) where there are missing geochemi-
cal data in area B.

5.2 Mapping weights for exploration

Exploration-level weights can be determined based on prior
knowledge about data quality, e.g., different scales may ex-
ist throughout the whole study area; however, these weights
can also be calculated quantitatively. The density of known
deposits is a good index for the exploration level; i.e., the
research is more comprehensive when more deposits are dis-
covered. The exploration-level weight layer for the study area
was obtained using the kernel density tool provided by the
ArcToolbox in ArcGIS 10.2, as shown in Fig. 6.

5.3 Parameter assignment for local window and weight
attenuation function

Both empirical and quantitative methods can be used to de-
termine the local window parameters and attenuation func-
tion for geographical weights. The variation function in geo-
statistics, which is an effective method for describing the
structures and trends in spatial variables, was applied in this
study. To calculate the variation function for the dependent
variable, it is necessary to first map the posterior probability
using the global logistic regression method before determin-
ing the local window type and parameters from the variation
function. Variation functions were established in four direc-
tions to detect anisotropic changes in space. If there are no
significant differences among the various directions, a circu-
lar local window can be used for ILRBSWT, as shown in
Fig. 1; otherwise, an elliptic local window should be used, as
shown in Fig. 2. The specific parameters for the local win-

Figure 6. Exploration-level weights.

dow in the study area were obtained as shown in Fig. 7, and
the final local window and geographical weight attenuation
were determined as indicated in Fig. 8a and b, respectively.

5.4 Data integration

Using the algorithm described in Sect. 3.2, ILRBSWT was
applied to the study area according to the parameter settings
in Fig. 3. The estimated probability map obtained for Au
deposits by ILRBSWT is shown in Fig. 9b, while Fig. 9a
presents the results obtained by logistic regression. As shown
in Fig. 8, ILRBSWT better manages missing data than lo-
gistic regression, as the Au deposits in the north part of the
study area (with missing data) fit better within the region with
higher posterior probability in Fig. 9b than in Fig. 9a.

5.5 Comparison of the mapping results

To evaluate the predictive capacity of the newly developed
and traditional methods, the posterior probability maps ob-
tained through logistic regression and ILRBSWT shown in
Fig. 9a and b were divided into 20 classes using the quan-
tile method. Prediction–area (P-A) plots (Mihalasky and
Bonham-Carter, 2001; Yousefi et al., 2012; Yousefi and Car-
ranza, 2015a) were then made according to the spatial over-
lay relationships between Au deposits and the two classified
posterior probability maps in Fig. 10a and b, respectively. In
a P-A plot, the horizontal ordinate indicates the discretized
classes of a map representing the occurrence of deposits. The
vertical scales on the left and right sides indicate the per-
centage of correctly predicted deposits from the total known
mineral occurrences and the corresponding percentage of the
delineated target area from the total study area (Yousefi and
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Figure 7. Experimental variogram fitting in different directions; the green lines denote the variable ranges determined for azimuths of (a) 0◦,
(b) 45◦, (c) 90◦, and (d) 135◦.

Carranza, 2015a). As shown in Fig. 10a and b, with the de-
cline of the posterior probability threshold for the mineral oc-
currence from left to right on the horizontal axis, more known
deposits are correctly predicted, and in the meantime more
areas are delimited as the target area; however, the growth
in the prediction rates for deposits and corresponding occu-
pied area is similar before the intersection point in Fig. 10a,
while the former shows a higher growth rate than the lat-
ter in Fig. 10b. This difference suggests that ILRBSWT can
predict more known Au deposits than logistic regression for

delineating targets with the same area and indicates that the
former has a higher prediction efficiency than the latter.

It would be a little inconvenient to consider the ratios of
both predicted known deposits and occupied area. Mihalasky
and Bonham-Carter (2001) proposed a normalized density,
i.e., the ratio of the predicted rate of known deposits to its
corresponding occupied area. The intersection point in a P-
A plot is the crossing of two curves. The first is fitted from
scatterplots of the class number of the posterior probability
map and the rate of predicted deposit occurrences (the “pre-
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Figure 8. Nested spherical model for different directions. The green
lines in (a) correspond to those in Fig. 5, and (b) shows the geo-
graphical weight template determined based on (a).

