Articles | Volume 17, issue 18
https://doi.org/10.5194/gmd-17-7083-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/gmd-17-7083-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
PyEt v1.3.1: a Python package for the estimation of potential evapotranspiration
Department of Earth Sciences, NAWI Graz Geocenter, University of Graz, Graz, Austria
Raoul A. Collenteur
Department Water Resources and Drinking Water, Eawag, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland
Steffen Birk
Department of Earth Sciences, NAWI Graz Geocenter, University of Graz, Graz, Austria
Related authors
Matevž Vremec, Raoul A. Collenteur, and Steffen Birk
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2022-417, https://doi.org/10.5194/hess-2022-417, 2023
Manuscript not accepted for further review
Short summary
Short summary
This paper introduced PyEt, a Python package for the estimation of daily potential evapotranspiration (PET). The package enables the inclusion of model uncertainty and climate change into the estimation of PET in a consistent, tested, and reproducible environment. With PyEt, users can estimate PET using 20 different methods for both 1D and 3D data, allowing a more sophisticated and comprehensive consideration of PET in hydrological studies, particularly those related to climate change.
Veronika Forstner, Jannis Groh, Matevz Vremec, Markus Herndl, Harry Vereecken, Horst H. Gerke, Steffen Birk, and Thomas Pütz
Hydrol. Earth Syst. Sci., 25, 6087–6106, https://doi.org/10.5194/hess-25-6087-2021, https://doi.org/10.5194/hess-25-6087-2021, 2021
Short summary
Short summary
Lysimeter-based manipulative and observational experiments were used to identify responses of water fluxes and aboveground biomass (AGB) to climatic change in permanent grassland. Under energy-limited conditions, elevated temperature actual evapotranspiration (ETa) increased, while seepage, dew, and AGB decreased. Elevated CO2 mitigated the effect on ETa. Under water limitation, elevated temperature resulted in reduced ETa, and AGB was negatively correlated with an increasing aridity.
Raoul A. Collenteur, Konrad Bogner, Massimiliano Zappa, Mario Schirmer, and Christian Moeck
EGUsphere, https://doi.org/10.5194/egusphere-2025-4653, https://doi.org/10.5194/egusphere-2025-4653, 2025
This preprint is open for discussion and under review for Natural Hazards and Earth System Sciences (NHESS).
Short summary
Short summary
Groundwater is vital for drinking water and farming, but recent droughts revealed it is less reliable than once believed. We developed and tested a new system in Switzerland that combines detailed weather forecasts with a groundwater model to anticipate changes weeks in advance. The system often predicted levels up to a month ahead well, though mountain regions proved harder to forecast. These results highlight both the promise and limits of such tools for improving future water planning.
Raoul Alexandre Collenteur, Konrad Bogner, Christian Moeck, Massimiliano Zappa, and Mario Schirmer
Abstr. Int. Cartogr. Assoc., 9, 5, https://doi.org/10.5194/ica-abs-9-5-2025, https://doi.org/10.5194/ica-abs-9-5-2025, 2025
Raoul A. Collenteur, Ezra Haaf, Mark Bakker, Tanja Liesch, Andreas Wunsch, Jenny Soonthornrangsan, Jeremy White, Nick Martin, Rui Hugman, Ed de Sousa, Didier Vanden Berghe, Xinyang Fan, Tim J. Peterson, Jānis Bikše, Antoine Di Ciacca, Xinyue Wang, Yang Zheng, Maximilian Nölscher, Julian Koch, Raphael Schneider, Nikolas Benavides Höglund, Sivarama Krishna Reddy Chidepudi, Abel Henriot, Nicolas Massei, Abderrahim Jardani, Max Gustav Rudolph, Amir Rouhani, J. Jaime Gómez-Hernández, Seifeddine Jomaa, Anna Pölz, Tim Franken, Morteza Behbooei, Jimmy Lin, and Rojin Meysami
Hydrol. Earth Syst. Sci., 28, 5193–5208, https://doi.org/10.5194/hess-28-5193-2024, https://doi.org/10.5194/hess-28-5193-2024, 2024
Short summary
Short summary
We show the results of the 2022 Groundwater Time Series Modelling Challenge; 15 teams applied data-driven models to simulate hydraulic heads, and three model groups were identified: lumped, machine learning, and deep learning. For all wells, reasonable performance was obtained by at least one team from each group. There was not one team that performed best for all wells. In conclusion, the challenge was a successful initiative to compare different models and learn from each other.
