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Abstract. We present the lulcc software package, an object-

oriented framework for land use change modelling written in

the R programming language. The contribution of the work

is to resolve the following limitations associated with the

current land use change modelling paradigm: (1) the source

code for model implementations is frequently unavailable,

severely compromising the reproducibility of scientific re-

sults and making it impossible for members of the com-

munity to improve or adapt models for their own purposes;

(2) ensemble experiments to capture model structural uncer-

tainty are difficult because of fundamental differences be-

tween implementations of alternative models; and (3) addi-

tional software is required because existing applications fre-

quently perform only the spatial allocation of change. The

package includes a stochastic ordered allocation procedure

as well as an implementation of the CLUE-S algorithm. We

demonstrate its functionality by simulating land use change

at the Plum Island Ecosystems site, using a data set included

with the package. It is envisaged that lulcc will enable future

model development and comparison within an open environ-

ment.

1 Introduction

Spatially explicit land use change models are used to un-

derstand and quantify key processes that affect land use and

land cover change and simulate past and future change (Veld-

kamp and Lambin, 2001; Mas et al., 2014). These mod-

els are commonly implemented in compiled languages such

as C/C++ and Fortran and distributed as software pack-

ages or extensions to proprietary geographic information

systems such as ArcGIS or Idrisi. As Rosa et al. (2014)

pointed out, it is uncommon for the source code of land use

change modelling software to be made available (e.g. Ver-

burg et al., 2002; Soares-Filho et al., 2002; Verburg and Over-

mars, 2009; Schaldach et al., 2011). While it is true that the

concepts and algorithms implemented by the software are

normally described in scientific journal articles, this fails to

ensure the reproducibility of scientific results (Peng, 2011;

Morin et al., 2012), even in the hypothetical case of a per-

fectly described model (Ince et al., 2012). In addition, run-

ning binary versions of software makes it difficult to detect

silent faults (faults that change the model output without ob-

vious signals), whereas these are more likely to be identi-

fied if the source code is open (Cai et al., 2012). Moreover, it

forces duplication of work and makes it difficult for members

of the scientific community to improve the code or adapt it

for their own purposes (Morin et al., 2012; Pebesma et al.,

2012; Steiniger and Hunter, 2013). In this paper we describe

the development of lulcc, a new R package designed to foster

an open approach to land use change science.

Current software packages for land use change modelling

usually exist as specialised applications that implement one

algorithm. Indeed, it is common for applications to perform

only one part of the modelling process. For example, the

Conversion of Land Use and its Effects at Small regional

extent (CLUE-S) software only performs spatial allocation,

requiring the user to prepare model input and conduct the sta-

tistical analysis upon which the allocation procedure depends

elsewhere (Verburg et al., 2002). This is time-consuming and

increases the likelihood of user errors because inputs to the

various modelling stages must be transferred manually be-

tween applications. Furthermore, very few programs include
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methods to validate model output, which could be one reason

for the lack of proper validation of models in the literature,

as noted by Rosa et al. (2014). The lack of a common inter-

face amongst land use change models is problematic for the

community because there is widespread uncertainty about

the appropriate model form and structure for modelling ap-

plications (Verburg et al., 2013). Under these circumstances

it is useful to experiment with various models to identify the

model that performs best in terms of calibration and vali-

dation (Schmitz et al., 2009). Alternatively, ensemble mod-

elling may be used to understand the impact of structural un-

certainty on model outcomes (Knutti and Sedláček, 2012).

However, while some land use change model comparison

studies have been carried out (e.g. Pérez-Vega et al., 2012;

Mas et al., 2014; Rosa et al., 2014), fundamental differences

between models in terms of scale, resolution and model in-

puts prevent the widespread use of ensemble land use change

predictions (Rosa et al., 2014). As a result, the uncertainty

associated with model outcomes is rarely communicated in

a formal way, raising questions about the utility of such mod-

els (Pontius and Spencer, 2005).

An alternative approach is to develop frameworks that al-

low several modelling approaches to be implemented within

the same environment. One such application is PCRaster,

a free and open-source geographic information system (GIS)

that includes additional capabilities for spatially explicit dy-

namic modelling (Schmitz et al., 2009). The PCRcalc script-

ing language and development environment allows users

to build models with native PCRaster operations such as

map algebra and neighbourhood functions. Alternatively, the

PCRaster application programming interface (API) allows

users to extend its functionality in various programming lan-

guages using native and external data types (Schmitz et al.,

2009). For example, the current version of FALLOW (van

Noordwijk, 2002; Mulia et al., 2014), a deductive land use

change model, is built using the PCRaster framework. Ter-

raME (Carneiro et al., 2013) is a platform to develop mod-

els for simulating interactions between society and the envi-

ronment. It provides more flexibility than PCRaster because

models can be composed of coupled sub-models with var-

ious temporal and spatial resolutions (Moreira et al., 2009;

Carneiro et al., 2013). The platform is built on the open-

source TerraLib geospatial library (Câmara et al., 2008),

which handles several spatio-temporal data types, includes

an API for coupling the library with R (R Core Team, 2014)

to perform spatial statistics, and supports dynamic modelling

with cellular automata. The LuccME extension to TerraME

includes implementations of CLUE-S and its predecessor,

CLUE (Veldkamp and Fresco, 1996; Verburg et al., 1999),

written in Lua.

