Articles | Volume 8, issue 11
https://doi.org/10.5194/gmd-8-3681-2015
https://doi.org/10.5194/gmd-8-3681-2015
Model description paper
 | 
12 Nov 2015
Model description paper |  | 12 Nov 2015

GO2OGS 1.0: a versatile workflow to integrate complex geological information with fault data into numerical simulation models

T. Fischer, D. Naumov, S. Sattler, O. Kolditz, and M. Walther

Related authors

FINAM – is not a model (v1.0): a new Python-based model coupling framework
Sebastian Müller, Martin Lange, Thomas Fischer, Sara König, Matthias Kelbling, Jeisson Javier Leal Rojas, and Stephan Thober
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2024-144,https://doi.org/10.5194/gmd-2024-144, 2024
Preprint under review for GMD
Short summary
Improved regional-scale groundwater representation by the coupling of the mesoscale Hydrologic Model (mHM v5.7) to the groundwater model OpenGeoSys (OGS)
Miao Jing, Falk Heße, Rohini Kumar, Wenqing Wang, Thomas Fischer, Marc Walther, Matthias Zink, Alraune Zech, Luis Samaniego, Olaf Kolditz, and Sabine Attinger
Geosci. Model Dev., 11, 1989–2007, https://doi.org/10.5194/gmd-11-1989-2018,https://doi.org/10.5194/gmd-11-1989-2018, 2018

Related subject area

Earth and space science informatics
The effect of lossy compression of numerical weather prediction data on data analysis: a case study using enstools-compression 2023.11
Oriol Tintó Prims, Robert Redl, Marc Rautenhaus, Tobias Selz, Takumi Matsunobu, Kameswar Rao Modali, and George Craig
Geosci. Model Dev., 17, 8909–8925, https://doi.org/10.5194/gmd-17-8909-2024,https://doi.org/10.5194/gmd-17-8909-2024, 2024
Short summary
GNNWR: an open-source package of spatiotemporal intelligent regression methods for modeling spatial and temporal nonstationarity
Ziyu Yin, Jiale Ding, Yi Liu, Ruoxu Wang, Yige Wang, Yijun Chen, Jin Qi, Sensen Wu, and Zhenhong Du
Geosci. Model Dev., 17, 8455–8468, https://doi.org/10.5194/gmd-17-8455-2024,https://doi.org/10.5194/gmd-17-8455-2024, 2024
Short summary
Random forests with spatial proxies for environmental modelling: opportunities and pitfalls
Carles Milà, Marvin Ludwig, Edzer Pebesma, Cathryn Tonne, and Hanna Meyer
Geosci. Model Dev., 17, 6007–6033, https://doi.org/10.5194/gmd-17-6007-2024,https://doi.org/10.5194/gmd-17-6007-2024, 2024
Short summary
An improved global pressure and zenith wet delay model with optimized vertical correction considering the spatiotemporal variability in multiple height-scale factors
Chunhua Jiang, Xiang Gao, Huizhong Zhu, Shuaimin Wang, Sixuan Liu, Shaoni Chen, and Guangsheng Liu
Geosci. Model Dev., 17, 5939–5959, https://doi.org/10.5194/gmd-17-5939-2024,https://doi.org/10.5194/gmd-17-5939-2024, 2024
Short summary
kNNDM CV: k-fold nearest-neighbour distance matching cross-validation for map accuracy estimation
Jan Linnenbrink, Carles Milà, Marvin Ludwig, and Hanna Meyer
Geosci. Model Dev., 17, 5897–5912, https://doi.org/10.5194/gmd-17-5897-2024,https://doi.org/10.5194/gmd-17-5897-2024, 2024
Short summary

Cited articles

Ayachit, U.: The ParaView Guide Community Edition, United States of America: Kitware Inc., available at: http://www.paraview.org/paraview-guide/, last access: 10 August 2015.
BFN: Bundesamt fuer Naturschutz, Kartendienst Flussauen in Deutschland, available at: http://www.bfn.de/, last access: 5 February 2015.
Bilke, L., Fischer, T., Helbig, C., Krawczyk, C., Nagel, T., Naumov, D., Paulick, S., Rink, K., Sachse, A., Schelenz, S., Walther, M., Watanabe, N., Zehner, B., Ziesch, J., and Kolditz, O.: TESSIN VISLab-laboratory for scientific visualization, Environ. Earth Sci., 72, 3881–3899, https://doi.org/10.1007/s12665-014-3785-5, 2014.
Bourke, P.: GOCAD developer kit: ASCII file data format, available at: http://paulbourke.net/dataformats/gocad/gocad.pdf (last access: 12 October 2015), 2008.
de Hoyos, A., Viennot, P., Ledoux, E., Matray, J. M., Rocher, M., and Certes, C.: Influence of thermohaline effects on groundwater modelling – application to the Paris sedimentary Basin, J. Hydrol., 464–465, 12–26, https://doi.org/10.1016/j.jhydrol.2012.06.014, 2012.
Download
Short summary
We present a workflow to convert geological models into the open-source VTU format for usage in numerical simulation models. Tackling relevant scientific questions or engineering tasks often involves multidisciplinary approaches. Conversion workflows are needed between the diverse tools of the various disciplines. Our approach offers an open-source, platform-independent, robust, and comprehensible method that is potentially useful for a multitude of similar environmental studies.