Articles | Volume 10, issue 8
https://doi.org/10.5194/gmd-10-3059-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/gmd-10-3059-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
VIC–CropSyst-v2: A regional-scale modeling platform to simulate the nexus of climate, hydrology, cropping systems, and human decisions
Keyvan Malek
CORRESPONDING AUTHOR
Department of Biological Systems Engineering at Washington State University, Pullman, Washington, USA
currently at: Department of Civil and Environmental Engineering at Washington State University, Pullman, Washington, USA
Claudio Stöckle
Department of Biological Systems Engineering at Washington State University, Pullman, Washington, USA
Kiran Chinnayakanahalli
Air Worldwide Corp., Boston, Massachusetts, USA
Roger Nelson
Department of Biological Systems Engineering at Washington State University, Pullman, Washington, USA
Mingliang Liu
Department of Civil and Environmental Engineering at Washington State University, Pullman, Washington, USA
Kirti Rajagopalan
Center for Sustaining Agriculture and Natural Resources, Washington State University, Pullman, Washington, USA
Muhammad Barik
Department of Civil and Environmental Engineering at Washington State University, Pullman, Washington, USA
currently at: University of Alabama in Huntsville, NASA-SERVIR, Huntsville, AL, USA
Jennifer C. Adam
Department of Civil and Environmental Engineering at Washington State University, Pullman, Washington, USA
Related authors
Jiali Qiu, Qichun Yang, Xuesong Zhang, Maoyi Huang, Jennifer C. Adam, and Keyvan Malek
Hydrol. Earth Syst. Sci., 23, 35–49, https://doi.org/10.5194/hess-23-35-2019, https://doi.org/10.5194/hess-23-35-2019, 2019
Short summary
Short summary
Complex water management activities challenge hydrologic modeling. We evaluated how different representations of reservoir operation and agricultural irrigation affect streamflow simulations in the Yakima River basin. Results highlight the importance of the inclusion of reliable reservoir and irrigation information in watershed models for improving watershed hydrology modeling. Models used here are public and hold the promise to benefit water assessment and management in other basins.
Bhupinderjeet Singh, Mingliang Liu, John Abatzoglou, Jennifer Adam, and Kirti Rajagopalan
EGUsphere, https://doi.org/10.5194/egusphere-2024-2284, https://doi.org/10.5194/egusphere-2024-2284, 2024
Preprint archived
Short summary
Short summary
Hydrology models rely on simplistic static approaches to precipitation phase partitioning. We evaluate model skill changes for a suite of snow metrics by transitioning to a more accurate dynamic partitioning. We found that the transition resulted in a better match between modeled and observed metrics, with a 50 % reduction in model bias, emphasizing the need for the hydrological modeling community to adopt dynamic partitioning.
Jianning Ren, Jennifer C. Adam, Jeffrey A. Hicke, Erin J. Hanan, Christina L. Tague, Mingliang Liu, Crystal A. Kolden, and John T. Abatzoglou
Hydrol. Earth Syst. Sci., 25, 4681–4699, https://doi.org/10.5194/hess-25-4681-2021, https://doi.org/10.5194/hess-25-4681-2021, 2021
Short summary
Short summary
Mountain pine beetle outbreaks have caused widespread tree mortality. While some research shows that water yield increases after trees are killed, many others document no change or a decrease. The climatic and environmental mechanisms driving hydrologic response to tree mortality are not well understood. We demonstrated that the direction of hydrologic response is a function of multiple factors, so previous studies do not necessarily conflict with each other; they represent different conditions.
Jiali Qiu, Qichun Yang, Xuesong Zhang, Maoyi Huang, Jennifer C. Adam, and Keyvan Malek
Hydrol. Earth Syst. Sci., 23, 35–49, https://doi.org/10.5194/hess-23-35-2019, https://doi.org/10.5194/hess-23-35-2019, 2019
Short summary
Short summary
Complex water management activities challenge hydrologic modeling. We evaluated how different representations of reservoir operation and agricultural irrigation affect streamflow simulations in the Yakima River basin. Results highlight the importance of the inclusion of reliable reservoir and irrigation information in watershed models for improving watershed hydrology modeling. Models used here are public and hold the promise to benefit water assessment and management in other basins.
M. Liu, K. Rajagopalan, S. H. Chung, X. Jiang, J. Harrison, T. Nergui, A. Guenther, C. Miller, J. Reyes, C. Tague, J. Choate, E. P. Salathé, C. O. Stöckle, and J. C. Adam
Biogeosciences, 11, 2601–2622, https://doi.org/10.5194/bg-11-2601-2014, https://doi.org/10.5194/bg-11-2601-2014, 2014
H. Tian, G. Chen, C. Lu, X. Xu, W. Ren, K. Banger, B. Zhang, B. Tao, S. Pan, M. Liu, and C. Zhang
Biogeosciences Discuss., https://doi.org/10.5194/bgd-10-19811-2013, https://doi.org/10.5194/bgd-10-19811-2013, 2013
Revised manuscript has not been submitted
Related subject area
Hydrology
Generalised drought index: a novel multi-scale daily approach for drought assessment
Development and performance of a high-resolution surface wave and storm surge forecast model: application to a large lake
Deep dive into hydrologic simulations at global scale: harnessing the power of deep learning and physics-informed differentiable models (δHBV-globe1.0-hydroDL)
PyEt v1.3.1: a Python package for the estimation of potential evapotranspiration
Prediction of hysteretic matric potential dynamics using artificial intelligence: application of autoencoder neural networks
Regionalization in global hydrological models and its impact on runoff simulations: a case study using WaterGAP3 (v 1.0.0)
SERGHEI v2.0: introducing a performance-portable, high-performance three-dimensional variably-saturated subsurface flow solver (SERGHEI-RE)
STORM v.2: A simple, stochastic rainfall model for exploring the impacts of climate and climate change at and near the land surface in gauged watersheds
Fluvial flood inundation and socio-economic impact model based on open data
RoGeR v3.0.5 – a process-based hydrological toolbox model in Python
Coupling a large-scale glacier and hydrological model (OGGM v1.5.3 and CWatM V1.08) – towards an improved representation of mountain water resources in global assessments
An open-source refactoring of the Canadian Small Lakes Model for estimates of evaporation from medium-sized reservoirs
EvalHyd v0.1.2: a polyglot tool for the evaluation of deterministic and probabilistic streamflow predictions
Modelling water quantity and quality for integrated water cycle management with the Water Systems Integrated Modelling framework (WSIMOD) software
HGS-PDAF (version 1.0): a modular data assimilation framework for an integrated surface and subsurface hydrological model
Wflow_sbm v0.7.3, a spatially distributed hydrological model: from global data to local applications
Reservoir Assessment Tool version 3.0: a scalable and user-friendly software platform to mobilize the global water management community
HydroFATE (v1): a high-resolution contaminant fate model for the global river system
Validation of a new global irrigation scheme in the land surface model ORCHIDEE v2.2
GPEP v1.0: the Geospatial Probabilistic Estimation Package to support Earth science applications
GEMS v1.0: Generalizable Empirical Model of Snow Accumulation and Melt, based on daily snow mass changes in response to climate and topographic drivers
mesas.py v1.0: a flexible Python package for modeling solute transport and transit times using StorAge Selection functions
rSHUD v2.0: advancing the Simulator for Hydrologic Unstructured Domains and unstructured hydrological modeling in the R environment
GLOBGM v1.0: a parallel implementation of a 30 arcsec PCR-GLOBWB-MODFLOW global-scale groundwater model
Development of inter-grid-cell lateral unsaturated and saturated flow model in the E3SM Land Model (v2.0)
Selecting a conceptual hydrological model using Bayes' factors computed with Replica Exchange Hamiltonian Monte Carlo and Thermodynamic Integration
The global water resources and use model WaterGAP v2.2e: description and evaluation of modifications and new features
pyESDv1.0.1: an open-source Python framework for empirical-statistical downscaling of climate information
Representing the impact of Rhizophora mangroves on flow in a hydrodynamic model (COAWST_rh v1.0): the importance of three-dimensional root system structures
Dynamically weighted ensemble of geoscientific models via automated machine-learning-based classification
Enhancing the representation of water management in global hydrological models
NEOPRENE v1.0.1: a Python library for generating spatial rainfall based on the Neyman–Scott process
Uncertainty estimation for a new exponential-filter-based long-term root-zone soil moisture dataset from Copernicus Climate Change Service (C3S) surface observations
Validating the Nernst–Planck transport model under reaction-driven flow conditions using RetroPy v1.0
DynQual v1.0: a high-resolution global surface water quality model
Data space inversion for efficient uncertainty quantification using an integrated surface and sub-surface hydrologic model
Simulation of crop yield using the global hydrological model H08 (crp.v1)
How is a global sensitivity analysis of a catchment-scale, distributed pesticide transfer model performed? Application to the PESHMELBA model
iHydroSlide3D v1.0: an advanced hydrological–geotechnical model for hydrological simulation and three-dimensional landslide prediction
GEB v0.1: a large-scale agent-based socio-hydrological model – simulating 10 million individual farming households in a fully distributed hydrological model
Tracing and visualisation of contributing water sources in the LISFLOOD-FP model of flood inundation (within CAESAR-Lisflood version 1.9j-WS)
Continental-scale evaluation of a fully distributed coupled land surface and groundwater model, ParFlow-CLM (v3.6.0), over Europe
Evaluating a global soil moisture dataset from a multitask model (GSM3 v1.0) with potential applications for crop threats
SERGHEI (SERGHEI-SWE) v1.0: a performance-portable high-performance parallel-computing shallow-water solver for hydrology and environmental hydraulics
A simple, efficient, mass-conservative approach to solving Richards' equation (openRE, v1.0)
Customized deep learning for precipitation bias correction and downscaling
Implementation and sensitivity analysis of the Dam-Reservoir OPeration model (DROP v1.0) over Spain
Regional coupled surface–subsurface hydrological model fitting based on a spatially distributed minimalist reduction of frequency domain discharge data
Operational water forecast ability of the HRRR-iSnobal combination: an evaluation to adapt into production environments
Prediction of algal blooms via data-driven machine learning models: an evaluation using data from a well-monitored mesotrophic lake
João António Martins Careto, Rita Margarida Cardoso, Ana Russo, Daniela Catarina André Lima, and Pedro Miguel Matos Soares
Geosci. Model Dev., 17, 8115–8139, https://doi.org/10.5194/gmd-17-8115-2024, https://doi.org/10.5194/gmd-17-8115-2024, 2024
Short summary
Short summary
This study proposes a new daily drought index, the generalised drought index (GDI). The GDI not only identifies the same events as established indices but is also capable of improving their results. The index is empirically based and easy to compute, not requiring fitting the data to a probability distribution. The GDI can detect flash droughts and longer-term events, making it a versatile tool for drought monitoring.
Laura L. Swatridge, Ryan P. Mulligan, Leon Boegman, and Shiliang Shan
Geosci. Model Dev., 17, 7751–7766, https://doi.org/10.5194/gmd-17-7751-2024, https://doi.org/10.5194/gmd-17-7751-2024, 2024
Short summary
Short summary
We develop an operational forecast system, Coastlines-LO, that can simulate water levels and surface waves in Lake Ontario driven by forecasts of wind speeds and pressure fields from an atmospheric model. The model has relatively low computational requirements, and results compare well with near-real-time observations, as well as with results from other existing forecast systems. Results show that with shorter forecast lengths, storm surge and wave predictions can improve in accuracy.