The R environment is a free and open-source implementa-

tion of the S programming language, a language designed for

programming with data (Chambers, 2008). Although the de-

velopment of R is strongly rooted in statistical software and

data analysis, it is increasingly used for dynamic simulation

modelling in diverse fields (Petzoldt and Rinke, 2007). Ad-

ditionally, in the last decade it has become widely used by

the spatial analysis community, largely due to the sp pack-

age (Pebesma and Bivand, 2005; Bivand et al., 2013) which

unified many alternative approaches for dealing with spa-

tial data in R and allowed subsequent package developers

to use a common framework for spatial analysis. The raster

package (Hijmans, 2014) provides many functions for raster

data manipulation commonly associated with GIS software.

Building on these capabilities, several R packages have been

created for dynamic, spatially explicit ecological modelling

(e.g. Petzoldt and Rinke, 2007; Fiske and Chandler, 2011). In

addition, two recent land use change models have been writ-

ten for the R environment. StocModLCC (Rosa et al., 2013)

is a stochastic inductive land use change model for tropical

deforestation, while SIMLANDER (Hewitt et al., 2013) is

a stochastic cellular automata model to simulate urbanisa-

tion. Thus, R is well-suited for spatially explicit land use

change modelling. To date, however, R has not been used

to develop a framework for land use change model develop-

ment and comparison. The remainder of this paper is divided

into four sections. First, we discuss the principle design goals

of lulcc. We then describe the software and demonstrate its

main functionality with an example application to the Plum

Island Ecosystems site, using data included with the package.

This is followed by a discussion of the strengths and main

limitations of the software and approach, as well as areas for

future development. Finally, we draw brief conclusions from

the project.

2 Design goals

The first design goal of lulcc is to provide a framework that

allows users to perform various stages of the modelling pro-

cess illustrated by Fig. 1 within the same environment. It

therefore includes methods to process and explore model

input, fit and evaluate predictive models, allocate land use

change spatially, validate the model and visualise model out-

puts. This provides many advantages over specialised soft-

ware applications. First, it improves efficiency and reduces

the likelihood of user errors because intermediate inputs and

outputs exist in the same environment (Fiske and Chandler,

2011; Pebesma et al., 2012). Second, it encourages interac-

tive model building because separate aspects of the procedure

can easily be revisited. Third, it is straightforward to experi-

ment with different model set-ups. Finally, and perhaps most

importantly, it improves the reproducibility of scientific re-

sults because the entire modelling process can be expressed

programmatically and be communicated as such with reason-

able effort (Pebesma et al., 2012).

The lulcc software package is intended to be an alternative

to the current paradigm of closed source, specialised soft-

ware programs that, in our view, disrupt the scientific pro-

cess. Thus, the second design goal is to create an open and
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Figure 1. Diagram showing the general methodology used for in-

ductive land use change modelling applications, adapted from Mas

et al. (2014). The input land use/land cover data can be a single

categorical map showing the pattern of land use/land cover at one

time point (LULC (t1)) or a series of maps showing historical land

use/land cover transitions (LULCC (t1–t0)).

extensible framework allowing users to examine the source

code, modify it for their own purposes and freely distribute

changes to the wider community. The package exploits the

openness of the R system, particularly with respect to the

package system, which allows developers to contribute code,

documentation and data sets in a standardised format to

repositories such as the Comprehensive R Archive Network

(CRAN) (Pebesma et al., 2012; Claes et al., 2014). As a re-

sult of this philosophy, R users have access to a wide range

of sophisticated tools for statistical modelling, data manage-

ment, spatial analysis and visualisation.

One of the consequences of providing a modelling frame-

work in R is that users of the software must become program-

mers (Chambers, 2000). We recognise that this represents

a different approach to the current practice of providing land

use change software packages with graphical user interfaces

(GUIs), and acknowledge that for users unfamiliar with pro-

gramming it could present a steep learning curve. Therefore,

the third design goal is to provide well-documented software

that is easy to use and accessible for a users with varying lev-

els of programming experience. The package includes com-

plete working examples to allow beginners to start using the

package immediately from the R command shell, while more

advanced users should be able to develop modelling applica-

tions as scripts. Furthermore, the package is designed to be

extensible so that users can contribute new or existing meth-

ods. Similarly, the source code of lulcc is accessible so that

users can locate the methods in use and understand algorithm

implementations. Acknowledging that many scientists lack

any formal training in programming (Joppa et al., 2013; Wil-

son et al., 2014), we hope this final goal will ensure the soft-

ware is useful for educational purposes as well as scientific

research.

3 Software description

To achieve the design goals, we adopted an object-oriented

approach. This provides a formal structure for the modelling

framework that allows the various stages of land use change

modelling applications to be handled efficiently. Further-

more, it encourages the reuse of code because objects can

be used multiple times within the same application or across

several different applications. It is extensible because it is

straightforward to extend existing classes using the concept

of inheritance, or create new methods for existing classes. In

lulcc we use the S4 class system (Chambers, 1998, 2008),

which requires classes and methods to be formally defined.

This system is more rigorous than the alternative S3 sys-

tem because objects are validated against the class definition

when they are created, ensuring that objects behave consis-

tently when they are passed to functions and methods. Fig-

ure 2 shows the class structure of lulcc, while Table 1 shows

the functions included with the package. Here we describe

the main components of lulcc integrated with an example ap-

plication for the Plum Island Ecosystems data set. The script

used in this paper, including the code used to create the var-

ious figures, is supplied with the package as a “demo”. In-

structions to obtain the package and run the demo script are

provided in the “Code availability” section.

3.1 Data

The failure to provide driving data for land use change mod-

elling exercises alongside published literature is identified

by Rosa et al. (2014) as a major weakness of the disci-

pline. The lulcc package includes two data sets that have

been widely used in the land use change community, allow-

ing users to quickly start exploring the modelling framework.

