Articles | Volume 9, issue 2
https://doi.org/10.5194/gmd-9-823-2016
https://doi.org/10.5194/gmd-9-823-2016
Model description paper
 | 
29 Feb 2016
Model description paper |  | 29 Feb 2016

CellLab-CTS 2015: continuous-time stochastic cellular automaton modeling using Landlab

Gregory E. Tucker, Daniel E. J. Hobley, Eric Hutton, Nicole M. Gasparini, Erkan Istanbulluoglu, Jordan M. Adams, and Sai Siddartha Nudurupati

Related authors

A landslide runout model for sediment transport, landscape evolution, and hazard assessment applications
Jeffrey Keck, Erkan Istanbulluoglu, Benjamin Campforts, Gregory Tucker, and Alexander Horner-Devine
Earth Surf. Dynam., 12, 1165–1191, https://doi.org/10.5194/esurf-12-1165-2024,https://doi.org/10.5194/esurf-12-1165-2024, 2024
Short summary
CSDMS Data Components: data–model integration tools for Earth surface processes modeling
Tian Gan, Gregory E. Tucker, Eric W. H. Hutton, Mark D. Piper, Irina Overeem, Albert J. Kettner, Benjamin Campforts, Julia M. Moriarty, Brianna Undzis, Ethan Pierce, and Lynn McCready
Geosci. Model Dev., 17, 2165–2185, https://doi.org/10.5194/gmd-17-2165-2024,https://doi.org/10.5194/gmd-17-2165-2024, 2024
Short summary
CSDMS: a community platform for numerical modeling of Earth surface processes
Gregory E. Tucker, Eric W. H. Hutton, Mark D. Piper, Benjamin Campforts, Tian Gan, Katherine R. Barnhart, Albert J. Kettner, Irina Overeem, Scott D. Peckham, Lynn McCready, and Jaia Syvitski
Geosci. Model Dev., 15, 1413–1439, https://doi.org/10.5194/gmd-15-1413-2022,https://doi.org/10.5194/gmd-15-1413-2022, 2022
Short summary
Snow dune growth increases polar heat fluxes
Kelly Kochanski, Gregory Tucker, and Robert Anderson
The Cryosphere Discuss., https://doi.org/10.5194/tc-2021-205,https://doi.org/10.5194/tc-2021-205, 2021
Manuscript not accepted for further review
Short summary
Short communication: Landlab v2.0: a software package for Earth surface dynamics
Katherine R. Barnhart, Eric W. H. Hutton, Gregory E. Tucker, Nicole M. Gasparini, Erkan Istanbulluoglu, Daniel E. J. Hobley, Nathan J. Lyons, Margaux Mouchene, Sai Siddhartha Nudurupati, Jordan M. Adams, and Christina Bandaragoda
Earth Surf. Dynam., 8, 379–397, https://doi.org/10.5194/esurf-8-379-2020,https://doi.org/10.5194/esurf-8-379-2020, 2020
Short summary

Related subject area

Hydrology
Generalised drought index: a novel multi-scale daily approach for drought assessment
João António Martins Careto, Rita Margarida Cardoso, Ana Russo, Daniela Catarina André Lima, and Pedro Miguel Matos Soares
Geosci. Model Dev., 17, 8115–8139, https://doi.org/10.5194/gmd-17-8115-2024,https://doi.org/10.5194/gmd-17-8115-2024, 2024
Short summary
Development and performance of a high-resolution surface wave and storm surge forecast model: application to a large lake
Laura L. Swatridge, Ryan P. Mulligan, Leon Boegman, and Shiliang Shan
Geosci. Model Dev., 17, 7751–7766, https://doi.org/10.5194/gmd-17-7751-2024,https://doi.org/10.5194/gmd-17-7751-2024, 2024
Short summary
Deep dive into hydrologic simulations at global scale: harnessing the power of deep learning and physics-informed differentiable models (δHBV-globe1.0-hydroDL)
Dapeng Feng, Hylke Beck, Jens de Bruijn, Reetik Kumar Sahu, Yusuke Satoh, Yoshihide Wada, Jiangtao Liu, Ming Pan, Kathryn Lawson, and Chaopeng Shen
Geosci. Model Dev., 17, 7181–7198, https://doi.org/10.5194/gmd-17-7181-2024,https://doi.org/10.5194/gmd-17-7181-2024, 2024
Short summary
PyEt v1.3.1: a Python package for the estimation of potential evapotranspiration
Matevž Vremec, Raoul A. Collenteur, and Steffen Birk
Geosci. Model Dev., 17, 7083–7103, https://doi.org/10.5194/gmd-17-7083-2024,https://doi.org/10.5194/gmd-17-7083-2024, 2024
Short summary
Prediction of hysteretic matric potential dynamics using artificial intelligence: application of autoencoder neural networks
Nedal Aqel, Lea Reusser, Stephan Margreth, Andrea Carminati, and Peter Lehmann
Geosci. Model Dev., 17, 6949–6966, https://doi.org/10.5194/gmd-17-6949-2024,https://doi.org/10.5194/gmd-17-6949-2024, 2024
Short summary

Cited articles

Alonso, J. and Herrmann, H.: Shape of the tail of a two-dimensional sandpile, Phys. Rev. Lett., 76, 4911, https://doi.org/10.1103/PhysRevLett.76.4911, 1996.
Anderson, R. S.: Eolian ripples as examples of self-organization in geomorphological systems, Earth-Sci. Rev., 29, 77–96, 1990.
Anderson, R. S. and Bunas, K. L.: Grain size segregation and stratigraphy in aeolian ripples modelled with a cellular automaton, Nature, 365, 740–743, 1993.
Ashton, A., Murray, A. B., and Arnoult, O.: Formation of coastline features by large-scale instabilities induced by high-angle waves, Nature, 414, 296–300, 2001.
Bailey, R. and Arnold, L.: Statistical modelling of single grain quartz distributions and an assessment of procedures for estimating burial dose, Quaternary Sci. Rev., 25, 2475–2502, 2006.
Download
Short summary
This paper presents a new Python-language software library, called CellLab-CTS, that enables rapid creation of continuous-time stochastic (CTS) cellular automata models. These models are quite useful for simulating the behavior of natural systems, but can be time-consuming to program. CellLab-CTS allows users to set up models with a minimum of effort, and thereby focus on the science rather than the software.