Dapeng Feng, Hylke Beck, Jens de Bruijn, Reetik Kumar Sahu, Yusuke Satoh, Yoshihide Wada, Jiangtao Liu, Ming Pan, Kathryn Lawson, and Chaopeng Shen
Geosci. Model Dev., 17, 7181–7198, https://doi.org/10.5194/gmd-17-7181-2024, https://doi.org/10.5194/gmd-17-7181-2024, 2024
Short summary
Short summary
Accurate hydrologic modeling is vital to characterizing water cycle responses to climate change. For the first time at this scale, we use differentiable physics-informed machine learning hydrologic models to simulate rainfall–runoff processes for 3753 basins around the world and compare them with purely data-driven and traditional modeling approaches. This sets a benchmark for hydrologic estimates around the world and builds foundations for improving global hydrologic simulations.
Matevž Vremec, Raoul A. Collenteur, and Steffen Birk
Geosci. Model Dev., 17, 7083–7103, https://doi.org/10.5194/gmd-17-7083-2024, https://doi.org/10.5194/gmd-17-7083-2024, 2024
Short summary
Short summary
Geoscientists commonly use various potential evapotranpiration (PET) formulas for environmental studies, which can be prone to errors and sensitive to climate change. PyEt, a tested and open-source Python package, simplifies the application of 20 PET methods for both time series and gridded data, ensuring accurate and consistent PET estimations suitable for a wide range of environmental applications.
Nedal Aqel, Lea Reusser, Stephan Margreth, Andrea Carminati, and Peter Lehmann
Geosci. Model Dev., 17, 6949–6966, https://doi.org/10.5194/gmd-17-6949-2024, https://doi.org/10.5194/gmd-17-6949-2024, 2024
Short summary
Short summary
The soil water potential (SWP) determines various soil water processes. Since remote sensing techniques cannot measure it directly, it is often deduced from volumetric water content (VWC) information. However, under dynamic field conditions, the relationship between SWP and VWC is highly ambiguous due to different factors that cannot be modeled with the classical approach. Applying a deep neural network with an autoencoder enables the prediction of the dynamic SWP.
Jenny Kupzig, Nina Kupzig, and Martina Flörke
Geosci. Model Dev., 17, 6819–6846, https://doi.org/10.5194/gmd-17-6819-2024, https://doi.org/10.5194/gmd-17-6819-2024, 2024
Short summary
Short summary
Valid simulation results from global hydrological models (GHMs) are essential, e.g., to studying climate change impacts. Adapting GHMs to ungauged basins requires regionalization, enabling valid simulations. In this study, we highlight the impact of regionalization of GHMs on runoff simulations using an ensemble of regionalization methods for WaterGAP3. We have found that regionalization leads to temporally and spatially varying uncertainty, potentially reaching up to inter-model differences.
Zhi Li, Gregor Rickert, Na Zheng, Zhibo Zhang, Ilhan Özgen-Xian, and Daniel Caviedes-Voullième
EGUsphere, https://doi.org/10.5194/egusphere-2024-2588, https://doi.org/10.5194/egusphere-2024-2588, 2024
Short summary
Short summary
We introduce SERGHEI-RE, a 3D subsurface flow simulator with performance-portable parallel computing capabilities. SERGHEI-RE performs effectively on various computational devices, from personal computers to advanced clusters. It allows users to solve flow equations with multiple numerical schemes, making it adaptable to various hydrological scenarios. Testing results show its accuracy and performance, confirming that SERGHEI-RE is a powerful tool for hydrological research.
Manuel F. Rios Gaona, Katerina Michaelides, and Michael Bliss Singer
Geosci. Model Dev., 17, 5387–5412, https://doi.org/10.5194/gmd-17-5387-2024, https://doi.org/10.5194/gmd-17-5387-2024, 2024
Short summary
Short summary
STORM v.2 (short for STOchastic Rainfall Model version 2.0) is an open-source and user-friendly modelling framework for simulating rainfall fields over a basin. It also allows simulating the impact of plausible climate change either on the total seasonal rainfall or the storm’s maximum intensity.
Lukas Riedel, Thomas Röösli, Thomas Vogt, and David N. Bresch
Geosci. Model Dev., 17, 5291–5308, https://doi.org/10.5194/gmd-17-5291-2024, https://doi.org/10.5194/gmd-17-5291-2024, 2024
Short summary
Short summary
River floods are among the most devastating natural hazards. We propose a flood model with a statistical approach based on openly available data. The model is integrated in a framework for estimating impacts of physical hazards. Although the model only agrees moderately with satellite-detected flood extents, we show that it can be used for forecasting the magnitude of flood events in terms of socio-economic impacts and for comparing these with past events.
Robin Schwemmle, Hannes Leistert, Andreas Steinbrich, and Markus Weiler
Geosci. Model Dev., 17, 5249–5262, https://doi.org/10.5194/gmd-17-5249-2024, https://doi.org/10.5194/gmd-17-5249-2024, 2024
Short summary
Short summary
The new process-based hydrological toolbox model, RoGeR (https://roger.readthedocs.io/), can be used to estimate the components of the hydrological cycle and the related travel times of pollutants through parts of the hydrological cycle. These estimations may contribute to effective water resources management. This paper presents the toolbox concept and provides a simple example of providing estimations to water resources management.
Sarah Hanus, Lilian Schuster, Peter Burek, Fabien Maussion, Yoshihide Wada, and Daniel Viviroli
Geosci. Model Dev., 17, 5123–5144, https://doi.org/10.5194/gmd-17-5123-2024, https://doi.org/10.5194/gmd-17-5123-2024, 2024
Short summary
Short summary
This study presents a coupling of the large-scale glacier model OGGM and the hydrological model CWatM. Projected future increase in discharge is less strong while future decrease in discharge is stronger when glacier runoff is explicitly included in the large-scale hydrological model. This is because glacier runoff is projected to decrease in nearly all basins. We conclude that an improved glacier representation can prevent underestimating future discharge changes in large river basins.
M. Graham Clark and Sean K. Carey
Geosci. Model Dev., 17, 4911–4922, https://doi.org/10.5194/gmd-17-4911-2024, https://doi.org/10.5194/gmd-17-4911-2024, 2024
Short summary
Short summary
This paper provides validation of the Canadian Small Lakes Model (CSLM) for estimating evaporation rates from reservoirs and a refactoring of the original FORTRAN code into MATLAB and Python, which are now stored in GitHub repositories. Here we provide direct observations of the surface energy exchange obtained with an eddy covariance system to validate the CSLM. There was good agreement between observations and estimations except under specific atmospheric conditions when evaporation is low.
Thibault Hallouin, François Bourgin, Charles Perrin, Maria-Helena Ramos, and Vazken Andréassian
Geosci. Model Dev., 17, 4561–4578, https://doi.org/10.5194/gmd-17-4561-2024, https://doi.org/10.5194/gmd-17-4561-2024, 2024
Short summary
Short summary
The evaluation of the quality of hydrological model outputs against streamflow observations is widespread in the hydrological literature. In order to improve on the reproducibility of published studies, a new evaluation tool dedicated to hydrological applications is presented. It is open source and usable in a variety of programming languages to make it as accessible as possible to the community. Thus, authors and readers alike can use the same tool to produce and reproduce the results.
Barnaby Dobson, Leyang Liu, and Ana Mijic
Geosci. Model Dev., 17, 4495–4513, https://doi.org/10.5194/gmd-17-4495-2024, https://doi.org/10.5194/gmd-17-4495-2024, 2024
Short summary
Short summary
Water management is challenging when models don't capture the entire water cycle. We propose that using integrated models facilitates management and improves understanding. We introduce a software tool designed for this task. We discuss its foundation, how it simulates water system components and their interactions, and its customisation. We provide a flexible way to represent water systems, and we hope it will inspire more research and practical applications for sustainable water management.
Qi Tang, Hugo Delottier, Wolfgang Kurtz, Lars Nerger, Oliver S. Schilling, and Philip Brunner
Geosci. Model Dev., 17, 3559–3578, https://doi.org/10.5194/gmd-17-3559-2024, https://doi.org/10.5194/gmd-17-3559-2024, 2024
Short summary
Short summary
We have developed a new data assimilation framework by coupling an integrated hydrological model HydroGeoSphere with the data assimilation software PDAF. Compared to existing hydrological data assimilation systems, the advantage of our newly developed framework lies in its consideration of the physically based model; its large selection of different assimilation algorithms; and its modularity with respect to the combination of different types of observations, states and parameters.
Willem J. van Verseveld, Albrecht H. Weerts, Martijn Visser, Joost Buitink, Ruben O. Imhoff, Hélène Boisgontier, Laurène Bouaziz, Dirk Eilander, Mark Hegnauer, Corine ten Velden, and Bobby Russell
Geosci. Model Dev., 17, 3199–3234, https://doi.org/10.5194/gmd-17-3199-2024, https://doi.org/10.5194/gmd-17-3199-2024, 2024
Short summary
Short summary
We present the wflow_sbm distributed hydrological model, recently released by Deltares, as part of the Wflow.jl open-source modelling framework in the programming language Julia. Wflow_sbm has a fast runtime, making it suitable for large-scale modelling. Wflow_sbm models can be set a priori for any catchment with the Python tool HydroMT-Wflow based on globally available datasets, which results in satisfactory to good performance (without much tuning). We show this for a number of specific cases.
Sanchit Minocha, Faisal Hossain, Pritam Das, Sarath Suresh, Shahzaib Khan, George Darkwah, Hyongki Lee, Stefano Galelli, Konstantinos Andreadis, and Perry Oddo
Geosci. Model Dev., 17, 3137–3156, https://doi.org/10.5194/gmd-17-3137-2024, https://doi.org/10.5194/gmd-17-3137-2024, 2024
Short summary
Short summary
The Reservoir Assessment Tool (RAT) merges satellite data with hydrological models, enabling robust estimation of reservoir parameters like inflow, outflow, surface area, and storage changes around the world. Version 3.0 of RAT lowers the barrier of entry for new users and achieves scalability and computational efficiency. RAT 3.0 also facilitates open-source development of functions for continuous improvement to mobilize and empower the global water management community.
Heloisa Ehalt Macedo, Bernhard Lehner, Jim Nicell, and Günther Grill
Geosci. Model Dev., 17, 2877–2899, https://doi.org/10.5194/gmd-17-2877-2024, https://doi.org/10.5194/gmd-17-2877-2024, 2024
Short summary
Short summary
Treated and untreated wastewaters are sources of contaminants of emerging concern. HydroFATE, a new global model, estimates their concentrations in surface waters, identifying streams that are most at risk and guiding monitoring/mitigation efforts to safeguard aquatic ecosystems and human health. Model predictions were validated against field measurements of the antibiotic sulfamethoxazole, with predicted concentrations exceeding ecological thresholds in more than 400 000 km of rivers worldwide.