The first of these contains data from the Plum Island Ecosys-

tems Long Term Ecological Research site in northeast Mas-

sachusetts (http://pie-lter.ecosystems.mbl.edu/), which in re-

cent decades has undergone extensive land use change from

forest to residential use (Aldwaik and Pontius, 2012). The

data set included in lulcc was originally developed as part of

the MassGIS program (MassGIS, 2015) but has been pro-

cessed by Pontius and Parmentier (2014). Land use maps

depicting forest, residential and other uses are available for

1985, 1991 and 1999 together with maps of three predictor

variables: elevation, slope and distance to built land in 1985.

The second data set includes information from Sibuyan Is-

land in the Philippines, and is a modified version of the data

set supplied with the CLUE-S model (Verburg et al., 2002).
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Table 1. Functions included in the lulcc package.

Function name Description

AgreementBudget Calculate agreement budget (Pontius et al., 2011)

getPredictiveModelInputData Create data.frame with variables required to fit predictive models

allocate Perform spatial allocation using various methods

approxExtrapDemand Create a demand scenario by linear extrapolation

compareAUC Compare the area under the curve (AUC) for various predictive models

crossTabulate Calculate the contingency table for two categorical raster maps

FigureOfMerit Calculate the figure of merit (Pontius et al., 2011)

glmModels Fit multiple glm models

NeighbRasterStack Calculate neighbourhood values

partition Partition Raster∗ map

PredictionList Create a ROCR prediction object for each model in a PredictiveModelList object

PerformanceList Create a ROCR performance object for each prediction object contained in a PredictionList object

predict Make predictions using a PredictiveModelList object

randomForestModels Fit multiple random forest models

rpartModels Fit multiple recursive partitioning and regression tree models

resample Resample an ExpVarRasterList object to the parameters of an ObsLulcRasterStack object

ThreeMapComparison Calculate three-dimensional contingency tables (Pontius et al., 2011)

total Sum the total number of cells belonging to each class of a categorical raster map

3.2 Data processing

One of the most challenging aspects of land use change mod-

elling is to obtain and process the correct input data. Cur-

rently, lulcc requires all spatially explicit input data to exist

either in the file system, in any of the formats supported by

raster, or in the R workspace as raster objects (RasterLayer,

RasterStack or RasterBrick). The most fundamental input re-

quired by land use change models is an initial map of ob-

served land use, which is usually obtained from classified

remotely sensed data. This map represents the initial condi-

tion for model simulations and, for inductive modelling, is

used to fit predictive models. Sometimes it is more useful to

consider observed land use transitions: in this case an addi-

tional map for an earlier time point is required, as shown by

Fig. 1. Ideally, two more observed land use maps for sub-

sequent time points should be obtained for calibrating and

validating the land use change model (Pontius et al., 2004a).

The current version of the software only supports categorical

land use data, which means that each pixel must belong to

exactly one category.

In lulcc, observed land use data are represented by the

ObsLulcRasterStack class. In the following code snippet we

load the package into the current session, create an ObsLul-

cRasterStack object for the Plum Island Ecosystems data set

and plot the result (Fig. 3):

> library(lulcc)

> data(pie)

> obs

<- ObsLulcRasterStack

(x=pie,

pattern="lu",

categories=c(1,2,3),

labels=c("Forest","Built","Other"),

t=c(0,6,14))

> plot(obs)

The ObsLulcRasterStack object is important to land use

change studies in lulcc because it defines the spatial domain

of subsequent operations. The t argument in the construc-

tor function specifies the time points associated with the ob-

served land use maps. The first time point must always be

zero; if additional maps are present they should be associated

with time points greater than zero, even in backcast models.

In most land use change modelling applications the time step

between two time points represents 1 year but there is no re-

quirement for this to be the case.

A useful starting point in land use change modelling is to

obtain a transition matrix for observed land use maps from

two time points to identify the main historical transitions in

the study region (Pontius et al., 2004b), which can be used

as the basis for further research into the processes driving

change. In lulcc we use the crossTabulate function for

this purpose:

> crossTabulate(x=obs, times=c(0,14))

Forest Built Other

Forest 44107 4250 656

Built 11 36957 154

Other 1259 2248 23921

The output of this command reveals that for the Plum Is-

land Ecosystems site the dominant change between 1985 and

1999 was the conversion from forest to built areas.

Inductive and deductive land use change models pre-

dict the allocation of change based on spatially explicit

Geosci. Model Dev., 8, 3215–3229, 2015 www.geosci-model-dev.net/8/3215/2015/
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Figure 2. Class diagram in the Unified Modeling Language (UML) for lulcc, showing the main classes and methods included in the package.

biophysical and socioeconomic explanatory variables. These

may be static, such as elevation or geology, or dynamic,

such as maps of population density or road networks. In

lulcc these two types of explanatory variable are separated by

a simple naming convention, which is explained in detail in

the package documentation (see Supplement). Collectively,

they are represented by an object of class ExpVarRasterList,

which can be created as follows:

> ef <- ExpVarRasterList

(x=pie, pattern="ef")

Apart from observed land use and explanatory variables other

input maps may be required. The two allocation routines cur-

rently included with lulcc accept a mask file, which is used

to prevent change within a certain geographic area such as

a national park or other protected area, and a land use his-

tory file, which is used as the basis for certain decision rules.

These are handled by lulcc as standard RasterLayer objects.

