Articles | Volume 10, issue 1
https://doi.org/10.5194/gmd-10-425-2017
https://doi.org/10.5194/gmd-10-425-2017
Development and technical paper
 | 
30 Jan 2017
Development and technical paper |  | 30 Jan 2017

Conservative interpolation between general spherical meshes

Evaggelos Kritsikis, Matthias Aechtner, Yann Meurdesoif, and Thomas Dubos

Related subject area

Numerical methods
VISIR-2: ship weather routing in Python
Gianandrea Mannarini, Mario Leonardo Salinas, Lorenzo Carelli, Nicola Petacco, and Josip Orović
Geosci. Model Dev., 17, 4355–4382, https://doi.org/10.5194/gmd-17-4355-2024,https://doi.org/10.5194/gmd-17-4355-2024, 2024
Short summary
Incremental analysis update (IAU) in the Model for Prediction Across Scales coupled with the Joint Effort for Data assimilation Integration (MPAS–JEDI 2.0.0)
Soyoung Ha, Jonathan J. Guerrette, Ivette Hernández Baños, William C. Skamarock, and Michael G. Duda
Geosci. Model Dev., 17, 4199–4211, https://doi.org/10.5194/gmd-17-4199-2024,https://doi.org/10.5194/gmd-17-4199-2024, 2024
Short summary
Decision-making strategies implemented in SolFinder 1.0 to identify eco-efficient aircraft trajectories: application study in AirTraf 3.0
Federica Castino, Feijia Yin, Volker Grewe, Hiroshi Yamashita, Sigrun Matthes, Simone Dietmüller, Sabine Baumann, Manuel Soler, Abolfazl Simorgh, Maximilian Mendiguchia Meuser, Florian Linke, and Benjamin Lührs
Geosci. Model Dev., 17, 4031–4052, https://doi.org/10.5194/gmd-17-4031-2024,https://doi.org/10.5194/gmd-17-4031-2024, 2024
Short summary
Developing meshing workflows in Gmsh v4.11 for the geologic uncertainty assessment of high-temperature aquifer thermal energy storage
Ali Dashti, Jens C. Grimmer, Christophe Geuzaine, Florian Bauer, and Thomas Kohl
Geosci. Model Dev., 17, 3467–3485, https://doi.org/10.5194/gmd-17-3467-2024,https://doi.org/10.5194/gmd-17-3467-2024, 2024
Short summary
Development and preliminary validation of a land surface image assimilation system based on the Common Land Model
Wangbin Shen, Zhaohui Lin, Zhengkun Qin, and Juan Li
Geosci. Model Dev., 17, 3447–3465, https://doi.org/10.5194/gmd-17-3447-2024,https://doi.org/10.5194/gmd-17-3447-2024, 2024
Short summary

Cited articles

Alauzet, F. and Mehrenberger, M.: P1-conservative solution interpolation on unstructured triangular meshes, Int. J. Numer. Meth. Engng., RR-6804, 1–48, 2009.
Farrell, P. and Maddison, J.: Conservative interpolation between volume meshes by local Galerkin projection, Comput. Meth. Appl. M., 200, 89–100, 2011.
Farrell, P., Piggott, M., Pain, C., Gorman, G., and Wilson, C.: Conservative interpolation between unstructured meshes via supermesh construction, Comput. Meth. Appl. M., 198, 2632–2642, 2009.
Fu, Y., Teng, J.-C., and Subramanya, S.: Node splitting algorithms in tree-structured high-dimensional indexes for similarity search, Proc. of SAC '02, 766–770, 2002.
Guo, D. X. and Drake, J. B.: A global semi-Lagrangian spectral model of the shallow water equations with variable resolution, J. Comput. Phys., 206, 559–577, 2005.
Download
Short summary
This paper describes conservative interpolation on the sphere. A function is computed on one mesh from its values on another mesh so that the total mass is preserved, which is vital for climate modeling, and for second-order accuracy. This is done through a common refinement of the meshes, built in quasilinear time by tree sorting the mesh cells. It can be built into climate models for flexible I/O or coupling. Examples of commonly used meshes are given.