Pedro Felipe Arboleda-Obando, Agnès Ducharne, Zun Yin, and Philippe Ciais
Geosci. Model Dev., 17, 2141–2164, https://doi.org/10.5194/gmd-17-2141-2024, https://doi.org/10.5194/gmd-17-2141-2024, 2024
Short summary
Short summary
We show a new irrigation scheme included in the ORCHIDEE land surface model. The new irrigation scheme restrains irrigation due to water shortage, includes water adduction, and represents environmental limits and facilities to access water, due to representing infrastructure in a simple way. Our results show that the new irrigation scheme helps simulate acceptable land surface conditions and fluxes in irrigated areas, even if there are difficulties due to shortcomings and limited information.
Guoqiang Tang, Andrew W. Wood, Andrew J. Newman, Martyn P. Clark, and Simon Michael Papalexiou
Geosci. Model Dev., 17, 1153–1173, https://doi.org/10.5194/gmd-17-1153-2024, https://doi.org/10.5194/gmd-17-1153-2024, 2024
Short summary
Short summary
Ensemble geophysical datasets are crucial for understanding uncertainties and supporting probabilistic estimation/prediction. However, open-access tools for creating these datasets are limited. We have developed the Python-based Geospatial Probabilistic Estimation Package (GPEP). Through several experiments, we demonstrate GPEP's ability to estimate precipitation, temperature, and snow water equivalent. GPEP will be a useful tool to support uncertainty analysis in Earth science applications.
Atabek Umirbekov, Richard Essery, and Daniel Müller
Geosci. Model Dev., 17, 911–929, https://doi.org/10.5194/gmd-17-911-2024, https://doi.org/10.5194/gmd-17-911-2024, 2024
Short summary
Short summary
We present a parsimonious snow model which simulates snow mass without the need for extensive calibration. The model is based on a machine learning algorithm that has been trained on diverse set of daily observations of snow accumulation or melt, along with corresponding climate and topography data. We validated the model using in situ data from numerous new locations. The model provides a promising solution for accurate snow mass estimation across regions where in situ data are limited.
Ciaran J. Harman and Esther Xu Fei
Geosci. Model Dev., 17, 477–495, https://doi.org/10.5194/gmd-17-477-2024, https://doi.org/10.5194/gmd-17-477-2024, 2024
Short summary
Short summary
Over the last 10 years, scientists have developed StorAge Selection: a new way of modeling how material is transported through complex systems. Here, we present some new, easy-to-use, flexible, and very accurate code for implementing this method. We show that, in cases where we know exactly what the answer should be, our code gets the right answer. We also show that our code is closer than some other codes to the right answer in an important way: it conserves mass.
Lele Shu, Paul Ullrich, Xianhong Meng, Christopher Duffy, Hao Chen, and Zhaoguo Li
Geosci. Model Dev., 17, 497–527, https://doi.org/10.5194/gmd-17-497-2024, https://doi.org/10.5194/gmd-17-497-2024, 2024
Short summary
Short summary
Our team developed rSHUD v2.0, a toolkit that simplifies the use of the SHUD, a model simulating water movement in the environment. We demonstrated its effectiveness in two watersheds, one in the USA and one in China. The toolkit also facilitated the creation of the Global Hydrological Data Cloud, a platform for automatic data processing and model deployment, marking a significant advancement in hydrological research.
Jarno Verkaik, Edwin H. Sutanudjaja, Gualbert H. P. Oude Essink, Hai Xiang Lin, and Marc F. P. Bierkens
Geosci. Model Dev., 17, 275–300, https://doi.org/10.5194/gmd-17-275-2024, https://doi.org/10.5194/gmd-17-275-2024, 2024
Short summary
Short summary
This paper presents the parallel PCR-GLOBWB global-scale groundwater model at 30 arcsec resolution (~1 km at the Equator). Named GLOBGM v1.0, this model is a follow-up of the 5 arcmin (~10 km) model, aiming for a higher-resolution simulation of worldwide fresh groundwater reserves under climate change and excessive pumping. For a long transient simulation using a parallel prototype of MODFLOW 6, we show that our implementation is efficient for a relatively low number of processor cores.
Han Qiu, Gautam Bisht, Lingcheng Li, Dalei Hao, and Donghui Xu
Geosci. Model Dev., 17, 143–167, https://doi.org/10.5194/gmd-17-143-2024, https://doi.org/10.5194/gmd-17-143-2024, 2024
Short summary
Short summary
We developed and validated an inter-grid-cell lateral groundwater flow model for both saturated and unsaturated zone in the ELMv2.0 framework. The developed model was benchmarked against PFLOTRAN, a 3D subsurface flow and transport model and showed comparable performance with PFLOTRAN. The developed model was also applied to the Little Washita experimental watershed. The spatial pattern of simulated groundwater table depth agreed well with the global groundwater table benchmark dataset.
Damian N. Mingo, Remko Nijzink, Christophe Ley, and Jack S. Hale
EGUsphere, https://doi.org/10.5194/egusphere-2023-2865, https://doi.org/10.5194/egusphere-2023-2865, 2024
Short summary
Short summary
Hydrologists are often faced with selecting amongst a set of competing models with different numbers of parameters and ability to fit available data. The Bayes’ factor is a tool that can be used to compare models, however it is very difficult to compute the Bayes’ factor numerically. In our paper we explore and develop highly efficient algorithms for computing the Bayes’ factor of hydrological systems, which will bring this useful tool for selecting models to everyday hydrological practice.
Hannes Müller Schmied, Tim Trautmann, Sebastian Ackermann, Denise Cáceres, Martina Flörke, Helena Gerdener, Ellen Kynast, Thedini Asali Peiris, Leonie Schiebener, Maike Schumacher, and Petra Döll
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2023-213, https://doi.org/10.5194/gmd-2023-213, 2023
Revised manuscript accepted for GMD
Short summary
Short summary
Assessing water availability and water use at the global scale is challenging but essential for a range of purposes. We describe the newest version of the global hydrological model WaterGAP which has been used for numerous water resources assessments since 1996. We show the effects of new model features and model evaluations against observed streamflow and water storage anomalies as well as water abstractions statistics. The publically available model output for several variants is described.
Daniel Boateng and Sebastian G. Mutz
Geosci. Model Dev., 16, 6479–6514, https://doi.org/10.5194/gmd-16-6479-2023, https://doi.org/10.5194/gmd-16-6479-2023, 2023
Short summary
Short summary
We present an open-source Python framework for performing empirical-statistical downscaling of climate information, such as precipitation. The user-friendly package comprises all the downscaling cycles including data preparation, model selection, training, and evaluation, designed in an efficient and flexible manner, allowing for quick and reproducible downscaling products. The framework would contribute to climate change impact assessments by generating accurate high-resolution climate data.
Masaya Yoshikai, Takashi Nakamura, Eugene C. Herrera, Rempei Suwa, Rene Rollon, Raghab Ray, Keita Furukawa, and Kazuo Nadaoka
Geosci. Model Dev., 16, 5847–5863, https://doi.org/10.5194/gmd-16-5847-2023, https://doi.org/10.5194/gmd-16-5847-2023, 2023
Short summary
Short summary
Due to complex root system structures, representing the impacts of Rhizophora mangroves on flow in hydrodynamic models has been challenging. This study presents a new drag and turbulence model that leverages an empirical model for root systems. The model can be applied without rigorous measurements of root structures and showed high performance in flow simulations; this may provide a better understanding of hydrodynamics and related transport processes in Rhizophora mangrove forests.
Hao Chen, Tiejun Wang, Yonggen Zhang, Yun Bai, and Xi Chen
Geosci. Model Dev., 16, 5685–5701, https://doi.org/10.5194/gmd-16-5685-2023, https://doi.org/10.5194/gmd-16-5685-2023, 2023
Short summary
Short summary
Effectively assembling multiple models for approaching a benchmark solution remains a long-standing issue for various geoscience domains. We here propose an automated machine learning-assisted ensemble framework (AutoML-Ens) that attempts to resolve this challenge. Results demonstrate the great potential of AutoML-Ens for improving estimations due to its two unique features, i.e., assigning dynamic weights for candidate models and taking full advantage of AutoML-assisted workflow.
Guta Wakbulcho Abeshu, Fuqiang Tian, Thomas Wild, Mengqi Zhao, Sean Turner, A. F. M. Kamal Chowdhury, Chris R. Vernon, Hongchang Hu, Yuan Zhuang, Mohamad Hejazi, and Hong-Yi Li
Geosci. Model Dev., 16, 5449–5472, https://doi.org/10.5194/gmd-16-5449-2023, https://doi.org/10.5194/gmd-16-5449-2023, 2023
Short summary
Short summary
Most existing global hydrologic models do not explicitly represent hydropower reservoirs. We are introducing a new water management module to Xanthos that distinguishes between the operational characteristics of irrigation, hydropower, and flood control reservoirs. We show that this explicit representation of hydropower reservoirs can lead to a significantly more realistic simulation of reservoir storage and releases in over 44 % of the hydropower reservoirs included in this study.
Javier Diez-Sierra, Salvador Navas, and Manuel del Jesus
Geosci. Model Dev., 16, 5035–5048, https://doi.org/10.5194/gmd-16-5035-2023, https://doi.org/10.5194/gmd-16-5035-2023, 2023
Short summary
Short summary
NEOPRENE is an open-source, freely available library allowing scientists and practitioners to generate synthetic time series and maps of rainfall. These outputs will help to explore plausible events that were never observed in the past but may occur in the near future and to generate possible future events under climate change conditions. The paper shows how to use the library to downscale daily precipitation and how to use synthetic generation to improve our characterization of extreme events.
Adam Pasik, Alexander Gruber, Wolfgang Preimesberger, Domenico De Santis, and Wouter Dorigo
Geosci. Model Dev., 16, 4957–4976, https://doi.org/10.5194/gmd-16-4957-2023, https://doi.org/10.5194/gmd-16-4957-2023, 2023
Short summary
Short summary
We apply the exponential filter (EF) method to satellite soil moisture retrievals to estimate the water content in the unobserved root zone globally from 2002–2020. Quality assessment against an independent dataset shows satisfactory results. Error characterization is carried out using the standard uncertainty propagation law and empirically estimated values of EF model structural uncertainty and parameter uncertainty. This is followed by analysis of temporal uncertainty variations.
Po-Wei Huang, Bernd Flemisch, Chao-Zhong Qin, Martin O. Saar, and Anozie Ebigbo
Geosci. Model Dev., 16, 4767–4791, https://doi.org/10.5194/gmd-16-4767-2023, https://doi.org/10.5194/gmd-16-4767-2023, 2023
Short summary
Short summary
Water in natural environments consists of many ions. Ions are electrically charged and exert electric forces on each other. We discuss whether the electric forces are relevant in describing mixing and reaction processes in natural environments. By comparing our computer simulations to lab experiments in literature, we show that the electric interactions between ions can play an essential role in mixing and reaction processes, in which case they should not be neglected in numerical modeling.
Edward R. Jones, Marc F. P. Bierkens, Niko Wanders, Edwin H. Sutanudjaja, Ludovicus P. H. van Beek, and Michelle T. H. van Vliet
Geosci. Model Dev., 16, 4481–4500, https://doi.org/10.5194/gmd-16-4481-2023, https://doi.org/10.5194/gmd-16-4481-2023, 2023
Short summary
Short summary
DynQual is a new high-resolution global water quality model for simulating total dissolved solids, biological oxygen demand and fecal coliform as indicators of salinity, organic pollution and pathogen pollution, respectively. Output data from DynQual can supplement the observational record of water quality data, which is highly fragmented across space and time, and has the potential to inform assessments in a broad range of fields including ecological, human health and water scarcity studies.