All input maps should have the same spatial resolution as

the corresponding ObsLulcRasterStack object. This can be

achieved using the resample function from the raster pack-

age, which has been extended to receive lulcc objects. The

ExpVarRasterList object created above can be resampled to

the parameters of an ObsLulcRasterStack object with the fol-

lowing command:

www.geosci-model-dev.net/8/3215/2015/ Geosci. Model Dev., 8, 3215–3229, 2015
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Figure 3. Observed land use maps for the Plum Island Ecosystems site in 1985, 1991 and 1999, created by plotting the ObsLulcRasterStack

object representing the data.

> ef <- resample(ef, obs)

3.3 Predictive modelling

Inductive land use change models relate the pattern of ob-

served land use to spatially explicit explanatory variables.

Logistic regression is a common type of predictive model

used for inductive land use change modelling (e.g. Pon-

tius and Schneider, 2001; Verburg et al., 2002). However,

there is growing interest in the application of local and non-

parametric models (e.g. Tayyebi et al., 2014). One reason

why R is attractive for land use change modelling is that it

has become the de facto standard for statistical software de-

velopment. As a result, lulcc can easily support various pre-

dictive modelling techniques by utilising code from existing

R packages. Currently, lulcc supports binary logistic regres-

sion, available in base R, recursive partitioning and regres-

sion trees, provided by the rpart package (Therneau et al.,

2014), and random forests, provided by the randomForest

package (Liaw and Wiener, 2002).

Parametric models such as logistic regression assume the

data to be independent and identically distributed (Overmars

et al., 2003). In spatial analysis this assumption is often vi-

olated because of spatial autocorrelation, which reduces the

information content of an observation because its value can

to some extent be predicted by the value of its neighbours

(Beale et al., 2010). There is also some evidence that non-

parametric models may be affected by spatial autocorrela-

tion (Mascaro et al., 2014), even though they do not assume

independence. A simple approach to reduce the impact of

this phenomenon is to fit predictive models to a random sub-

set of the data (e.g. Verburg et al., 2002; Wassenaar et al.,

2007; Echeverria et al., 2008). In the following code snip-

pet, we create training and testing partitions for the Plum

Island Ecosystems data set by performing a stratified ran-

dom sample. We do this using the map for 1985 to illus-

trate the procedure when only one observed map is available.

We then extract the data for the training partition with the

getPredictiveModelInputData function and pass

the resulting data.frame to the three model fitting functions:

> part <- partition(x=obs[[1]],

size=0.1, spatial=TRUE)

> train.data

<- getPredictiveModelInputData

(obs=obs,

ef=ef,

cells=part[["train"]],

t=0)

> forms <- list

(Built~ef_001+ef_002+ef_003,

Forest~ef_001+ef_002,

Other~ef_001+ef_002)

> glm.models <- glmModels

(formula=forms,

family=binomial,

data=train.data,

obs=obs)

> rpart.models <- rpartModels

(formula=forms,

data=train.data,

obs=obs)

> rf.models <- randomForestModels

(formula=forms,

data=train.data,

obs=obs)

The model fitting functions each return an object of class Pre-

dictiveModelList containing a predictive model for each land

use type. With these objects, it is straightforward to map the

suitability of every pixel in the study region to the various

land uses. To do this, we use the generic predict function

with some additional functionality from the raster package

and plot the resulting RasterStack object (Fig. 4):

> all.data <- as.data.frame

(x=ef, cells=part[["all"]])

> probmaps <- predict

Geosci. Model Dev., 8, 3215–3229, 2015 www.geosci-model-dev.net/8/3215/2015/
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Figure 4. Suitability of pixels in the Plum Island Ecosystems study site to belong to forest, built and other land use classes according to

binary logistic regression models. Elevation and slope are used as explanatory variables for all land uses while built additionally includes

distance to built pixels in 1985.

(object=glm.models,

newdata=all.data,

data.frame=TRUE)

> points <- rasterToPoints

(obs[[1]], spatial=TRUE)

> probmaps <- SpatialPointsDataFrame

(points, probmaps)

> probmaps <- rasterize

(x=probmaps, y=obs[[1]],

field=names(probmaps))

> levelplot(probmaps)

In some circumstances it may be appropriate to supply

a model with no explanatory variables to an allocation rou-

tine. For example, Verburg and Overmars (2009) used such

a model for natural and semi-natural vegetation because in

their particular case study the selection of pixels for con-

version to these land uses was based on the suitability of

pixels to agricultural and urban land rather than the suitabil-

ity of natural and semi-natural vegetation. In lulcc, this can

most easily be achieved by fitting a binary logistic regression

model with no explanatory variables. To do this, a formula

such as Forest∼1 should be supplied to the glmModels

function.

Methods to evaluate statistical models are provided by the

ROCR package (Sing et al., 2005), allowing the user to as-

sess model performance using various methods including the

receiver operator characteristic (ROC), which is used to mea-

sure the performance of models predicting the presence or

absence of a phenomenon (Pontius and Parmentier, 2014).

It is often summarised by the area under the curve (AUC),

where one indicates a perfect fit and 0.5 indicates a purely

random fit.

In lulcc we extend the native ROCR classes to better suit

our purposes. The prediction and performance classes of

ROCR are extended by PredictionList and PerformanceList

to handle objects of class PredictiveModelList. In the follow-

ing example we evaluate the logistic regression models using

the testing partition from the 1985 observed land use map.