Matevž Vremec, Raoul A. Collenteur, and Steffen Birk
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2022-417, https://doi.org/10.5194/hess-2022-417, 2023
Manuscript not accepted for further review
Short summary
Short summary
This paper introduced PyEt, a Python package for the estimation of daily potential evapotranspiration (PET). The package enables the inclusion of model uncertainty and climate change into the estimation of PET in a consistent, tested, and reproducible environment. With PyEt, users can estimate PET using 20 different methods for both 1D and 3D data, allowing a more sophisticated and comprehensive consideration of PET in hydrological studies, particularly those related to climate change.
Veronika Forstner, Jannis Groh, Matevz Vremec, Markus Herndl, Harry Vereecken, Horst H. Gerke, Steffen Birk, and Thomas Pütz
Hydrol. Earth Syst. Sci., 25, 6087–6106, https://doi.org/10.5194/hess-25-6087-2021, https://doi.org/10.5194/hess-25-6087-2021, 2021
Short summary
Short summary
Lysimeter-based manipulative and observational experiments were used to identify responses of water fluxes and aboveground biomass (AGB) to climatic change in permanent grassland. Under energy-limited conditions, elevated temperature actual evapotranspiration (ETa) increased, while seepage, dew, and AGB decreased. Elevated CO2 mitigated the effect on ETa. Under water limitation, elevated temperature resulted in reduced ETa, and AGB was negatively correlated with an increasing aridity.
Raoul A. Collenteur, Mark Bakker, Gernot Klammler, and Steffen Birk
Hydrol. Earth Syst. Sci., 25, 2931–2949, https://doi.org/10.5194/hess-25-2931-2021, https://doi.org/10.5194/hess-25-2931-2021, 2021
Short summary
Short summary
This study explores the use of nonlinear transfer function noise (TFN) models to simulate groundwater levels and estimate groundwater recharge from observed groundwater levels. A nonlinear recharge model is implemented in a TFN model to compute the recharge. The estimated recharge rates are shown to be in good agreement with the recharge observed with a lysimeter present at the case study site in Austria. The method can be used to obtain groundwater recharge rates at
sub-yearly timescales.
Cited articles
Aguayo, R., León-Muñoz, J., Aguayo, M., Baez-Villanueva, O. M., Zambrano-Bigiarini, M., Fernández, A., and Jacques-Coper, M.: PatagoniaMet: A multi-source hydrometeorological dataset for Western Patagonia, Sci. Data, 11, 6, https://doi.org/10.1038/s41597-023-02828-2, 2024. a
Ainsworth, E. A. and Rogers, A.: The response of photosynthesis and stomatal conductance to rising [CO2]: mechanisms and environmental interactions, Plant Cell Environ., 30, 258–270, https://doi.org/10.1111/j.1365-3040.2007.01641.x, 2007. a, b
Andréassian, V., Perrin, C., and Michel, C.: Impact of imperfect potential evapotranspiration knowledge on the efficiency and parameters of watershed models, J. Hydrol., 286, 19–35, https://doi.org/10.1016/j.jhydrol.2003.09.030, 2004. a
Ansorge, L. and Beran, A.: Performance of simple temperature-based evaporation methods compared with a time series of pan evaporation measures from a standard 20 m2 tank, J. Water Land Develop., 41, 1–11, https://doi.org/10.2478/jwld-2019-0021, 2019. a, b
Bakundukize, C., Van Camp, M., and Walraevens, K.: Estimation of groundwater recharge in Bugesera region (Burundi) using soil moisture budget approach, GEOLOGICA BELGICA, 14, 85–102, http://hdl.handle.net/1854/LU-1204652 (last access: 17 September 2024), 2011. a
Barker, M., Chue Hong, N., Katz, D. S., Lamprecht, A.-L., Martinez Ortiz, C., Psomopoulos, F., Harrow, J., Castro, L., Gruenpeter, M., Martinez, P., and Honeyman, T.: Introducing the FAIR Principles for research software, Sci. Data, 9, 622, https://doi.org/10.1038/s41597-022-01710-x, 2022. a, b