Hugo Delottier, John Doherty, and Philip Brunner
Geosci. Model Dev., 16, 4213–4231, https://doi.org/10.5194/gmd-16-4213-2023, https://doi.org/10.5194/gmd-16-4213-2023, 2023
Short summary
Short summary
Long run times are usually a barrier to the quantification and reduction of predictive uncertainty with complex hydrological models. Data space inversion (DSI) provides an alternative and highly model-run-efficient method for uncertainty quantification. This paper demonstrates DSI's ability to robustly quantify predictive uncertainty and extend the methodology to provide practical metrics that can guide data acquisition and analysis to achieve goals of decision-support modelling.
Zhipin Ai and Naota Hanasaki
Geosci. Model Dev., 16, 3275–3290, https://doi.org/10.5194/gmd-16-3275-2023, https://doi.org/10.5194/gmd-16-3275-2023, 2023
Short summary
Short summary
Simultaneously simulating food production and the requirements and availability of water resources in a spatially explicit manner within a single framework remains challenging on a global scale. Here, we successfully enhanced the global hydrological model H08 that considers human water use and management to simulate the yields of four major staple crops: maize, wheat, rice, and soybean. Our improved model will be beneficial for advancing global food–water nexus studies in the future.
Emilie Rouzies, Claire Lauvernet, Bruno Sudret, and Arthur Vidard
Geosci. Model Dev., 16, 3137–3163, https://doi.org/10.5194/gmd-16-3137-2023, https://doi.org/10.5194/gmd-16-3137-2023, 2023
Short summary
Short summary
Water and pesticide transfer models are complex and should be simplified to be used in decision support. Indeed, these models simulate many spatial processes in interaction, involving a large number of parameters. Sensitivity analysis allows us to select the most influential input parameters, but it has to be adapted to spatial modelling. This study will identify relevant methods that can be transposed to any hydrological and water quality model and improve the fate of pesticide knowledge.
Guoding Chen, Ke Zhang, Sheng Wang, Yi Xia, and Lijun Chao
Geosci. Model Dev., 16, 2915–2937, https://doi.org/10.5194/gmd-16-2915-2023, https://doi.org/10.5194/gmd-16-2915-2023, 2023
Short summary
Short summary
In this study, we developed a novel modeling system called iHydroSlide3D v1.0 by coupling a modified a 3D landslide model with a distributed hydrology model. The model is able to apply flexibly different simulating resolutions for hydrological and slope stability submodules and gain a high computational efficiency through parallel computation. The test results in the Yuehe River basin, China, show a good predicative capability for cascading flood–landslide events.
Jens A. de Bruijn, Mikhail Smilovic, Peter Burek, Luca Guillaumot, Yoshihide Wada, and Jeroen C. J. H. Aerts
Geosci. Model Dev., 16, 2437–2454, https://doi.org/10.5194/gmd-16-2437-2023, https://doi.org/10.5194/gmd-16-2437-2023, 2023
Short summary
Short summary
We present a computer simulation model of the hydrological system and human system, which can simulate the behaviour of individual farmers and their interactions with the water system at basin scale to assess how the systems have evolved and are projected to evolve in the future. For example, we can simulate the effect of subsidies provided on investment in adaptation measures and subsequent effects in the hydrological system, such as a lowering of the groundwater table or reservoir level.
Matthew D. Wilson and Thomas J. Coulthard
Geosci. Model Dev., 16, 2415–2436, https://doi.org/10.5194/gmd-16-2415-2023, https://doi.org/10.5194/gmd-16-2415-2023, 2023
Short summary
Short summary
During flooding, the sources of water that inundate a location can influence impacts such as pollution. However, methods to trace water sources in flood events are currently only available in complex, computationally expensive hydraulic models. We propose a simplified method which can be added to efficient, reduced-complexity model codes, enabling an improved understanding of flood dynamics and its impacts. We demonstrate its application for three sites at a range of spatial and temporal scales.
Bibi S. Naz, Wendy Sharples, Yueling Ma, Klaus Goergen, and Stefan Kollet
Geosci. Model Dev., 16, 1617–1639, https://doi.org/10.5194/gmd-16-1617-2023, https://doi.org/10.5194/gmd-16-1617-2023, 2023
Short summary
Short summary
It is challenging to apply a high-resolution integrated land surface and groundwater model over large spatial scales. In this paper, we demonstrate the application of such a model over a pan-European domain at 3 km resolution and perform an extensive evaluation of simulated water states and fluxes by comparing with in situ and satellite data. This study can serve as a benchmark and baseline for future studies of climate change impact projections and for hydrological forecasting.
Jiangtao Liu, David Hughes, Farshid Rahmani, Kathryn Lawson, and Chaopeng Shen
Geosci. Model Dev., 16, 1553–1567, https://doi.org/10.5194/gmd-16-1553-2023, https://doi.org/10.5194/gmd-16-1553-2023, 2023
Short summary
Short summary
Under-monitored regions like Africa need high-quality soil moisture predictions to help with food production, but it is not clear if soil moisture processes are similar enough around the world for data-driven models to maintain accuracy. We present a deep-learning-based soil moisture model that learns from both in situ data and satellite data and performs better than satellite products at the global scale. These results help us apply our model globally while better understanding its limitations.
Daniel Caviedes-Voullième, Mario Morales-Hernández, Matthew R. Norman, and Ilhan Özgen-Xian
Geosci. Model Dev., 16, 977–1008, https://doi.org/10.5194/gmd-16-977-2023, https://doi.org/10.5194/gmd-16-977-2023, 2023
Short summary
Short summary
This paper introduces the SERGHEI framework and a solver for shallow-water problems. Such models, often used for surface flow and flood modelling, are computationally intense. In recent years the trends to increase computational power have changed, requiring models to adapt to new hardware and new software paradigms. SERGHEI addresses these challenges, allowing surface flow simulation to be enabled on the newest and upcoming consumer hardware and supercomputers very efficiently.
Andrew M. Ireson, Raymond J. Spiteri, Martyn P. Clark, and Simon A. Mathias
Geosci. Model Dev., 16, 659–677, https://doi.org/10.5194/gmd-16-659-2023, https://doi.org/10.5194/gmd-16-659-2023, 2023
Short summary
Short summary
Richards' equation (RE) is used to describe the movement and storage of water in a soil profile and is a component of many hydrological and earth-system models. Solving RE numerically is challenging due to the non-linearities in the properties. Here, we present a simple but effective and mass-conservative solution to solving RE, which is ideal for teaching/learning purposes but also useful in prototype models that are used to explore alternative process representations.
Fang Wang, Di Tian, and Mark Carroll
Geosci. Model Dev., 16, 535–556, https://doi.org/10.5194/gmd-16-535-2023, https://doi.org/10.5194/gmd-16-535-2023, 2023
Short summary
Short summary
Gridded precipitation datasets suffer from biases and coarse resolutions. We developed a customized deep learning (DL) model to bias-correct and downscale gridded precipitation data using radar observations. The results showed that the customized DL model can generate improved precipitation at fine resolutions where regular DL and statistical methods experience challenges. The new model can be used to improve precipitation estimates, especially for capturing extremes at smaller scales.
Malak Sadki, Simon Munier, Aaron Boone, and Sophie Ricci
Geosci. Model Dev., 16, 427–448, https://doi.org/10.5194/gmd-16-427-2023, https://doi.org/10.5194/gmd-16-427-2023, 2023
Short summary
Short summary
Predicting water resource evolution is a key challenge for the coming century.
Anthropogenic impacts on water resources, and particularly the effects of dams and reservoirs on river flows, are still poorly known and generally neglected in global hydrological studies. A parameterized reservoir model is reproduced to compute monthly releases in Spanish anthropized river basins. For global application, an exhaustive sensitivity analysis of the model parameters is performed on flows and volumes.
Nicolas Flipo, Nicolas Gallois, and Jonathan Schuite
Geosci. Model Dev., 16, 353–381, https://doi.org/10.5194/gmd-16-353-2023, https://doi.org/10.5194/gmd-16-353-2023, 2023
Short summary
Short summary
A new approach is proposed to fit hydrological or land surface models, which suffer from large uncertainties in terms of water partitioning between fast runoff and slow infiltration from small watersheds to regional or continental river basins. It is based on the analysis of hydrosystem behavior in the frequency domain, which serves as a basis for estimating water flows in the time domain with a physically based model. It opens the way to significant breakthroughs in hydrological modeling.
Joachim Meyer, John Horel, Patrick Kormos, Andrew Hedrick, Ernesto Trujillo, and S. McKenzie Skiles
Geosci. Model Dev., 16, 233–250, https://doi.org/10.5194/gmd-16-233-2023, https://doi.org/10.5194/gmd-16-233-2023, 2023
Short summary
Short summary
Freshwater resupply from seasonal snow in the mountains is changing. Current water prediction methods from snow rely on historical data excluding the change and can lead to errors. This work presented and evaluated an alternative snow-physics-based approach. The results in a test watershed were promising, and future improvements were identified. Adaptation to current forecast environments would improve resilience to the seasonal snow changes and helps ensure the accuracy of resupply forecasts.
Shuqi Lin, Donald C. Pierson, and Jorrit P. Mesman
Geosci. Model Dev., 16, 35–46, https://doi.org/10.5194/gmd-16-35-2023, https://doi.org/10.5194/gmd-16-35-2023, 2023
Short summary
Short summary
The risks brought by the proliferation of algal blooms motivate the improvement of bloom forecasting tools, but algal blooms are complexly controlled and difficult to predict. Given rapid growth of monitoring data and advances in computation, machine learning offers an alternative prediction methodology. This study tested various machine learning workflows in a dimictic mesotrophic lake and gave promising predictions of the seasonal variations and the timing of algal blooms.
Cited articles
Abatzoglou, J. T. and Brown, T. J.: A comparison of statistical downscaling methods suited for wildfire applications, Int. J. Climatol., 32, 772–780, https://doi.org/10.1002/joc.2312, 2012.
Adam, J. C., Haddeland, I., Su, F., and Lettenmaier, D. P.: Simulation of reservoir influences on annual and seasonal streamflow changes for the Lena, Yenisei, and Ob' rivers, J. Geophys. Res.-Atmos., 112, D2411, https://doi.org/10.1029/2007JD008525, 2007.
Adam, J. C., Hamlet, A. F., and Lettenmaier, D. P.: Implications of global climate change for snowmelt hydrology in the twenty-first century, Hydrol. Process., 23, 962–972, https://doi.org/10.1002/hyp.7201, 2009.
Adam, J. C., Stephens, J. C., Chung, S. H., Brady, M. P., Evans, R. D., Kruger, C. E., Lamb, B. K., Liu, M., Stöckle, C. O., Vaughan, J. K., Rajagopalan, K., Harrison, J. A., Tague, C. L., Kalyanaraman, A., Chen, Y., Guenther, A., Leung, F.-Y., Leung, L. R., Perleberg, A. B., Yoder, J., Allen, E., Anderson, S., Chandrasekharan, B., Malek, K., Mullis, T., Miller, C., Nergui, T., Poinsatte, J., Reyes, J., Zhu, J., Choate, J. S., Jiang, X., Nelson, R., Yoon, J.-H., Yorgey, G. G., Johnson, K., Chinnayakanahalli, K. J., Hamlet, A. F., Nijssen, B., and Walden, V.: BioEarth: Envisioning and developing a new regional earth system model to inform natural and agricultural resource management, Climatic Change, 129, 555–571, https://doi.org/10.1007/s10584-014-1115-2, 2014.