Since the Plum Island Ecosystems data set contains three ob-

served land use maps, we could also test the predictive mod-

els using data from a subsequent time point. The procedure

to evaluate several PredictiveModelList objects using these

classes is as follows:

> test.data

<- getPredictiveModelInputData

(obs=obs,

ef=ef,

cells=part[["test"]])

> glm.pred <- PredictionList

(models=glm.models,

newdata=test.data)

> glm.perf <- PerformanceList

(pred=glm.pred,

measure="rch")

> rpart.pred <- PredictionList

(models=rpart.models,

newdata=test.data)

> rpart.perf <- PerformanceList

(pred=rpart.pred,

measure="rch")

> rf.pref <- PredictionList

(models=rf.models,

newdata=test.data)

> rf.perf <- PerformanceList

(pred=rf.pred,

measure="rch")

> plot(list(glm=glm.perf,

rpart=rpart.perf,

rf=rf.perf))

Figure 5 shows the ROC curves for each land use type and

for each type of predictive model supported by lulcc. The

plots show that binary logistic regression and random forest

models perform similarly for all land uses, while regression

tree models perform least well.

Another use of ROC analysis is to assess how well the

models predict the cells in which gain occurs between two

www.geosci-model-dev.net/8/3215/2015/ Geosci. Model Dev., 8, 3215–3229, 2015
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Figure 5. ROC curves showing the ability of each type of predictive model to simulate the observed pattern of land use in the Plum Island

Ecosystems site in 1985 in the data partition left out of the fitting procedure.

time points. This is only possible if a second observed land

use map is available for a subsequent time point. In the fol-

lowing code snippet, we perform this type of analysis for the

gain of built between 1985 and 1991. First, we create a data

partition in which cells not candidate for gain (cells belong-

ing to built in 1985) are eliminated. We then assess the ability

of the various predictive models to predict the gain of built in

this partition:

> part <- rasterToPoints

(obs[[1]],

fun=function(x) x != 2,

spatial=TRUE)

> test.data

<- getPredictiveModelInputData

(obs=obs,

ef=ef,

cells=part,

t=6)

> glm.pred <- Prediction

(models=glm.models[[2]],

newdata=test.data)

> glm.perf <- Performance

(pred=glm.pred,

measure="rch")

> plot(list(glm=glm.perf))

Figure 6 shows the resulting ROC curve.

3.4 Demand

Spatially explicit land use change models are normally driven

by non-spatial estimates of either the total number of cells oc-

cupied by each category at each time point or the number of

transitions among the various categories during each time in-

terval. This means regional drivers of land use change, such

as population growth and technology, are considered implic-

itly (Fuchs et al., 2013). While some models calculate de-

mand at each time point based on the spatial configuration

of the landscape at the previous time point (e.g. Rosa et al.,

2013), it is more common to specify the demand for every
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Figure 6. ROC curve showing the ability of the binary logistic re-

gression model fitted on observed land use data from 1985 to predict

the gain in built land between 1985 and 1991.

time point at the beginning of the simulation (e.g. Pontius

and Schneider, 2001; Verburg et al., 2002; Sohl et al., 2007).

In lulcc the way in which demand is specified is unique to in-

dividual allocation models. Currently, both allocation models

currently included in the package require the total number of

cells belonging to each category at every time point to be sup-

plied as a matrix or data.frame before running the allocation

routine.

Land use area may be estimated using non-spatial land use

models or, in the case of a backcast model, national and sub-

national land use statistics may be used (e.g. Ray and Pi-

janowski, 2010; Fuchs et al., 2013). The lulcc software pack-

age includes a function to interpolate or extrapolate land use

area based on two or more observed land use maps: this ap-

proach is often used to predict the quantity of land use change

in the near-term (Mas et al., 2014). For the current example,

we obtain land use demand for each year between 1985 and

1999 by linear interpolation as follows:
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> dmd <- approxExtrapDemand

(obs=obs, tout=0:14)

In reality we are not usually interested in simulating land use

change between two time points for which observed land use

data are available. However, doing so is useful for model pat-

tern validation, allowing us to test the ability of models to

predict the spatial allocation of change given the exact quan-

tity of change.

3.5 Allocation

The allocation algorithm in land use change models deter-

mines the pixels in which various land use transitions should

take place (Verburg et al., 2002). Currently lulcc includes

two allocation routines: an implementation of the CLUE-S

algorithm and a stochastic ordered procedure based on the

algorithm described by Fuchs et al. (2013). Both routines

allow the user to optionally provide various decision rules.

These are implemented before the main allocation algorithm

at each time point and allow the user to incorporate additional

knowledge about the study site.

3.5.1 Decision rules

The first decision rule included in lulcc is used to prohibit

certain land use transitions. For example, in most situations

it is unlikely that urban areas will be converted to agricul-

tural land because the initial cost of urban development is

high (Verburg et al., 2002). The second rule specifies a min-

imum number of time steps before a certain transition is al-

lowed, while the third rule specifies a maximum number of

time steps after which change is not allowed. These rules are

used to control land use transitions that are time dependent,

such as the transition from shrubland to closed forest (Ver-

burg and Overmars, 2009). The fourth rule prohibits transi-

tions to a certain land use in cells that are not within a user-

defined neighbourhood of cells already belonging to that land

use. This rule is particularly relevant to cases of deforestation

or urbanisation.

