Articles | Volume 8, issue 3
Geosci. Model Dev., 8, 829–844, 2015
https://doi.org/10.5194/gmd-8-829-2015
Geosci. Model Dev., 8, 829–844, 2015
https://doi.org/10.5194/gmd-8-829-2015

Model description paper 27 Mar 2015

Model description paper | 27 Mar 2015

EDDA 1.0: integrated simulation of debris flow erosion, deposition and property changes

H. X. Chen and L. M. Zhang

Related authors

Assessing the annual risk of vehicles being hit by a rainfall-induced landslide: a case study on Kennedy Road in Wan Chai, Hong Kong
Meng Lu, Jie Zhang, Lulu Zhang, and Limin Zhang
Nat. Hazards Earth Syst. Sci., 20, 1833–1846, https://doi.org/10.5194/nhess-20-1833-2020,https://doi.org/10.5194/nhess-20-1833-2020, 2020
Short summary
EDDA 2.0: integrated simulation of debris flow initiation and dynamics considering two initiation mechanisms
Ping Shen, Limin Zhang, Hongxin Chen, and Ruilin Fan
Geosci. Model Dev., 11, 2841–2856, https://doi.org/10.5194/gmd-11-2841-2018,https://doi.org/10.5194/gmd-11-2841-2018, 2018
Short summary
Characterizing the spatial variations and correlations of large rainstorms for landslide study
Liang Gao, Limin Zhang, and Mengqian Lu
Hydrol. Earth Syst. Sci., 21, 4573–4589, https://doi.org/10.5194/hess-21-4573-2017,https://doi.org/10.5194/hess-21-4573-2017, 2017
Short summary
Spatial characteristics of severe storms in Hong Kong
L. Gao and L. M. Zhang
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hessd-12-6981-2015,https://doi.org/10.5194/hessd-12-6981-2015, 2015
Manuscript not accepted for further review
Short summary

Related subject area

Hydrology
A distributed simple dynamical systems approach (dS2 v1.0) for computationally efficient hydrological modelling at high spatio-temporal resolution
Joost Buitink, Lieke A. Melsen, James W. Kirchner, and Adriaan J. Teuling
Geosci. Model Dev., 13, 6093–6110, https://doi.org/10.5194/gmd-13-6093-2020,https://doi.org/10.5194/gmd-13-6093-2020, 2020
Short summary
Simulating second-generation herbaceous bioenergy crop yield using the global hydrological model H08 (v.bio1)
Zhipin Ai, Naota Hanasaki, Vera Heck, Tomoko Hasegawa, and Shinichiro Fujimori
Geosci. Model Dev., 13, 6077–6092, https://doi.org/10.5194/gmd-13-6077-2020,https://doi.org/10.5194/gmd-13-6077-2020, 2020
Short summary
KLT-IV v1.0: image velocimetry software for use with fixed and mobile platforms
Matthew T. Perks
Geosci. Model Dev., 13, 6111–6130, https://doi.org/10.5194/gmd-13-6111-2020,https://doi.org/10.5194/gmd-13-6111-2020, 2020
Short summary
Simulating human impacts on global water resources using VIC-5
Bram Droppers, Wietse H. P. Franssen, Michelle T. H. van Vliet, Bart Nijssen, and Fulco Ludwig
Geosci. Model Dev., 13, 5029–5052, https://doi.org/10.5194/gmd-13-5029-2020,https://doi.org/10.5194/gmd-13-5029-2020, 2020
Short summary
The Ensemble Framework For Flash Flood Forecasting (EF5) v1.2: description and case study
Zachary L. Flamig, Humberto Vergara, and Jonathan J. Gourley
Geosci. Model Dev., 13, 4943–4958, https://doi.org/10.5194/gmd-13-4943-2020,https://doi.org/10.5194/gmd-13-4943-2020, 2020
Short summary

Cited articles

Alexandrov, Y., Laronne, J. B., and Reid, I.: Suspended sediment concentration and its variation with water discharge in a dryland ephemeral channel, northern Negev, Israel, J. Arid Environ., 53, 73–84, 2003.
Akan, A. O. and Yen, B. C.: Diffusion-wave flood routing in channel networks, J. Hydr. Eng. Div.-ASCE, 107, 719–732, 1981.
Archfield, S. A., Steeves, P. A., Guthrie, J. D., and Ries III, K. G.: Towards a publicly available, map-based regional software tool to estimate unregulated daily streamflow at ungauged rivers, Geosci. Model Dev., 6, 101–115, https://doi.org/10.5194/gmd-6-101-2013, 2013.
Armanini, A., Fraccarollo, L., and Rosatti, G.: Two-dimensional simulation of debris flows in erodible channels, Computat. Geosci., 35, 993–1006, 2009.
Bartelt, P., Buehler, Y., Christen, M., Deubelbeiss, Y., Graf, C., McArdell, B., Salz, M., and Schneider, M.: A numerical model for debris flow in research and practice, User Manual v1.5 Debris Flow, WSL Institute for Snow and Avalanche Research SLF, 2013.
Download
Short summary
A new numerical model, EDDA, is developed for simulating debris-flow erosion, deposition, and associated changes in debris mass, properties, and topography. An adaptive time stepping algorithm is adopted to assure both numerical accuracy and computational efficiency. The performance of the model has been verified through four numerical tests and a large-scale case study. EDDA can be a powerful tool for debris-flow risk assessment in a large area and real-time landslide warning.