Adamson, D. and Loch, A.,: Possible negative feedbacks from `gold-plating' irrigation infrastructure. Exploring some of the socio-economic realities of sustainable water management in irrigation, Agric. Water Manage., 145, 134–144, https://doi.org/10.1016/j.agwat.2013.09.022, 2014.
Ainsworth, E. A. and Rogers, A.: The response of photosynthesis and stomatal conductance to rising [CO2]: mechanisms and environmental interactions, Plant Cell Environ., 30, 258–270, https://doi.org/10.1111/j.1365-3040.2007.01641.x, 2007.
Allen, E., Forney, W., Harrison, J., Kruger, C., Saari, B., Stephens, J., and Yorgey, G.: BioEarth Water Quality Stakeholder Advisory Workshop Synthesis Report, Washington State University, Groups not represented at the stakeholder workshop, but recommended for future inclusion by attending stakeholders: USDA Natural Resources Conservation Service and Agricultural Research Service, tribal governments, 2015.
Allen, R. G.: Crop evapotranspiration – Guidelines for computing crop water requirements, FAO Irrigation and drainage paper 56, FAO, Rome, 1998.
Alva, A. K., Marcos, J., Stockle, C., Reddy, V. R., and Timlin, D.: A Crop Simulation Model for Predicting Yield and Fate of Nitrogen in Irrigated Potato Rotation Cropping System, J. Crop Improv., 24, 142–152, https://doi.org/10.1080/15427520903581239, 2010.
Andreadis, K. M., Storck, P., and Lettenmaier, D. P.: Modeling snow accumulation and ablation processes in forested environments, Water Resour. Res., 45, W05429, https://doi.org/10.1029/2008WR007042, 2009.
Anwar, M. R., Liu, D. L., Macadam, I., and Kelly, G.: Adapting agriculture to climate change: a review, Theor. Appl. Climatol., 113, 225–245, https://doi.org/10.1007/s00704-012-0780-1, 2013.
Arnold, J. G., Srinivasan, R., Muttiah, R. S., and Williams, J. R.: Large Area Hydrologic Modeling and Assessment Part I: Model Development 1, J. Am. Water Resour. Assoc., 34, 73–89, https://doi.org/10.1111/j.1752-1688.1998.tb05961.x, 1998.
Baker, I. T., Prihodko, L., Denning, A. S., Goulden, M., Miller, S., and da Rocha, H. R.: Seasonal drought stress in the Amazon: Reconciling models and observations, J. Geophys. Res.-Biogeo., 113, G00B01, https://doi.org/10.1029/2007JG000644, 2008.
Baldocchi, D., Falge, E., Gu, L., Olson, R., Hollinger, D., Running, S., Anthoni, P., Bernhofer, C., Davis, K., Evans, R., and Fuentes, J.: FLUXNET: A new tool to study the temporal and spatial variability of ecosystem-scale carbon dioxide, water vapor, and energy flux densities, B. Am. Meteorol. Soc., 82, 2415–2434, 2001.
Barik, M., Adam, J., Yoder, J., Haller, D., Barber, M. E., Hall, S. A., Kruger, C. E., Yorgey, G. G., Downes, M., Stockle, C., Aryal, B., Carlson, T., Damiano, G., Dhungel, S., Einberger, C., Hamel-Reiken, K., Liu, M., Malek, K., McClure, S., Nelson, R., O'Brien, M., Padowski, J., Rajagopalan, K., and Valdez, W.: 2016 Technical Supplement for the Columbia River Basin Long-Term Water Supply and Demand Forecast, Publication No. 16-12-008, Washington Department of Ecology, Olympia, WA, 2017.
Barnett, T. P., Adam, J. C., and Lettenmaier, D. P.: Potential impacts of a warming climate on water availability in snow-dominated regions, Nature, 438, 303–309, https://doi.org/10.1038/nature04141, 2005.
Barnston, A. G. and Schickedanz, P. T.: The Effect of Irrigation on Warm Season Precipitation in the Southern Great Plains, J. Clim. Appl. Meteorol., 23, 865–888, https://doi.org/10.1175/1520-0450(1984)023<0865:TEOIOW>2.0.CO;2, 1984.
Berger, T. and Troost, C.: Agent-based Modelling of Climate Adaptation and Mitigation Options in Agriculture, J. Agric. Econ., 65, 323–348, https://doi.org/10.1111/1477-9552.12045, 2014.
Best, M. J., Pryor, M., Clark, D. B., Rooney, G. G., Essery, R. L. H., Ménard, C. B., Edwards, J. M., Hendry, M. A., Porson, A., Gedney, N., Mercado, L. M., Sitch, S., Blyth, E., Boucher, O., Cox, P. M., Grimmond, C. S. B., and Harding, R. J.: The Joint UK Land Environment Simulator (JULES), model description – Part 1: Energy and water fluxes, Geosci. Model Dev., 4, 677–699, https://doi.org/10.5194/gmd-4-677-2011, 2011.
Biemans, H., Haddeland, I., Kabat, P., Ludwig, F., Hutjes, R. W. A., Heinke, J., von Bloh, W., and Gerten, D.: Impact of reservoirs on river discharge and irrigation water supply during the 20th century, Water Resour. Res., 47, W03509, https://doi.org/10.1029/2009WR008929, 2011.
Bierkens, M. F. P.: Global hydrology 2015: State, trends, and directions, Water Resour. Res., 51, 4923–4947, https://doi.org/10.1002/2015WR017173, 2015.
Boryan, C., Yang, Z., Mueller, R., and Craig, M.: Monitoring US agriculture: the US Department of Agriculture, National Agricultural Statistics Service, Cropland Data Layer Program, Geocarto Int., 26, 341–358, https://doi.org/10.1080/10106049.2011.562309, 2011.
Campbell, G. S.: A simple method for determining unsaturated conductivity from moisture retention data, Soil Sci., 117, 311–314, 1974.
Causapé, J., Quílez, D., and Aragüés, R.: Irrigation Efficiency and Quality of Irrigation Return Flows in the Ebro River Basin: An Overview, Environ. Monit. Assess., 117, 451–461, https://doi.org/10.1007/s10661-006-0763-8, 2004.
Chang, K.-H., Warland, J. S., Bartlett, P. A., Arain, A. M., and Yuan, F.: A Simple Crop Phenology Algorithm in the Land Surface Model CN-CLASS, Agron. J., 106, 297–308, https://doi.org/10.2134/agronj2013.0164, 2014.
Chen, M., Griffis, T. J., Baker, J., Wood, J. D., and Xiao, K.: Simulating crop phenology in the Community Land Model and its impact on energy and carbon fluxes, J. Geophys. Res.-Biogeo., 120, 310–325, https://doi.org/10.1002/2014JG002780, 2015.
Cherkauer, K. A., Bowling, L. C., and Lettenmaier, D. P.: Variable infiltration capacity cold land process model updates, Global Planet. Change, 38, 151–159, https://doi.org/10.1016/S0921-8181(03)00025-0, 2003.
Cohen, W. B., Maiersperger, T. K., Turner, D. P., Ritts, W. D., Pflugmacher, D., Kennedy, R. E., Kirschbaum, A., Running, S. W., Costa, M., and Gower, S. T.: MODIS land cover and LAI collection 4 product quality across nine sites in the western hemisphere, IEEE T. Geosci. Remote, 44, 1843–1857, https://doi.org/10.1109/TGRS.2006.876026, 2006.
Confalonieri, R. and Bocchi, S.: Evaluation of CropSyst for simulating the yield of flooded rice in northern Italy, Eur. J. Agron., 23, 315–326, https://doi.org/10.1016/j.eja.2004.12.002, 2005.
Cosens, B.: Transboundary river governance in the face of uncertainty: resilience theory and the Columbia River Treaty, J. Land Resour. Envtl., 30, 229, 2010.
Crow, W. T., Berg, A. A., Cosh, M. H., Loew, A., Mohanty, B. P., Panciera, R., de Rosnay, P., Ryu, D., and Walker, J. P.: Upscaling sparse ground-based soil moisture observations for the validation of coarse-resolution satellite soil moisture products, Rev. Geophys., 50, RG2002, https://doi.org/10.1029/2011RG000372, 2012.
Douglas, E. M., Beltrán-Przekurat, A., Niyogi, D., Pielke Sr., R. A., and Vörösmarty, C. J.: impact of agricultural intensification and irrigation on land–atmosphere interactions and Indian monsoon precipitation – A mesoscale modeling perspective, Changes in land use and water use and their consequences on climate, including biogeochemical cycles, Global Planet. Change, 67, 117–128, https://doi.org/10.1016/j.gloplacha.2008.12.007, 2009.
Drewniak, B., Song, J., Prell, J., Kotamarthi, V. R., and Jacob, R.: Modeling agriculture in the Community Land Model, Geosci. Model Dev. 6, 495–515, https://doi.org/10.5194/gmd-6-495-2013, 2013.
Dukes, J. S. and Mooney, H. A.: Does global change increase the success of biological invaders?, Trends Ecol. Evol., 14, 135–139, https://doi.org/10.1016/S0169-5347(98)01554-7, 1999.
Elliott, J., Deryng, D., Müller, C., Frieler, K., Konzmann, M., Gerten, D., Glotter, M., Flörke, M., Wada, Y., Best, N., Eisner, S., Fekete, B. M., Folberth, C., Foster, I., Gosling, S. N., Haddeland, I., Khabarov, N., Ludwig, F., Masaki, Y., Olin, S., Rosenzweig, C., Ruane, A. C., Satoh, Y., Schmid, E., Stacke, T., Tang, Q., and Wisser, D.: Constraints and potentials of future irrigation water availability on agricultural production under climate change, P. Natl. Acad. Sci. USA, 111, 3239–3244, https://doi.org/10.1073/pnas.1222474110, 2014.
Elsner, M. M., Cuo, L., Voisin, N., Deems, J. S., Hamlet, A. F., Vano, J. A., Mickelson, K. E. B., Lee, S.-Y., and Lettenmaier, D. P.: Implications of 21st century climate change for the hydrology of Washington State, Climatic Change, 102, 225–260, https://doi.org/10.1007/s10584-010-9855-0, 2010.
FAO and WFP: The state of food insecurity in the world 2013, Mult. Dimens. Food Secur., FAO, Rome, 2013.
Ferguson, I. M. and Maxwell, R. M.: Hydrologic and land–energy feedbacks of agricultural water management practices, Environ. Res. Lett., 6, 014006, https://doi.org/10.1088/1748-9326/6/1/014006, 2011.
Fernández, J. E., Palomo, M. J., Díaz-Espejo, A., Clothier, B. E., Green, S. R., Girón, I. F., and Moreno, F.: Heat-pulse measurements of sap flow in olives for automating irrigation: tests, root flow and diagnostics of water stress, Agric. Water Manage., 51, 99–123, https://doi.org/10.1016/S0378-3774(01)00119-6, 2001.
