Articles | Volume 8, issue 10
https://doi.org/10.5194/gmd-8-3215-2015
https://doi.org/10.5194/gmd-8-3215-2015
Model description paper
 | 
09 Oct 2015
Model description paper |  | 09 Oct 2015

An open and extensible framework for spatially explicit land use change modelling: the lulcc R package

S. Moulds, W. Buytaert, and A. Mijic

Related authors

User priorities for hydrological monitoring infrastructures supporting research and innovation
William Veness, Alejandro Dussaillant, Gemma Coxon, Simon De Stercke, Gareth H. Old, Matthew Fry, Jonathan G. Evans, and Wouter Buytaert
EGUsphere, https://doi.org/10.5194/egusphere-2025-2035,https://doi.org/10.5194/egusphere-2025-2035, 2025
This preprint is open for discussion and under review for Hydrology and Earth System Sciences (HESS).
Short summary
Physically based modelling of glacier evolution under climate change in the tropical Andes
Jonathan D. Mackay, Nicholas E. Barrand, David M. Hannah, Emily Potter, Nilton Montoya, and Wouter Buytaert
The Cryosphere, 19, 685–712, https://doi.org/10.5194/tc-19-685-2025,https://doi.org/10.5194/tc-19-685-2025, 2025
Short summary
Modelling water quantity and quality for integrated water cycle management with the Water Systems Integrated Modelling framework (WSIMOD) software
Barnaby Dobson, Leyang Liu, and Ana Mijic
Geosci. Model Dev., 17, 4495–4513, https://doi.org/10.5194/gmd-17-4495-2024,https://doi.org/10.5194/gmd-17-4495-2024, 2024
Short summary
Panta Rhei benchmark dataset: socio-hydrological data of paired events of floods and droughts
Heidi Kreibich, Kai Schröter, Giuliano Di Baldassarre, Anne F. Van Loon, Maurizio Mazzoleni, Guta Wakbulcho Abeshu, Svetlana Agafonova, Amir AghaKouchak, Hafzullah Aksoy, Camila Alvarez-Garreton, Blanca Aznar, Laila Balkhi, Marlies H. Barendrecht, Sylvain Biancamaria, Liduin Bos-Burgering, Chris Bradley, Yus Budiyono, Wouter Buytaert, Lucinda Capewell, Hayley Carlson, Yonca Cavus, Anaïs Couasnon, Gemma Coxon, Ioannis Daliakopoulos, Marleen C. de Ruiter, Claire Delus, Mathilde Erfurt, Giuseppe Esposito, Didier François, Frédéric Frappart, Jim Freer, Natalia Frolova, Animesh K. Gain, Manolis Grillakis, Jordi Oriol Grima, Diego A. Guzmán, Laurie S. Huning, Monica Ionita, Maxim Kharlamov, Dao Nguyen Khoi, Natalie Kieboom, Maria Kireeva, Aristeidis Koutroulis, Waldo Lavado-Casimiro, Hong-Yi Li, Maria Carmen LLasat, David Macdonald, Johanna Mård, Hannah Mathew-Richards, Andrew McKenzie, Alfonso Mejia, Eduardo Mario Mendiondo, Marjolein Mens, Shifteh Mobini, Guilherme Samprogna Mohor, Viorica Nagavciuc, Thanh Ngo-Duc, Huynh Thi Thao Nguyen, Pham Thi Thao Nhi, Olga Petrucci, Nguyen Hong Quan, Pere Quintana-Seguí, Saman Razavi, Elena Ridolfi, Jannik Riegel, Md Shibly Sadik, Nivedita Sairam, Elisa Savelli, Alexey Sazonov, Sanjib Sharma, Johanna Sörensen, Felipe Augusto Arguello Souza, Kerstin Stahl, Max Steinhausen, Michael Stoelzle, Wiwiana Szalińska, Qiuhong Tang, Fuqiang Tian, Tamara Tokarczyk, Carolina Tovar, Thi Van Thu Tran, Marjolein H. J. van Huijgevoort, Michelle T. H. van Vliet, Sergiy Vorogushyn, Thorsten Wagener, Yueling Wang, Doris E. Wendt, Elliot Wickham, Long Yang, Mauricio Zambrano-Bigiarini, and Philip J. Ward
Earth Syst. Sci. Data, 15, 2009–2023, https://doi.org/10.5194/essd-15-2009-2023,https://doi.org/10.5194/essd-15-2009-2023, 2023
Short summary
Brief communication: Inclusiveness in designing an early warning system for flood resilience
Tahmina Yasmin, Kieran Khamis, Anthony Ross, Subir Sen, Anita Sharma, Debashish Sen, Sumit Sen, Wouter Buytaert, and David M. Hannah
Nat. Hazards Earth Syst. Sci., 23, 667–674, https://doi.org/10.5194/nhess-23-667-2023,https://doi.org/10.5194/nhess-23-667-2023, 2023
Short summary