Within the allocate function the first three decision

rules are applied by the allow function and the fourth rule is

applied by the allowNeighb function. For time dependent

decision rules, the user should supply a land use history raster

map, specifying the length of time each pixel has belonged

to the current land use. If this is not supplied, each pixel is

assigned a value of one representing one model time step. To

apply neighbourhood rules, it is necessary to supply corre-

sponding neighbourhood maps to the allocation routine. In

lulcc these are represented by the NeighbRasterStack

class. Objects of this class are created with the following

command:

> w <- matrix

(data=1, nrow=3, ncol=3)

> nb <- NeighbRasterStack

(x=obs[[1]], weights=w,

categories=c(1,2,3))

Essentially, the allow and allowNeighb functions

identify disallowed transitions according to the decision rules

and set the suitability of these cells to n/a. These transitions

are ignored by the allocation routine. Care should be taken

to ensure that after any decision rules are taken into account

there are sufficient cells eligible to change in order to meet

the specified demand at each time point.

3.5.2 CLUE-S allocation method

The CLUE-S model implements an iterative procedure to

meet the specified demand at each time point and handle

competition between land uses. The model is summarised

briefly here: for a full description see Verburg et al. (2002)

and Castella and Verburg (2007). The algorithm in lulcc is

based on the description of the model provided by Verburg

et al. (2002) only. As a result, for the reasons discussed by

Ince et al. (2012), users should not expect to exactly repro-

duce the output from the original model implementation.

In the first instance each cell is allocated to the land use

with the highest suitability as determined by the predictive

models. Whereas the original CLUE-S model is based on bi-

nary logistic regression, lulcc allows any predictive model

supported by PredictiveModelList to be used. For each land

use the algorithm determines whether the allocated area is

less than, equal to or greater than the specified demand. If

it is less than or greater than demand, the suitability of each

pixel in the study region to the land use in question will be in-

creased or decreased, respectively, by an amount depending

on the difference between the allocated area and specified de-

mand. If the allocated area equals demand, the suitability is

left unchanged. This procedure is repeated until the demand

for all land uses, within a user-defined tolerance, is met. At

each iteration the original model perturbs the suitability of

each pixel to the various land uses in order to limit the influ-

ence of nominal differences in land use suitability on the final

model solution. This is replicated in lulcc with the parameter

jitter.f, which controls the upper and lower limits of the

uniform random distribution from which the perturbation ap-

plied to each pixel is drawn. The default value of jitter.f

is zero, resulting in a deterministic model. For a full descrip-

tion of the various other parameters supplied to the CLUE-S

routine please consult the package documentation.

In lulcc allocation models are represented by unique

classes. In the following code snippet, we first set the de-

cision rules to allow all possible transitions and then define

some parameter values. Then, we create an object of class

CluesModel and pass this to the generic allocate func-

tion:

> clues.rules <- matrix

(data=1, nrow=3, ncol=3)

> clues.parms <- list

www.geosci-model-dev.net/8/3215/2015/ Geosci. Model Dev., 8, 3215–3229, 2015



3224 S. Moulds et al.: Land use change modelling in R

(jitter.f=0.0002,

scale.f=0.000001,

max.iter=1000,

max.diff=50,

ave.diff=50)

> clues.model <- CluesModel

(obs=obs,

ef=ef,

models=glm.models,

time=0:14,

demand=dmd,

elas=c(0.2,0.2,0.2),

rules=clues.rules,

params=clues.parms)

> clues.model <- allocate(clues.model)

As an iterative procedure, the CLUE-S algorithm employs

for loops, which are slow in R. To overcome this limitation,

we have written the CLUE-S procedure as a C extension us-

ing the .Call interface.

3.5.3 Ordered method

The ordered allocation method is based on the algorithm de-

scribed by Fuchs et al. (2013). The approach is less compu-

tationally expensive and more stable than the CLUE-S algo-

rithm because it does not simulate competition between land

uses. Instead, land allocation is performed in a hierarchical

way according to the perceived socioeconomic value of each

land use. For land uses with increasing demand only cells

belonging to land uses with lower socioeconomic value are

considered for conversion. In this case, n cells with the high-

est suitability to the current land use are selected for change,

where n equals the number of transitions required to meet the

demand, as specified by the demand matrix supplied as an in-

put to the allocation routine. The converted cells, as well as

the cells that remain under the current land use, are masked

from subsequent operations. For land uses with decreasing

demand only cells belonging to the current land use are al-

lowed to change. Here, n cells with the lowest allocation suit-

ability are converted to a temporary class which can be allo-

cated to subsequent land uses. The land use with the lowest

socioeconomic value is a special case because it is consid-

ered last and, therefore, the number of cells that have not

been assigned to other land uses must equal the demand for

this land use.

We modify the algorithm described by Fuchs et al. (2013)

to allow stochastic transitions. If this option is selected, the

allocation suitability of each cell allowed to change is com-

pared to a random number between zero and one drawn from

a uniform distribution. If demand for the land use is increas-

ing only cells where the allocation suitability is greater than

the random number are allowed to change, whereas for de-

creasing demand only cells where it is less than the random

number are allowed to change. To make the model determin-

istic, the user can set the stochastic argument to FALSE

when the allocate function is called.

In lulcc the ordered allocation model is represented by the

OrderedModel class. In the following code we create an Or-

deredModel object, supplying the order in which to allocate

change (built, forest, other), and pass this to the allocate

function:

> ordered.model <- OrderedModel

(obs=obs,

ef=ef,

models=glm.models,

time=0:14,

demand=dmd,

order=c(2,1,3))

> ordered.model <- allocate

(ordered.model,

stochastic=TRUE)

3.6 Pattern validation

Spatially explicit land use change models are validated by

comparing the initial observed map with an observed and

simulated map for a subsequent time point (Pontius et al.,

2011). Previous studies have extracted useful information

from the three possible two-map comparisons (e.g. Pontius

et al., 2008); however, recently Pontius et al. (2011) devised

the concept of a three-dimensional contingency table to com-

pare the three maps simultaneously. Not only is this approach

more parsimonious, but it also yields more information about

quantity and allocation performance (Pontius et al., 2011).