Ferrer, F., Villar, J. M., and Stockle, C. O.: Evaluation of CropSyst, a cropping systems simulation model, for irrigated corn in the Ebro Valley, Investig. Agrar. Prod. Protección Veg., 15, 237–251, 2000.
Fisher, R. A., Muszala, S., Verteinstein, M., Lawrence, P., Xu, C., McDowell, N. G., Knox, R. G., Koven, C., Holm, J., Rogers, B. M., Spessa, A., Lawrence, D., and Bonan, G.: Taking off the training wheels: the properties of a dynamic vegetation model without climate envelopes, CLM4.5 (ED), Geosci. Model Dev., 8, 3593–3619, https://doi.org/10.5194/gmd-8-3593-2015, 2015.
Franchini, M. and Pacciani, M.: Comparative analysis of several conceptual rainfall–runoff models, J. Hydrol., 122, 161–219, https://doi.org/10.1016/0022-1694(91)90178-K, 1991.
Frank, J. M., Massman, W. J., and Ewers, B. E.: Underestimates of sensible heat flux due to vertical velocity measurement errors in non-orthogonal sonic anemometers, Agr. Forest Meteorol., 171–172, 72–81, https://doi.org/10.1016/j.agrformet.2012.11.005, 2013.
García-Gaines, R. A. and Frankenstein, S.: USCS and the USDA Soil Classification System: Development of a Mapping Scheme, DTIC Document, Cold regions research and engineering lab, Engineer research and development center, Hanover, NH, 2015.
Godfray, H. C. J., Beddington, J. R., Crute, I. R., Haddad, L., Lawrence, D., Muir, J. F., Pretty, J., Robinson, S., Thomas, S. M., and Toulmin, C.: Food Security: The Challenge of Feeding 9 Billion People, Science, 327, 812–818, https://doi.org/10.1126/science.1185383, 2010.
Gordon, L. J., Peterson, G. D., and Bennett, E. M.: Agricultural modifications of hydrological flows create ecological surprises, Trends Ecol. Evol., 23, 211–219, https://doi.org/10.1016/j.tree.2007.11.011, 2008.
Gosain, A. K., Rao, S., Srinivasan, R., and Reddy, N. G.: Return-flow assessment for irrigation command in the Palleru river basin using SWAT model, Hydrol. Process., 19, 673–682., https://doi.org/10.1002/hyp.5622, 2005.
Gosling, S. N. and Arnell, N. W.: Simulating current global river runoff with a global hydrological model: model revisions, validation, and sensitivity analysis, Hydrol. Process., 25, 1129–1145, https://doi.org/10.1002/hyp.7727, 2011.
Haddeland, I., Lettenmaier, D. P., and Skaugen, T.: Effects of irrigation on the water and energy balances of the Colorado and Mekong river basins, J. Hydrol., 324, 210–223, https://doi.org/10.1016/j.jhydrol.2005.09.028, 2006.
Haddeland, I., Heinke, J., Biemans, H., Eisner, S., Flörke, M., Hanasaki, N., Konzmann, M., Ludwig, F., Masaki, Y., Schewe, J., Stacke, T., Tessler, Z. D., Wada, Y., and Wisser, D.: Global water resources affected by human interventions and climate change, P. Natl. Acad. Sci. USA, 111, 3251–3256, https://doi.org/10.1073/pnas.1222475110, 2014.
Hall, S. A., Adam, J., Barik, M., Yoder, J., Brday, M. P., Haller, D., Barber, M. E., Kruger, C. E., Yorgey, G. G., Downes, M., Stockle, C., Aryal, B., Carlson, T., Damiano, G., Dhungel, S., Einberger, C., Hamel-Reiken, K., Liu, M., Malek, K., McClure, S., Nelson, R., O'Brien, M., Padowski, J., Rajagopalan, K., and Valdez, W.: 2016 Washington State Legislative Report, Columbia River Basin Long-Term Water Supply and Demand Forecast, No. 16-12-001, Washington Department of Ecology, Olympia, WA, 2017.
Hamlet, A. F. and Lettenmaier, D. P.: Effects of Climate Change on Hydrology and Water Resources in the Columbia River Basin1, J. Am. Water Resour. Assoc., 35, 1597–1623, https://doi.org/10.1111/j.1752-1688.1999.tb04240.x, 1999.
Hanasaki, N., Inuzuka, T., Kanae, S., and Oki, T.: An estimation of global virtual water flow and sources of water withdrawal for major crops and livestock products using a global hydrological model, J. Hydrol., 384, 232–244, https://doi.org/10.1016/j.jhydrol.2009.09.028, 2010.
Hansen, J., Challinor, A., Ines, A., Wheeler, T., and Moron, V.: Translating climate forecasts into agricultural terms: advances and challenges, Clim. Res., 33, 27–41, https://doi.org/10.3354/cr033027, 2006.
Harding, K. J., Twine, T. E., and Lu, Y.: Effects of Dynamic Crop Growth on the Simulated Precipitation Response to Irrigation, Earth Interact., 19, 1–31, https://doi.org/10.1175/EI-D-15-0030.1, 2015.
Howden, S. M., Soussana, J.-F., Tubiello, F. N., Chhetri, N., Dunlop, M., and Meinke, H.: Adapting agriculture to climate change, P. Natl. Acad. Sci. USA, 104, 19691–19696, https://doi.org/10.1073/pnas.0701890104, 2007.
Hubble, J. D.: Yakima River Basin Integrated Water Resource Management Plan: Final Programmatic Environmental Impact Statement, Fish Benefits Analysis Technical Memorandum, US Bureau of Reclamation, 2012.
Jägermeyr, J., Gerten, D., Heinke, J., Schaphoff, S., Kummu, M., and Lucht, W.: Water savings potentials of irrigation systems: global simulation of processes and linkages, Hydrol. Earth Syst. Sci., 19, 3073–3091, https://doi.org/10.5194/hess-19-3073-2015, 2015.
Jalota, S. K., Singh, S., Chahal, G. B. S., Ray, S. S., Panigraghy, S., and Bhupinder-Singh, K. B.: Soil texture, climate and management effects on plant growth, grain yield and water use by rainfed maize–wheat cropping system: Field and simulation study, Agric. Water Manage., 97, 83–90, https://doi.org/10.1016/j.agwat.2009.08.012, 2010.
Jones, J. W., Hoogenboom, G., Porter, C. H., Boote, K. J., Batchelor, W. D., Hunt, L. A., Wilkens, P. W., Singh, U., Gijsman, A. J., and Ritchie, J. T.: The DSSAT cropping system model, Modelling Cropping Systems: Science, Software and Applications, Eur. J. Agron., 18, 235–265, https://doi.org/10.1016/S1161-0301(02)00107-7, 2003.
Kang, Y., Wang, Q.-G., and Liu, H.-J.: Winter wheat canopy interception and its influence factors under sprinkler irrigation, Agric. Water Manage., 74, 189–199, https://doi.org/10.1016/j.agwat.2004.11.004, 2005.
Karimi, T., Stockle, C. O., Higgins, S. S., and Nelson, R. L.: Projected Dryland Cropping System Shifts in the Pacific Northwest in Response to Climate Change, Front. Ecol. Evol, 5, 20, https://doi.org/10.3389/fevo.2017.00020, 2017.
Klein, T., Calanca, P., Holzkämper, A., Lehmann, N., Roesch, A., and Fuhrer, J.: Using farm accountancy data to calibrate a crop model for climate impact studies, Agric. Syst., 111, 23–33, https://doi.org/10.1016/j.agsy.2012.05.001, 2012.
Kohl, R. A. and Wright, J. L.: Air Temperature and Vapor Pressure Changes Caused by Sprinkler Irrigation, Agron. J., 66, 85–88, https://doi.org/10.2134/agronj1974.00021962006600010024x, 1974.
Kraucunas, I., Clarke, L., Dirks, J., Hathaway, J., Hejazi, M., Hibbard, K., Huang, M., Jin, C., Kintner-Meyer, M., van Dam, K. K., Leung, R., Li, H.-Y., Moss, R., Peterson, M., Rice, J., Scott, M., Thomson, A., Voisin, N., and West, T.: Investigating the nexus of climate, energy, water, and land at decision-relevant scales: the Platform for Regional Integrated Modeling and Analysis (PRIMA), Climatic Changem 129, 573–588, https://doi.org/10.1007/s10584-014-1064-9, 2014.
Kurukulasuriya, P. and Rosenthal, S.: Climate change and agriculture: a review of impacts and adaptations, Environment department papers no. 91, Climate change series, World Bank, Washington, D.C., available at: https://openknowledge.worldbank.org/handle/10986/16616 License: CC BY 3.0 IGO (last access: August 2017), 2003.
Leakey, A. D. B., Ainsworth, E. A., Bernacchi, C. J., Rogers, A., Long, S. P., and Ort, D. R.: Elevated CO2 effects on plant carbon, nitrogen, and water relations: six important lessons from FACE, J. Exp. Bot., 60, 2859–2876, https://doi.org/10.1093/jxb/erp096, 2009.
Leng, G., Huang, M., Tang, Q., Sacks, W. J., Lei, H., and Leung, L. R.: Modeling the effects of irrigation on land surface fluxes and states over the conterminous United States: Sensitivity to input data and model parameters, J. Geophys. Res.-Atmos., 118, 9789–9803, https://doi.org/10.1002/jgrd.50792, 2013.
Leuning, R., van Gorsel, E., Massman, W. J., and Isaac, P. R.: Reflections on the surface energy imbalance problem, Agr. Forest Meteorol., 156, 65–74, https://doi.org/10.1016/j.agrformet.2011.12.002, 2012.
Liang, X., Lettenmaier, D. P., Wood, E. F., and Burges, S. J.: A simple hydrologically based model of land surface water and energy fluxes for general circulation models, J. Geophys. Res.-Atmos., 99, 14415–14428, https://doi.org/10.1029/94JD00483, 1994.
Liang, X., Lettenmaier, D. P., and Wood, E. F.: One-dimensional statistical dynamic representation of subgrid spatial variability of precipitation in the two-layer variable infiltration capacity model, J. Geophys. Res. Atmos., 101, 21403–21422, https://doi.org/10.1029/96JD01448, 1996.
Liu, H.-J. and Kang, Y.: Effect of sprinkler irrigation on microclimate in the winter wheat field in the North China Plain, Agric. Water Manage., 84, 3–19, https://doi.org/10.1016/j.agwat.2006.01.015, 2006.
Liu, M., Adam, J. C., and Hamlet, A. F.: Spatial-temporal variations of evapotranspiration and runoff/precipitation ratios responding to the changing climate in the Pacific Northwest during 1921–2006: Trends in ET and R/P across the PNW, J. Geophys. Res.-Atmos., 118, 380–394, https://doi.org/10.1029/2012JD018400, 2013.
Liu, X., Chen, F., Barlage, M., Zhou, G., and Niyogi, D.: Noah-MP-Crop: Introducing dynamic crop growth in the Noah-MP land surface model, J. Geophys. Res.-Atmos., 121, 2016JD025597, https://doi.org/10.1002/2016JD025597, 2016.