Beven, K. and Freer, J.: J. Hydrol., 249, 11–29, https://doi.org/10.1016/S0022-1694(01)00421-8, 2001. a, b
Blaney, H. F. and others: Determining water requirements in irrigated areas from climatological and irrigation data, Tech. rep., United States Department Of Agriculture, 1952. a
Bormann, H.: Sensitivity analysis of 18 different potential evapotranspiration models to observed climatic change at German climate stations, Clim. Change, 104, 729–753, https://doi.org/10.1007/s10584-010-9869-7, 2010. a, b, c
Caretta, M. A., Mukherji, A., Arfanuzzaman, M., Betts, R. A., Gelfan, A., Hirabayashi, Y., Lissner, T. K., Liu, J., Gunn, E. L., Morgan, R., Mwanga, S., and Supratid, S.: Water, in: Climate Change 2022: Impacts, Adaptation, and Vulnerability, Contribution of Working Group II to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, edited by: Pörtner, H.-O., Roberts, D. C., Tignor, M., Poloczanska, E. S., Mintenbeck, K., Alegría, A., Craig, M., Langsdorf, S., Löschke, S., Möller, V., Okem, A., and Rama, B., Cambridge University Press, https://doi.org/10.1017/9781009325844.006, 2022. a, b
Collenteur, R. A., Moeck, C., Schirmer, M., and Birk, S.: Analysis of nationwide groundwater monitoring networks using lumped-parameter models, J. Hydrol., 626, 130120, https://doi.org/10.1016/j.jhydrol.2023.130120, 2023. a
Cornes, R. C., van der Schrier, G., van den Besselaar, E. J. M., and Jones, P. D.: An Ensemble Version of the E-OBS Temperature and Precipitation Data Sets, J. Geophys. Res.-Atmos., 123, 9391–9409, https://doi.org/10.1029/2017JD028200, 2018. a, b
Dakhlaoui, H., Seibert, J., and Hakala Assendelft, K.: Sensitivity of discharge projections to potential evapotranspiration estimation in Northern Tunisia, Reg. Environ. Change, 20, 34, https://doi.org/10.1007/s10113-020-01615-8, 2020. a
Dallaire, G., Poulin, A., Arsenault, R., and Brissette, F.: Uncertainty of potential evapotranspiration modelling in climate change impact studies on low flows in North America, Hydrol. Sci. J., 66, 689–702, https://doi.org/10.1080/02626667.2021.1888955, 2021. a
DeJonge, K. C. and Thorp, K. R.: Implementing Standardized Reference Evapotranspiration and Dual Crop Coefficient Approach in the DSSAT Cropping System Model, Transactions of the ASABE, 60, 1965–1981, https://doi.org/10.13031/trans.12321, 2017. a
Dingman, S. L.: Physical hydrology, Waveland Press, Inc, Long Grove, Illinois, 3rd edn., ISBN 9781478611189, 2015. a
Dlouhá, D., Dubovský, V., and Pospíšil, L.: Optimal Calibration of Evaporation Models against Penman–Monteith Equation, Water, 13, 1484, https://doi.org/10.3390/w13111484, 2021. a
Doorenbos, J.: Guidelines for predicting crop water requirements, FAO irrigation and drainage paper, 24, 1–179, 1977. a
Fatichi, S., Leuzinger, S., Paschalis, A., Langley, J. A., Barraclough, A. D., and Hovenden, M. J.: Partitioning direct and indirect effects reveals the response of water-limited ecosystems to elevated CO2, P. Natl. Acad. Sci. USA, 113, 12757–12762, https://doi.org/10.1073/pnas.1605036113, 2016. a
Field, C. B., Jackson, R. B., and Mooney, H. A.: Stomatal responses to increased CO2: implications from the plant to the global scale, Plant Cell Environ., 18, 1214–1225, https://doi.org/10.1111/j.1365-3040.1995.tb00630.x, 1995. a
Fisher, J. B., Whittaker, R. J., and Malhi, Y.: ET come home: potential evapotranspiration in geographical ecology, Global Ecol. Biogeogr., 20, 1–18, https://doi.org/10.1111/j.1466-8238.2010.00578.x, 2011. a
Forstner, V., Vremec, M., Herndl, M., and Birk, S.: Effects of dry spells on soil moisture and yield anomalies at a montane managed grassland site: A lysimeter climate experiment, Ecohydrology, 16, e2518, https://doi.org/10.1002/eco.2518, 2022. a
Gharbia, S. S., Smullen, T., Gill, L., Johnston, P., and Pilla, F.: Spatially distributed potential evapotranspiration modeling and climate projections, Sci. Total Environ., 633, 571–592, https://doi.org/10.1016/j.scitotenv.2018.03.208, 2018. a