diction rate” curves in Fig. 10). The second is fitted accord-
ing to the class number of the posterior probability map and
corresponding accumulated area rate (the “area” curves in
Fig. 10). At the interaction point, the sum of the prediction
rate and corresponding occupied area rate is 1; the normal-
ized density at this point is more commonly used to evaluate
the performance of a certain spatial variable in indicating the
occurrence of ore deposits (Yousefi and Carranza, 2015a).
The intersection point parameters for both models are given
in Table 1. As shown in the table, 71 % of the known de-
posits are correctly predicted with 29 % of the total study
area delineated as the target area when the logistic regression
is applied; if ILRBSWT if applied, 74 % of the known de-
posits can be correctly predicted with only 26 % of the total
area delineated as the target area. The normalized densities
for the posterior probability maps obtained from the logis-
tic regression and ILRBSWT are 2.45 and 2.85, respectively;
the latter performed significantly better than the former.

Table 1. Parameters extracted from the intersection points in
Fig. 10a and b.

Model Prediction Occupied Normalized
rate area density

Logistic regression 0.71 0.29 2.45
ILRBSWT 0.74 0.26 2.85

6 Discussion

Because of potential spatial heterogeneity, the model param-
eter estimates obtained based on the total equal-weight sam-
ples in the classical regression model may be biased, and
they may not be applicable for predicting each local region.
Therefore, it is necessary to adopt a local window model to
overcome this issue. The presented case study shows that IL-
RBSWT can obtain better prediction results than classical
logistic regression because of the former’s sliding local win-
dow model, and their corresponding intersection point values
are 2.85 and 2.45, respectively. However, ILRBSWT has ad-
vantages. For example, characterizing 26 or 29 % of the total
study area as a promising prospecting target is too high in
terms of economic considerations. If instead 10 % of the total
area is mapped as the target area, the proportions of correctly
predicted known deposits obtained by ILRBSWT and logis-
tic regression are 44 and 24 %, respectively. The prediction
efficiency of the former is 1.8 times larger than the latter.

In this study, we did not separately consider the influences
of spatial heterogeneity, missing data, and degree of explo-
ration weight, so we cannot evaluate the impact of each fac-
tor. Instead, the main goal of this work was to provide the
ILRBSWT tool, thereby demonstrating its practicality and
overall effect. Zhang et al. (2017) applied this model to map-
ping intermediate and felsic igneous rocks and proved the
effectiveness of the ILRBSWT tool in overcoming the influ-
ence of spatial heterogeneity specifically. In addition, Agter-
berg and Bonham-Carter (1999) showed that WofE has the
advantage of managing missing data, and we have taken a
similar strategy in ILRBSWT. We did not fully demonstrate
the necessity of using exploration weight in this work, which
will be a direction for future research. However, it will have
little influence on the description and application of the IL-
RBSWT tool as it is not an obligatory factor, and users can
individually decide if the exploration weight should be used.

Similar to WofE and logistic regression, ILRBSWT is a
data-driven method, and thus it inevitably suffers from the
same problems as data-driven methods, e.g., the information
loss caused by data discretization and exploration bias caused
by the training sample location. However, it should be noted
that evidential layers are discretized in each local window
instead of the total study area, which may cause less infor-
mation loss. This can also be regarded as an advantage of
the ILRBSWT tool. With respect to logistic regression and
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Figure 9. Posterior probability maps obtained for Au deposits by (a) logistic regression and (b) ILRBSWT.

Figure 10. Prediction–area (P-A) plots for discretized posterior probability maps obtained by logistic regression and ILRBSWT.
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WofE, some researchers have proposed solutions to avoid the
information loss resulting from spatial data discretization by
performing continuous weighting (Pu et al., 2008; Yousefi
and Carranza, 2015b, c), and these concepts can be incorpo-
rated into further improvements of the ILRBSWT tool in the
future.

7 Conclusions

Given the problems in existing MPM models, this research
provides an ILRBSWT tool. We have proven its operability
and effectiveness through a case study. This research is also
expected to provide software tool support for geological ex-
ploration researchers and workers in overcoming the nonsta-
tionarity of spatial variables, missing data, and differences in
exploration degree, which should improve the efficiency of
MPM work.

Code availability. The software tool ILRBSWT v1.0 in this re-
search was developed using C#, and the source codes and exe-
cutable programs (software tool) are prepared in the folders “source
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SWT”, respectively. They can be found in the Supplement.
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