Lobell, D., Bala, G., Mirin, A., Phillips, T., Maxwell, R., and Rotman, D.: Regional Differences in the Influence of Irrigation on Climate, J. Climate, 22, 2248–2255, https://doi.org/10.1175/2008JCLI2703.1, 2009.
Lobell, D. B., Bonfils, C. J., Kueppers, L. M., and Snyder, M. A.: Irrigation cooling effect on temperature and heat index extremes. Geophys. Res. Lett., 35, L09705, https://doi.org/10.1029/2008GL034145, 2008.
Lohmann, D., Raschke, E., Nijssen, B., and Lettenmaier, D. P.: Regional scale hydrology: I. Formulation of the VIC-2L model coupled to a routing model, Hydrolog. Sci. J., 43, 131–141, https://doi.org/10.1080/02626669809492107, 1998.
Long, S. P. and Ort, D. R.: More than taking the heat: crops and global change, Curr. Opin. Plant Biol., 13, 240–247, https://doi.org/10.1016/j.pbi.2010.04.008, 2010.
Long, S. P., Marshall-Colon, A., and Zhu, X.-G.: Meeting the Global Food Demand of the Future by Engineering Crop Photosynthesis and Yield Potential, Cell, 161, 56–66, https://doi.org/10.1016/j.cell.2015.03.019, 2015.
Lu, Y., Jin, J., and Kueppers, L. M.: Crop growth and irrigation interact to influence surface fluxes in a regional climate-cropland model (WRF3.3-CLM4crop), Clim. Dynam., 45, 3347–3363, https://doi.org/10.1007/s00382-015-2543-z, 2015.
Mahrt, L.: Flux Sampling Errors for Aircraft and Towers, J. Atmos. Ocean. Tech., 15, 416–429, https://doi.org/10.1175/1520-0426(1998)015<0416:FSEFAA>2.0.CO;2, 1998.
Malek, K. and Peters, R.: Wetting Pattern Models for Drip Irrigation: New Empirical Model, J. Irrig. Drain. Eng., 137, 530–536, https://doi.org/10.1061/(ASCE)IR.1943-4774.0000320, 2011.
Malek, K., Stockle, C., Adam, J., and Peters, T.: Climate change reduces water availability for agriculture by decreasing non-evaporative irrigation losses, in review, 2017a.
Malek, K., Adam, J. C., Stockle, C. O., Brady, M., and Rajagopalan, K.: When should irrigators invest in more water-efficient technologies as an adaptation to climate change?, in preparation, 2017b.
Maurer, E. P., Wood, A. W., Adam, J. C., Lettenmaier, D. P., and Nijssen, B.: A Long-Term Hydrologically Based Dataset of Land Surface Fluxes and States for the Conterminous United States. J. Climate, 15, 3237–3251, https://doi.org/10.1175/1520-0442(2002)015<3237:ALTHBD>2.0.CO;2, 2002.
McMaster, G. S. and Wilhelm, W. W.: Growing degree-days: one equation, two interpretations, Agr. Forest Meteorol., 87, 291–300, https://doi.org/10.1016/S0168-1923(97)00027-0, 1997.
Michalakes, J., Dudhia, J., Gill, D., Henderson, T., Klemp, J., Skamarock, W., and Wang, W.: The weather research and forecast model: software architecture and performance, in: Proceedings of the 11th ECMWF Workshop on the Use of High Performance Computing in Meteorology, World Scientific, Singapore,, 156–168, 2005.
Milly, P. C. D., Malyshev, S. L., Shevliakova, E., Dunne, K. A., Findell, K. L., Gleeson, T., Liang, Z., Phillipps, P., Stouffer, R. J., and Swenson, S.: An Enhanced Model of Land Water and Energy for Global Hydrologic and Earth-System Studies, J. Hydrometeorol., 15, 1739–1761, https://doi.org/10.1175/JHM-D-13-0162.1, 2014.
Mitchell, K. E., Lohmann, D., Houser, P. R., Wood, E. F., Schaake, J. C., Robock, A., Cosgrove, B. A., Sheffield, J., Duan, Q., Luo, L., Higgins, R. W., Pinker, R. T., Tarpley, J. D., Lettenmaier, D. P., Marshall, C. H., Entin, J. K., Pan, M., Shi, W., Koren, V., Meng, J., Ramsay, B. H., and Bailey, A. A.: The multi-institution North American Land Data Assimilation System (NLDAS): Utilizing multiple GCIP products and partners in a continental distributed hydrological modeling system, J. Geophys. Res.-Atmos., 109, D07S90, https://doi.org/10.1029/2003JD003823, 2004.
Mote, P. W., Hamlet, A. F., Clark, M. P., and Lettenmaier, D. P.: Declining mountain snowpack in western North America, B. Am. Meteorol. Soc., 86, 39–49, https://doi.org/10.1175/BAMS-86-1-39, 2005.
Nafziger, E.: Illinois Agronomy Handbook now online – ACES News: College of ACES, University of Illinois, available at” http://news.aces.illinois.edu/news/illinois-agronomy-handbook-now-online (last access: 1 February 2016), 2013.
Neitsch, S. L., Arnold, J. G., Kiniry, J. R., and Williams, J. R.: Soil and water assessment tool theoretical documentation version 2009, Texas Water Resources Institute, 2011.
Nelson Co.: Product information and documentation, http://www.nelsonirrigation.com/resources/, last access: 19 June 2014.
Nijs, I., Ferris, R., Blum, H., Hendrey, G., and Impens, I.: Stomatal regulation in a changing climate: a field study using Free Air Temperature Increase (FATI) and Free Air CO2 Enrichment (FACE), Plant Cell Environ., 20, 1041–1050, https://doi.org/10.1111/j.1365-3040.1997.tb00680.x, 1997.
Ozdogan, M., Rodell, M., Beaudoing, H. K., and Toll, D. L.: Simulating the Effects of Irrigation over the United States in a Land Surface Model Based on Satellite-Derived Agricultural Data, J. Hydrometeorol., 11, 171–184, https://doi.org/10.1175/2009JHM1116.1, 2010.
Pachepsky, Y. A. and Rawls, W. J.: Accuracy and Reliability of Pedotransfer Functions as Affected by Grouping Soils, Soil Sci. Soc. Am. J., 63, 1748–1757, https://doi.org/10.2136/sssaj1999.6361748x, 1999.
Pala, M., Stockle, C. O., and Harris, H. C.: Simulation of durum wheat (Triticum turgidum ssp. durum) growth under different water and nitrogen regimes in a mediterranean environment using CropSyst, Agric. Syst., 51, 147–163, https://doi.org/10.1016/0308-521X(95)00043-5, 1996.
Pannkuk, C. D., Stockle, C. O., and Papendick, R. I.: Evaluating CropSyst simulations of wheat management in a wheat-fallow region of the US pacific northwest, Agric. Syst., 57, 121–134, https://doi.org/10.1016/S0308-521X(97)00076-0, 1998.
Parry, M., Rosenzweig, C., and Livermore, M.: Climate change, global food supply and risk of hunger, Philos. T. Roy. Soc. B, 360, 2125–2138, https://doi.org/10.1098/rstb.2005.1751, 2005.
Philip, J. R.: The Theory of Infiltration, available at: http://journals.lww.com/soilsci/Fulltext/1957/05000/THE_THEORY_OF_INFILTRATION__1__THE_INFILTRATION.2.aspx (last access: 20 October 2014), 1957.
Pielke Sr., R. A., Adegoke, J. O., Chase, T. N., Marshall, C. H., Matsui, T., and Niyogi, D.: A new paradigm for assessing the role of agriculture in the climate system and in climate change, The Contribution of Agriculture to the State of Climate, Agr. Forest Meteorol., 142, 234–254, https://doi.org/10.1016/j.agrformet.2006.06.012, 2007.
Playán, E., Salvador, R., Faci, J. M., Zapata, N., Martínez-Cob, A., and Sánchez, I.: Day and night wind drift and evaporation losses in sprinkler solid-sets and moving laterals, Agric. Water Manage., 76, 139–159, https://doi.org/10.1016/j.agwat.2005.01.015, 2005.
Pokhrel, Y. N., Hanasaki, N., Koirala, S., Cho, J., Yeh, P. J.-F., Kim, H., Kanae, S., and Oki, T.: Incorporating Anthropogenic Water Regulation Modules into a Land Surface Model, J. Hydrometeorol., 13, 255–269, https://doi.org/10.1175/JHM-D-11-013.1, 2011.
Pokhrel, Y. N., Hanasaki, N., Wada, Y., and Kim, H.: Recent progresses in incorporating human land–water management into global land surface models toward their integration into Earth system models, Wiley Interdiscip. Rev. Water, 3, 548–574, https://doi.org/10.1002/wat2.1150, 2016.
Puma, M. J. and Cook, B. I.: Effects of irrigation on global climate during the 20th century, J. Geophys. Res.-Atmos., 115, D16120, https://doi.org/10.1029/2010JD014122, 2010.
RainBird: Master Part Book: Rain Bird Manuals, Product Literature, Performance Data & Replacement Parts for Agriculture Irrigation Systems, Rain Bird Corporation, Azusa, CA, 2014.
Rajagopalan, K., Chinnayakanahalli, K. J., Stockle, C., Nelson, R., Hamlet, A. F., Brady, M. P., Barber, M. E., Kruger, C., Yorgey, G. G., Malek, K., Dinesh, S., and Adam, J.: Impacts of regional climate change on agricultural production in the Columbia River Basin, in review, 2017.
Rawls, W. J., Ahuja, L. R., Brakensiek, D. L., and Shirmohammadi, A.: Infiltration and soil water movement, in: Handbook of hydrology, McGraw-Hil, New York, 1–51, 1992.
Robertson, G. P. and Swinton, S. M.: Reconciling agricultural productivity and environmental integrity: a grand challenge for agriculture, Front. Ecol. Environ., 3, 38–46, https://doi.org/10.1890/1540-9295(2005)003[0038:RAPAEI]2.0.CO;2, 2005.
Robinson, D. A., Campbell, C. S., Hopmans, J. W., Hornbuckle, B. K., Jones, S. B., Knight, R., Ogden, F., Selker, J., and Wendroth, O.: Soil Moisture Measurement for Ecological and Hydrological Watershed-Scale Observatories: A Review, Vadose Zone J., 7, 358–389, https://doi.org/10.2136/vzj2007.0143, 2008.
Rosenzweig, C., Iglesias, A., Yang, X. B., Epstein, P. R., and Chivian, E.: Climate Change and Extreme Weather Events; Implications for Food Production, Plant Diseases, and Pests, Global Change Hum. Health, 2, 90–104, https://doi.org/10.1023/A:1015086831467, 2001.
Rost, S., Gerten, D., Bondeau, A., Lucht, W., Rohwer, J., and Schaphoff, S.: Agricultural green and blue water consumption and its influence on the global water system, Water Resour. Res., 44, W09405, https://doi.org/10.1029/2007WR006331, 2008.
Rowan, T. S. C., Maier, H. R., Connor, J., and Dandy, G. C.: An integrated dynamic modeling framework for investigating the impact of climate change and variability on irrigated agriculture, Water Resour. Res., 47, W07520, https://doi.org/10.1029/2010WR010195, 2011.