Guo, D., Westra, S., and Maier, H. R.: An R package for modelling actual, potential and reference evapotranspiration, Environ. Model. Softw., 78, 216–224, https://doi.org/10.1016/j.envsoft.2015.12.019, 2016. a, b
Guo, D., Westra, S., and Maier, H. R.: Sensitivity of potential evapotranspiration to changes in climate variables for different Australian climatic zones, Hydrol. Earth Syst. Sci., 21, 2107–2126, https://doi.org/10.5194/hess-21-2107-2017, 2017. a
Gupta, H. V., Kling, H., Yilmaz, K. K., and Martinez, G. F.: Decomposition of the mean squared error and NSE performance criteria: Implications for improving hydrological modelling, J. Hydrol., 377, 80–91, https://doi.org/10.1016/j.jhydrol.2009.08.003, 2009. a, b
Ha, T. V., Uereyen, S., and Kuenzer, C.: Spatiotemporal analysis of tropical vegetation ecosystems and their responses to multifaceted droughts in Mainland Southeast Asia using satellite-based time series, GIScience & Remote Sensing, 61, 2387385, https://doi.org/10.1080/15481603.2024.2387385, 2024. a
Harris, C. R., Millman, K. J., Van der Walt, S. J., Gommers, R., Virtanen, P., Cournapeau, D., Wieser, E., Taylor, J., Berg, S., Smith, N. J., Kern, R., Picus, M., Hoyer, S., van Kerkwijk, M. H., Brett, M., Haldane, A., Fernández del Río, J., Wiebe, M., Peterson, P., Gérard-Marchant, P., Sheppard, K., Reddy, T., Weckesser, W., Abbasi, H., Gohlke, C., and Oliphant, T. E.: Array programming with NumPy, Nature, 585, 357–362, https://doi.org/10.1038/s41586-020-2649-2, 2020. a, b
Haslinger, K. and Bartsch, A.: Creating long-term gridded fields of reference evapotranspiration in Alpine terrain based on a recalibrated Hargreaves method, Hydrol. Earth Syst. Sci., 20, 1211–1223, https://doi.org/10.5194/hess-20-1211-2016, 2016. a
Hassanzadeh, A., Vázquez-Suñé, E., Valdivielso, S., and Corbella, M.: WaterpyBal: A comprehensive open-source python library for groundwater recharge assessment and water balance modeling, Environ. Model. Softw., 172, 105934, https://doi.org/10.1016/j.envsoft.2023.105934, 2024. a
Hiebl, J. and Frei, C.: Daily temperature grids for Austria since 1961 – concept, creation and applicability, Theor. Appl. Climatol., 124, 161–178, https://doi.org/10.1007/s00704-015-1411-4, 2016. a, b
Houska, T., Kraft, P., Chamorro-Chavez, A., and Breuer, L.: SPOTting Model Parameters Using a Ready-Made Python Package, PLOS ONE, 10, 1–22, https://doi.org/10.1371/journal.pone.0145180, 2015. a, b
Hoyer, S. and Hamman, J.: xarray: ND labeled arrays and datasets in Python, J. Open Res. Softw., 5, 261–272, https://doi.org/10.1038/s41592-019-0686-2, 2017. a, b
Hunter, J. D.: Matplotlib: A 2D graphics environment, Comput. Sci. Eng., 9, 90–95, https://doi.org/10.1109/MCSE.2007.55, 2007. a
Hutton, C., Wagener, T., Freer, J., Han, D., Duffy, C., and Arheimer, B.: Most computational hydrology is not reproducible, so is it really science?, Water Resour. Res., 52, 7548–7555, https://doi.org/10.1002/2016WR019285, 2016. a, b
Jayathilake, D. I. and Smith, T.: Assessing the impact of PET estimation methods on hydrologic model performance, Hydrol. Res., 52, 373–388, https://doi.org/10.2166/nh.2020.066, 2021. a
Jemeljanova, M., Collenteur, R. A., Kmoch, A., Bikše, J., Popovs, K., and Kalvāns, A.: Modeling hydraulic heads with impulse response functions in different environmental settings of the Baltic countries, J. Hydrol.-Regional Studies, 47, 101416, https://doi.org/10.1016/j.ejrh.2023.101416, 2023. a
Jensen, M. E. and Haise, H. R.: Estimating evapotranspiration from solar radiation, J. Irr. Drain. Div.-ASCE, 89, 15–41, https://doi.org/10.1061/JRCEA4.0000287, 1963. a, b
Kajári, B., Tobak, Z., Túri, N., Bozán, C., and Van Leeuwen, B.: Prediction of Inland Excess Water Inundations Using Machine Learning Algorithms, Water, 16, 1267, https://doi.org/10.3390/w16091267, 2024. a