Related subject area

Earth and space science informatics
A GPU parallelization of the neXtSIM-DG dynamical core (v0.3.1)
Robert Jendersie, Christian Lessig, and Thomas Richter
Geosci. Model Dev., 18, 3017–3040, https://doi.org/10.5194/gmd-18-3017-2025,https://doi.org/10.5194/gmd-18-3017-2025, 2025
Short summary
The Earth System Grid Federation (ESGF) Virtual Aggregation (CMIP6 v20240125)
Ezequiel Cimadevilla, Bryan N. Lawrence, and Antonio S. Cofiño
Geosci. Model Dev., 18, 2461–2478, https://doi.org/10.5194/gmd-18-2461-2025,https://doi.org/10.5194/gmd-18-2461-2025, 2025
Short summary
Can AI be enabled to perform dynamical downscaling? A latent diffusion model to mimic kilometer-scale COSMO5.0_CLM9 simulations
Elena Tomasi, Gabriele Franch, and Marco Cristoforetti
Geosci. Model Dev., 18, 2051–2078, https://doi.org/10.5194/gmd-18-2051-2025,https://doi.org/10.5194/gmd-18-2051-2025, 2025
Short summary
Moving beyond post hoc explainable artificial intelligence: a perspective paper on lessons learned from dynamical climate modeling
Ryan J. O'Loughlin, Dan Li, Richard Neale, and Travis A. O'Brien
Geosci. Model Dev., 18, 787–802, https://doi.org/10.5194/gmd-18-787-2025,https://doi.org/10.5194/gmd-18-787-2025, 2025
Short summary
Remote-sensing-based forest canopy height mapping: some models are useful, but might they provide us with even more insights when combined?
Nikola Besic, Nicolas Picard, Cédric Vega, Jean-Daniel Bontemps, Lionel Hertzog, Jean-Pierre Renaud, Fajwel Fogel, Martin Schwartz, Agnès Pellissier-Tanon, Gabriel Destouet, Frédéric Mortier, Milena Planells-Rodriguez, and Philippe Ciais
Geosci. Model Dev., 18, 337–359, https://doi.org/10.5194/gmd-18-337-2025,https://doi.org/10.5194/gmd-18-337-2025, 2025
Short summary

Cited articles

Aldwaik, S. Z. and Pontius, R. G.: Intensity analysis to unify measurements of size and stationarity of land changes by interval, category, and transition, Landscape Urban Plan., 106, 103–114, https://doi.org/10.1016/j.landurbplan.2012.02.010, 2012.
Beale, C. M., Lennon, J. J., Yearsley, J. M., Brewer, M. J., and Elston, D. A.: Regression analysis of spatial data, Ecol. Lett., 13, 246–264, https://doi.org/10.1111/j.1461-0248.2009.01422.x, 2010.
Bivand, R. S., Pebesma, E., and Gomez-Rubio, V.: Applied Spatial Data Analysis with R, 2nd Edn., Springer, NY, available at: http://www.asdar-book.org/ (last access: 28 August 2015), 2013.
Cai, Y., Judd, K. L., and Lontzek, T. S.: Open science is necessary, Nature Climate Change, 2, 299–299, 2012.
Câmara, G., Vinhas, L., Ferreira, K. R., De Queiroz, G. R., De Souza, R. C. M., Monteiro, A. M. V., De Carvalho, M. T., Casanova, M. A., and De Freitas, U. M.: TerraLib: an open source GIS library for large-scale environmental and socio-economic applications, in: Open Source Approaches in Spatial Data Handling, 247–270, Springer, 2008.
Download
Short summary
The contribution of lulcc is to provide a free and open-source framework for land use change modelling. The software, which is provided as an R package, addresses problems associated with the current paradigm of closed-source, specialised land use change modelling software which disrupt the scientific process. It is an attempt to move the discipline towards open and transparent science and to ensure land use change models are accessible to scientists working across the geosciences.
Share