Articles | Volume 7, issue 2
https://doi.org/10.5194/gmd-7-495-2014
https://doi.org/10.5194/gmd-7-495-2014
Development and technical paper
 | 
25 Mar 2014
Development and technical paper |  | 25 Mar 2014

Improving predictive power of physically based rainfall-induced shallow landslide models: a probabilistic approach

S. Raia, M. Alvioli, M. Rossi, R. L. Baum, J. W. Godt, and F. Guzzetti

Related authors

From rockfall source areas identification to susceptibility zonation: a proposed workflow tested in El Hierro (Canary Islands, Spain)
Roberto Sarro, Mauro Rossi, Paola Reichenbach, and Rosa María Mateos
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2024-85,https://doi.org/10.5194/nhess-2024-85, 2024
Preprint under review for NHESS
Short summary
Assessing locations susceptible to shallow landslide initiation during prolonged intense rainfall in the Lares, Utuado, and Naranjito municipalities of Puerto Rico
Rex L. Baum, Dianne L. Brien, Mark E. Reid, William H. Schulz, and Matthew J. Tello
Nat. Hazards Earth Syst. Sci., 24, 1579–1605, https://doi.org/10.5194/nhess-24-1579-2024,https://doi.org/10.5194/nhess-24-1579-2024, 2024
Short summary
Comparison of conditioning factors classification criteria in large scale statistically based landslide susceptibility models
Marko Sinčić, Sanja Bernat Gazibara, Mauro Rossi, and Snježana Mihalić Arbanas
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2024-29,https://doi.org/10.5194/nhess-2024-29, 2024
Revised manuscript accepted for NHESS
Short summary
Lessons learnt from a rockfall time series analysis: data collection, statistical analysis, and applications
Sandra Melzner, Marco Conedera, Johannes Hübl, and Mauro Rossi
Nat. Hazards Earth Syst. Sci., 23, 3079–3093, https://doi.org/10.5194/nhess-23-3079-2023,https://doi.org/10.5194/nhess-23-3079-2023, 2023
Short summary
The ITAlian rainfall-induced LandslIdes CAtalogue, an extensive and accurate spatio-temporal catalogue of rainfall-induced landslides in Italy
Silvia Peruccacci, Stefano Luigi Gariano, Massimo Melillo, Monica Solimano, Fausto Guzzetti, and Maria Teresa Brunetti
Earth Syst. Sci. Data, 15, 2863–2877, https://doi.org/10.5194/essd-15-2863-2023,https://doi.org/10.5194/essd-15-2863-2023, 2023
Short summary

Related subject area

Hydrology
Generalised drought index: a novel multi-scale daily approach for drought assessment
João António Martins Careto, Rita Margarida Cardoso, Ana Russo, Daniela Catarina André Lima, and Pedro Miguel Matos Soares
Geosci. Model Dev., 17, 8115–8139, https://doi.org/10.5194/gmd-17-8115-2024,https://doi.org/10.5194/gmd-17-8115-2024, 2024
Short summary
Development and performance of a high-resolution surface wave and storm surge forecast model: application to a large lake
Laura L. Swatridge, Ryan P. Mulligan, Leon Boegman, and Shiliang Shan
Geosci. Model Dev., 17, 7751–7766, https://doi.org/10.5194/gmd-17-7751-2024,https://doi.org/10.5194/gmd-17-7751-2024, 2024
Short summary
Deep dive into hydrologic simulations at global scale: harnessing the power of deep learning and physics-informed differentiable models (δHBV-globe1.0-hydroDL)
Dapeng Feng, Hylke Beck, Jens de Bruijn, Reetik Kumar Sahu, Yusuke Satoh, Yoshihide Wada, Jiangtao Liu, Ming Pan, Kathryn Lawson, and Chaopeng Shen
Geosci. Model Dev., 17, 7181–7198, https://doi.org/10.5194/gmd-17-7181-2024,https://doi.org/10.5194/gmd-17-7181-2024, 2024
Short summary
PyEt v1.3.1: a Python package for the estimation of potential evapotranspiration
Matevž Vremec, Raoul A. Collenteur, and Steffen Birk
Geosci. Model Dev., 17, 7083–7103, https://doi.org/10.5194/gmd-17-7083-2024,https://doi.org/10.5194/gmd-17-7083-2024, 2024
Short summary
Prediction of hysteretic matric potential dynamics using artificial intelligence: application of autoencoder neural networks
Nedal Aqel, Lea Reusser, Stephan Margreth, Andrea Carminati, and Peter Lehmann
Geosci. Model Dev., 17, 6949–6966, https://doi.org/10.5194/gmd-17-6949-2024,https://doi.org/10.5194/gmd-17-6949-2024, 2024
Short summary

Cited articles

Aleotti, P.: A warning system for rainfall-induced shallow failures, Eng. Geol., 73, 247–265, 2004.
Alvioli, M., Guzzetti, F., and Rossi, M.: Scaling properties of rainfall-induced shallow landslides predicted by a physically based model, Geomorphology, online first, https://doi.org/10.1016/j.geomorph.2013.12.039, 2014.
Baum, R., Harp, E., and Hultman, W.: Map showing recent and historic landslide activity on coastal bluffs of Puget Sound between Shilshole Bay and Everett, US Geological Survey Miscellaneous Field Studies Map MF-2346, scale 1 : 24 000, 2000.
Baum, R., Savage, W., and Godt, J.: TRIGRS – a fortran program for transient rainfall infiltration and grid-based regional slope-stability analysis, US Geological Survey Open-file Report, Vol. 424, 61 pp., 2002.
Baum, R., McKenna, J., Godt, J., Harp, E., and McMulle, S.: Hydrologic monitoring of landslide-prone coastal bluffs near Edmonds and Everett, Washington, US Geological Survey Open-file Report, 42 pp., 2005.
Download