Rushi, B. R., Barik, M. G., Lee, S. Y., Rajagopalan, K., Petrie, J., Barber, M. E., Boll, J., and Adam, J. C.: Columbia River Treaty Renegotiation: Potential Impacts on Agriculture, Hydropower and Flood Risk in the Context of an Altered Climate, AGU Fall Meet. Abstr., 43, 2016.
Sakamoto, T., Wardlow, B. D., Gitelson, A. A., Verma, S. B., Suyker, A. E., and Arkebauer, T. J.: A Two-Step Filtering approach for detecting maize and soybean phenology with time-series MODIS data, Remote Sens. Environ., 114, 2146–2159, https://doi.org/10.1016/j.rse.2010.04.019, 2010.
Saxton, K. E., Rawls, W. J., Romberger, J. S., and Papendick, R. I.: Estimating Generalized Soil-water Characteristics from Texture, Soil Sci. Soc. Am. J., 50, 1031, https://doi.org/10.2136/sssaj1986.03615995005000040039x, 1986.
Scanlon, B. R., Jolly, I., Sophocleous, M., and Zhang, L.: Global impacts of conversions from natural to agricultural ecosystems on water resources: Quantity versus quality, Water Resour. Res., 43, W03437, https://doi.org/10.1029/2006WR005486, 2007.
Schwalm, C. R., Williams, C. A., Schaefer, K., Anderson, R., Arain, M. A., Baker, I., Barr, A., Black, T. A., Chen, G., Chen, J. M., Ciais, P., Davis, K. J., Desai, A., Dietze, M., Dragoni, D., Fischer, M. L., Flanagan, L. B., Grant, R., Gu, L., Hollinger, D., Izaurralde, R. C., Kucharik, C., Lafleur, P., Law, B. E., Li, L., Li, Z., Liu, S., Lokupitiya, E., Luo, Y., Ma, S., Margolis, H., Matamala, R., McCaughey, H., Monson, R. K., Oechel, W. C., Peng, C., Poulter, B., Price, D. T., Riciutto, D. M., Riley, W., Sahoo, A. K., Sprintsin, M., Sun, J., Tian, H., Tonitto, C., Verbeeck, H., and Verma, S. B.: A model-data intercomparison of CO2 exchange across North America: Results from the North American Carbon Program site synthesis, J. Geophys. Res.-Biogeo., 115, G00H05, https://doi.org/10.1029/2009JG001229, 2010.
Schwarz, G. E. and Alexander, R. B.: State Soil Geographic (STATSGO) Data Base for the Conterminous United States, Open-File Rep., available at: https://pubs.er.usgs.gov/publication/ofr95449 (last access: August 2017), 1995.
Skamarock, W. C., Klemp, J., Dudhia, J., Gill, D. O., Barker, D. M., Duda, M. G., Huang, X.-Y., Wang, W., and Powers, J.: A Description of the Advanced Research WRF Version 3, NCAR Technical Note NCAR/TN-475+STR, https://doi.org/10.5065/D68S4MVH, 2008.
Smit, B. and Skinner, M. W.: Adaptation options in agriculture to climate change: a typology, Mitig. Adapt. Strateg. Glob. Change, 7, 85–114, https://doi.org/10.1023/A:1015862228270, 2002.
Smith, B., Burton, I., Klein, R. J. T., and Wandel, J.: An Anatomy of Adaptation to Climate Change and Variability, Climatic Change, 45, 223–251, https://doi.org/10.1023/A:1005661622966, 2000.
Sorooshian, S., Li, J., Hsu, K., and Gao, X.: Influence of irrigation schemes used in regional climate models on evapotranspiration estimation: Results and comparative studies from California's Central Valley agricultural regions, J. Geophys. Res.-Atmos., 117, D06107, https://doi.org/10.1029/2011JD016978, 2012.
Sridhar, V.: Tracking the Influence of Irrigation on Land Surface Fluxes and Boundary Layer Climatology, J. Contemp. Water Res. Educ., 152, 79–93, https://doi.org/10.1111/j.1936-704X.2013.03170.x, 2013.
Stöckle, C. O., Williams, J. R., Rosenberg, N. J., and Jones, C. A.: A method for estimating the direct and climatic effects of rising atmospheric carbon dioxide on growth and yield of crops: Part I – Modification of the EPIC model for climate change analysis, Agric. Syst., 38, 225–238, https://doi.org/10.1016/0308-521X(92)90067-X, 1992.
Stöckle, C. O., Martin, S. A., and Campbell, G. S.: CropSyst, a cropping systems simulation model: Water/nitrogen budgets and crop yield, Agric. Syst., 46, 335–359, https://doi.org/10.1016/0308-521X(94)90006-2, 1994.
Stöckle, C. O., Donatelli, M., and Nelson, R.: CropSyst, a cropping systems simulation model, Eur. J. Agron., 18, 289–307, https://doi.org/10.1016/S1161-0301(02)00109-0, 2003.
Takata, K., Emori, S., and Watanabe, T.: Development of the minimal advanced treatments of surface interaction and runoff, Global Planet. Change, 38, 209–222, https://doi.org/10.1016/S0921-8181(03)00030-4, 2003.
Tao, F., Yokozawa, M., Hayashi, Y., and Lin, E.: Changes in agricultural water demands and soil moisture in China over the last half-century and their effects on agricultural production, Agr. Forest Meteorol., 118, 251–261, https://doi.org/10.1016/S0168-1923(03)00107-2, 2003.
Thompson, A. L., Gilley, J. R., and Norman, J. M.: A sprinkler water droplet evaporation and plant canopy model. II. Model application, T. ASAE, 36, 743–750, 1993.
Thornton, P., Thornton, M., Mayer, B., Wilhelmi, N., Wei, Y., and Cook, R.: DAYMET: Daily Surface Weather on a 1 km Grid for North America, 1980–2008, Oak Ridge Natl. Lab. Distrib. Act. Arch. Cent., Oak Ridge, TN, 2012.
Tietje, O. and Hennings, V.: Accuracy of the saturated hydraulic conductivity prediction by pedo-transfer functions compared to the variability within FAO textural classes, Geoderma, 69, 71–84, https://doi.org/10.1016/0016-7061(95)00050-X, 1996.
Uddin, J., Smith, R. J., Hancock, N. H., and Foley, J. P.: Evaporation and sapflow dynamics during sprinkler irrigation of cotton, Agric. Water Manage., 125, 35–45, https://doi.org/10.1016/j.agwat.2013.04.001, 2013.
USBR: Technical Memorandum Yakima River Basin Study – WaterSMART Program Subtask 2.1, Tech. Memo. Yakima River Basin Study – WaterSMART Program Subtask 21, 2010.
Vano, J. A., Scott, M. J., Voisin, N., Stöckle, C. O., Hamlet, A. F., Mickelson, K. E. B., Elsner, M. M., and Lettenmaier, D. P.: Climate change impacts on water management and irrigated agriculture in the Yakima River Basin, Washington, USA, Climatic Change, 102, 287–317, https://doi.org/10.1007/s10584-010-9856-z, 2010.
Vérant, S., Laval, K., Polcher, J., and De Castro, M.: Sensitivity of the Continental Hydrological Cycle to the Spatial Resolution over the Iberian Peninsula, J. Hydrometeorol., 5, 267–285, https://doi.org/10.1175/1525-7541(2004)005<0267:SOTCHC>2.0.CO;2, 2004.
Verzano, K., Bärlund, I., Flörke, M., Lehner, B., Kynast, E., Voß, F., and Alcamo, J.: Modeling variable river flow velocity on continental scale: Current situation and climate change impacts in Europe, J. Hydrol., 424–425, 238–251, https://doi.org/10.1016/j.jhydrol.2012.01.005, 2012.
Waha, K., Müller, C., Bondeau, A., Dietrich, J. P., Kurukulasuriya, P., Heinke, J., and Lotze-Campen, H.: Adaptation to climate change through the choice of cropping system and sowing date in sub-Saharan Africa, Global Environ. Change, 23, 130–143., https://doi.org/:0.1016/j.gloenvcha.2012.11.001, 2013.
Wei, J., Dirmeyer, P. A., Wisser, D., Bosilovich, M. G., and Mocko, D. M.: Where Does the Irrigation Water Go? An Estimate of the Contribution of Irrigation to Precipitation Using MERRA, J. Hydrometeorol., 14, 275–289, https://doi.org/10.1175/JHM-D-12-079.1, 2013.
Wheeler, T. and von Braun, J.: Climate Change Impacts on Global Food Security, Science, 341, 508–513, https://doi.org/10.1126/science.1239402, 2013.
Williams, J. R., Renard, K. G., and Dyke, P. T.: EPIC: A new method for assessing erosion's effect on soil productivity, J. Soil Water Conserv., 38, 381–383, 1983.
Williams, J. R., Jones, C. A., Kiniry, J. R., and Spanel, D. A.: The EPIC crop growth model, T. ASAE, 32, 497–511, 1989.
Wilson, K., Goldstein, A., Falge, E., Aubinet, M., Baldocchi, D., Berbigier, P., Bernhofer, C., Ceulemans, R., Dolman, H., Field, C., Grelle, A., Ibrom, A., Law, B. E., Kowalski, A., Meyers, T., Moncrieff, J., Monson, R., Oechel, W., Tenhunen, J., Valentini, R., and Verma, S.: Energy balance closure at FLUXNET sites, FLUXNET 2000 Synthesis, Agr. Forest Meteorol., 113, 223–243, https://doi.org/10.1016/S0168-1923(02)00109-0, 2002.
Wisser, D., Fekete, B. M., Vörösmarty, C. J., and Schumann, A. H.: Reconstructing 20th century global hydrography: a contribution to the Global Terrestrial Network-Hydrology (GTN-H), Hydrol. Earth Syst. Sci., 14, 1–24, https://doi.org/10.5194/hess-14-1-2010, 2010.
Yorgey, G. G., Rajagopalan, K., Chinnayakanahalli, K., Brady, M. P., Barber, M. E., Nelson, R., Stockle, C. O., Kruger, C. E., Dinesh, S., Malek, K., and Yoder, J.: Columbia River Basin Long-Term Water Supply and Demand Forecast, available at: http://www.ecy.wa.gov/biblio/1112011.html (last access: 3 April 2013), 2011.
Yuan, F., Xie, Z., Liu, Q., Yang, H., Su, F., Liang, X., and Ren, L.: An application of the VIC-3L land surface model and remote sensing data in simulating streamflow for the Hanjiang River basin, Can. J. Remote Sens., 30, 680–690, https://doi.org/10.5589/m04-032, 2004.
Zagona, E. A., Fulp, T. J., Shane, R., Magee, T., and Goranflo, H. M.: Riverware: A Generalized Tool for Complex Reservoir System Modeling, J. Am. Water Resour. Assoc., 37, 913–929, https://doi.org/10.1111/j.1752-1688.2001.tb05522.x, 2001.
Zeng, X., Drewniak, B. A., and Constantinescu, E. M.: Calibration of the Crop model in the Community Land Model, Geosci. Model Dev. Discuss., 6, 379–398, https://doi.org/10.5194/gmdd-6-379-2013, 2013.
Zhao, R. J., Zhang, Y. L., and Fang, L. R.: The Xinanjiang model Hydrological Forecasting Proceedings Oxford Symposium, IASH, Oxford, 1980.