For example, from the table it is straightforward to identify

sources of agreement and disagreement considering all land

use transitions, all transitions from one land use or a spe-

cific transition from one land use to another. In addition, it

is possible to separate agreement between maps due to per-

sistence from agreement due to correctly simulated change.

This is important because in most applications the quantity

of change is small compared to the overall study area (Pon-

tius et al., 2004b; van Vliet et al., 2011), giving a high rate

of total agreement which can misrepresent the actual model

performance. It is useful to perform pattern validation at mul-

tiple resolutions because comparison at the native resolution

of the three maps fails to separate minor allocation disagree-

ment, which refers to allocation disagreement at the native

resolution that is counted as agreement at a coarser resolu-

tion, and major allocation disagreement, which refers to al-

location disagreement at the native resolution and the coarse

resolution (Pontius et al., 2011).

In lulcc, three-dimensional contingency tables at multi-

ple resolutions are represented by the ThreeMapCompari-

son class. Two subclasses of ThreeMapComparison repre-

sent two types of information that can be extracted from the

tables: AgreementBudget represents sources of agreement

and disagreement between the three maps at several resolu-

tions while FigureOfMerit represents figure of merit scores.
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Figure 7. Agreement budget for the transition from forest to built

for the two model outputs considering reference maps at 1985 and

1999 and simulated map for 1999. The plot shows the number of

correctly allocated change increases as the map resolution coarsens.

This measure, which is useful to summarise model perfor-

mance, is defined as the intersection of observed and sim-

ulated change divided by the union of these (Pontius et al.,

2011), such that a score of one indicates perfect agreement

and a score of zero indicates no agreement. Plotting func-

tions for ThreeMapComparison, AgreementBudget and Fig-

ureOfMerit objects allow the user to visualise model perfor-

mance. The ordered model output for Plum Island Ecosys-

tems is validated in the following way:

> ordered.tabs <- ThreeMapComparison

(x=ordered.model,

factors=2^(1:8),

timestep=14)

> ordered.agr <- AgreementBudget

(x=ordered.tabs)

> plot(ordered.agr, from=1, to=2)

> ordered.fom <- FigureOfMerit

(x=ordered.tabs)

> plot(ordered.fom, from=1, to=2)

This procedure was repeated for the CLUE-S model output.

The agreement budgets for the transition from forest to built

for the two allocation procedures are shown by Fig. 7, while

Fig. 8 shows the corresponding figure of merit scores.
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Figure 8. Figure of merit scores corresponding to the agreement

budgets depicted in Fig. 7.

4 Discussion

The example application for Plum Island Ecosystems

demonstrates the key strengths of the lulcc package. First,

it allows the entire modelling procedure to be carried out

in the same environment, reducing the likelihood of mis-

takes that commonly arise when data and models are trans-

ferred between different software programs. A framework in

R specifically allows users to take advantage of a wide range

of statistical and machine learning techniques for predictive

modelling. The framework allows users to experiment with

various model structures interactively and provides methods

to quickly compare model outputs. The example also high-

lights the advantages of an object-oriented approach; land

use change modelling involves several stages and without

dedicated classes for the associated data it would be difficult

to keep track of the intermediate model inputs and outputs.

The lulcc software package is substantially different from

alternative environmental modelling frameworks. Most im-

portantly, lulcc is designed for land use change modelling

only, whereas frameworks such as PCRaster and TerraME

provide general tools that can be applied to various spatial

analysis problems such as land use change, hydrology and

ecology. As a result, these tools are targeted towards the

model developer rather than the end user. In contrast, most

software programs for land use change modelling are de-

signed with the user in mind, with very few providing any

way for users or developers to improve or even understand

model implementations. With lulcc we have attempted to re-

duce the gap between user and developer. The R system is

well-suited for this task, as Pebesma et al. (2012) noted “the
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step from being a user to becoming a developer is small with

R”. The package system ensures that lulcc will work across

Windows, Mac OS and Unix platforms, whereas many ex-

isting applications are platform dependent. Comprehensive

documentation of the functions, classes and methods of lulcc,

together with complete working examples, enable the user

to immediately start using the software, while the object-

oriented design ensures that developers can easily write ex-

tensions to the package.

Despite its manifest advantages, there remain some draw-

backs to land use change modelling in R. First, the lack of

a spatio-temporal database back end to support larger data

sets (Gebbert and Pebesma, 2014) restricts the amount of

data that can be used in a given application because R loads

all data into memory. The raster package overcomes this lim-

itation by storing raster files on disk and processing data

in chunks (Hijmans, 2014). The lulcc software package has

been designed to make use of this facility where possible;

however, during allocation it is necessary to load the val-

ues of several maps into the R workspace at once because

the allocation procedure must consider every cell eligible for

change simultaneously. The generic predict function be-

longing to the raster package offers one possible solution

to this problem, allowing predictive models to be used in

a memory-safe way. In effect, this would mean spatially ex-

plicit input data including observed land use maps and ex-

planatory variables could be handled in chunks and only the

resulting probability surface would have to be loaded into

the R workspace. However, this is not currently implemented

in lulcc because it is excessively time-consuming compared

to the current approach. Despite this limitation, since most

applications involve a relatively small geographic extent or,

in the case of regional studies (e.g. Verburg and Overmars,

2009; Fuchs et al., 2015), use a coarser map resolution, mem-

ory should not normally cause lulcc applications to fail. For

example, the CluesModel and OrderedModel objects from

the above example each had a size of approximately 40 Mb,

which is easily handled by modern personal computers. On

a 64-bit machine with Intel Core i3 with 1.4 GHz and 4 Gb

RAM, the allocation methods for the two Model objects took

50 and 8 s, respectively.

The software presented here is still in its infancy and there

are several areas for improvement. The present allocation

routines receive the quantity of land use change for each time

point before the allocation procedure begins. However, some

recent models do not impose the quantity of change but in-

stead allow change to occur stochastically based on land use

suitability. For example, StocModLcc (Rosa et al., 2013) de-

forests a cell if the probability of deforestation is less than

a random number from a uniform distribution. The quantity

of change is simply the number of cells deforested after each

cell in the study region is considered for deforestation twice,

with the probability of change, which depends on the alloca-

tion of previous deforestation events, updated after the first

round. One advantage of this approach is that it accounts for

uncertainty in the quantity and allocation of change simulta-

neously, whereas the current routines in lulcc only consider

the allocation of change as a stochastic process. Other mod-

els such as LandSHIFT (Schaldach et al., 2011) receive de-

mand at the national or regional level from integrated assess-

ment models such as IMAGE (Stehfast et al., 2014) or Nexus

Land-Use (Souty et al., 2012). Coupling lulcc with this class

of model would be a valuable addition to the software be-

cause land use change is increasingly recognised as an issue

with drivers and implications at local, regional, continental

and global levels.

An important contribution of lulcc is to provide mod-

ules to assist with model pattern validation, a crucial as-

pect of model development that is nevertheless frequently

overlooked within the land use change modelling commu-

nity (Rosa et al., 2014). A further improvement that could

be made to the package is to incorporate more sophisticated

ways of fitting and testing the predictive models that estimate

land use suitability. For example, a routine to calculate the to-

tal operating characteristic (TOC) (Pontius and Parmentier,

2014) would improve upon the ROC analysis currently sup-

ported. While ROC shows two ratios, hits / (hits+misses)

and false alarms / (false alarms+ correct rejections), at mul-

tiple resolutions, TOC reveals the quantities used to calculate

these ratios, allowing greater interpretation of model diag-

nostic ability.

One of the main strengths of lulcc is that multiple model

structures can be explored within the same environment.

Thus, the more allocation routines available in the package

the more useful it becomes. Two existing land use change

models, StocModLCC and SIMLANDER, are written in R

and available as open-source software. Future work could

integrate these routines with lulcc to broaden the available

model structures and, therefore, improve the ability of lulcc

to capture model structural uncertainty. The methods in the

current version of lulcc only permit an inductive approach

to land use change modelling. Deductive models are funda-

mentally different because they attempt to model explicitly

the processes that drive land use change (Pérez-Vega et al.,

2012). This means that, unlike inductive models, they can be

used to establish causality between land use change and its

driving factors (Overmars et al., 2007). Including this class

of model in lulcc would allow inductive and deductive land

use change models with different spatial resolutions to be dy-

namically coupled in order to better capture the complexity

of the land use system (Moreira et al., 2009).

Free and open-source software improves the reproducibil-

ity of scientific results and allows users to adapt and extend

code for their own purposes. Thus, we encourage the land

use change community to participate in the future develop-

ment of lulcc. Perhaps one of the simplest ways to improve

the package is to experiment with the example data sets to

identify bugs and areas for improvement. Those with more

programming experience may wish to extend the functional-

ity of the package themselves and contribute these changes
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upstream. In addition, existing land use change models can

easily be included in the package by wrapping the origi-

nal source code in R, a relatively straightforward task for

commonly used compiled languages (C/C++, Fortran). Users

may also develop their own R packages that depend on lulcc

for some functionality: this is one of the strengths of the R

package system. Finally, we invite land use change modellers

to submit land use change data sets (observed and, if possi-

ble, modelled land use maps and spatially explicit explana-

tory variables) for inclusion in the package.

5 Conclusions

In this paper we have presented lulcc, a free and open-source

software package providing an object-oriented framework

for land use change modelling in R. The lulcc software pack-

age allows various aspects of the modelling process to be per-

formed within the same environment, supports three types of

predictive models and includes two allocation routines. The

modelling process can be expressed programmatically, facil-

itating reproducible science. Releasing the software under an

open-source licence (GPL) means that users have access to

the algorithms they implement when they run a particular

model. As a result, they can identify improvements to the

code and, under the terms of the licence, are free to redis-

tribute changes to the wider community. We view lulcc as

an initial step towards an open paradigm for land use change

modelling and hope, therefore, that the community will par-

ticipate in its development.

Code availability

The R project for statistical computing is available for Win-

dows, Mac OS and several Unix platforms. To download

R, visit the project home page: https://www.r-project.org/.

Two popular and free integrated development environments

(IDEs) are provided by RStudio (https://www.rstudio.com/)

and ESS (http://ess.r-project.org/). We suggest that potential

lulcc users familiarise themselves with the raster package

by reading the “Introduction to the raster package” vignette,

available on the package home page: https://cran.r-project.

org/web/packages/raster/.

The lulcc source code currently resides on CRAN. This

paper corresponds to version 1.0 of the package. It can be

downloaded from the R command line as follows:

> install.packages("lulcc")

The script for the Plum Island Ecosystems application is

available as a demo within the package. To load the package

and run the demo, type the following commands:

> library(lulcc)

> demo(package = "lulcc")

> demo(topic = "gmd-paper")

The Supplement related to this article is available online

at doi:10.5194/gmd-8-3215-2015-supplement.
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