Katul, G. G., Oren, R., Manzoni, S., Higgins, C., and Parlange, M. B.: Evapotranspiration: A process driving mass transport and energy exchange in the soil-plant-atmosphere-climate system, Rev. Geophys., 50, RG3002, https://doi.org/10.1029/2011RG000366, 2012. a
Kay, A. and Davies, H.: Calculating potential evaporation from climate model data: A source of uncertainty for hydrological climate change impacts, J. Hydrol., 358, 221–239, https://doi.org/10.1016/j.jhydrol.2008.06.005, 2008. a
Kingston, D. G., Todd, M. C., Taylor, R. G., Thompson, J. R., and Arnell, N. W.: Uncertainty in the estimation of potential evapotranspiration under climate change, Geophys. Res. Lett., 36, L20403, https://doi.org/10.1029/2009GL040267, 2009. a
Kluyver, T., Ragan-Kelley, B., Pérez, F., Granger, B., Bussonnier, M., Frederic, J., Kelley, K., Hamrick, J., Grout, J., Corlay, S., Ivanov, P., Avila, D., Abdalla, S., Willing, C., and Team, J. D.: Jupyter Notebooks – a publishing format for reproducible computational workflows, Positioning and Power in Academic Publishing: Players, Agents and Agendas, 87–90, https://doi.org/10.3233/978-1-61499-649-1-87, 2016. a, b
Krause, P., Boyle, D. P., and Bäse, F.: Comparison of different efficiency criteria for hydrological model assessment, Adv. Geosci., 5, 89–97, https://doi.org/10.5194/adgeo-5-89-2005, 2005. a
Krueger, T., Freer, J., Quinton, J. N., Macleod, C. J. A., Bilotta, G. S., Brazier, R. E., Butler, P., and Haygarth, P. M.: Ensemble evaluation of hydrological model hypotheses, Water Resour. Res., 46, W07516, https://doi.org/10.1029/2009WR007845, 2010. a
Kruijt, B., Witte, J.-P. M., Jacobs, C. M. J., and Kroon, T.: Effects of rising atmospheric CO2 on evapotranspiration and soil moisture: A practical approach for the Netherlands, J. Hydrol., 349, 257–267, https://doi.org/10.1016/j.jhydrol.2007.10.052, 2008. a, b
Kumar, R., Jat, M. K., and Shankar, V.: Methods to estimate irrigated reference crop evapotranspiration – a review, Water Sci. Technol., 66, 525–535, https://doi.org/10.2166/wst.2012.191, 2012. a
Lai, C., Chen, X., Zhong, R., and Wang, Z.: Implication of climate variable selections on the uncertainty of reference crop evapotranspiration projections propagated from climate variables projections under climate change, Agric. Water Manage., 259, 107273, https://doi.org/10.1016/j.agwat.2021.107273, 2022. a
Lemaitre-Basset, T., Oudin, L., Thirel, G., and Collet, L.: Unraveling the contribution of potential evaporation formulation to uncertainty under climate change, Hydrol. Earth Syst. Sci., 26, 2147–2159, https://doi.org/10.5194/hess-26-2147-2022, 2022. a, b, c
Linacre, E. T.: A simple formula for estimating evaporation rates in various climates, using temperature data alone, Agric. Meteorol., 18, 409–424, https://doi.org/10.1016/0002-1571(77)90007-3, 1977. a, b
Liu, Z., Han, J., and Yang, H.: Assessing the ability of potential evaporation models to capture the sensitivity to temperature, Agric. Forest Meteorol., 317, 108886, https://doi.org/10.1016/j.agrformet.2022.108886, 2022. a
Martens, B., Miralles, D. G., Lievens, H., van der Schalie, R., de Jeu, R. A. M., Fernández-Prieto, D., Beck, H. E., Dorigo, W. A., and Verhoest, N. E. C.: GLEAM v3: satellite-based land evaporation and root-zone soil moisture, Geosci. Model Dev., 10, 1903–1925, https://doi.org/10.5194/gmd-10-1903-2017, 2017. a
Maxwell, R. M., Putti, M., Meyerhoff, S., Delfs, J., Ferguson, I. M., Ivanov, V., Kim, J., Kolditz, O., Kollet, S. J., Kumar, M., Lopez, S., Niu, J., Paniconi, C., Park, Y., Phanikumar, M. S., Shen, C., Sudicky, E. A., and Sulis, M.: Surface–subsurface model intercomparison: A first set of benchmark results to diagnose integrated hydrology and feedbacks, Water Resour. Res., 50, 1531–1549, https://doi.org/10.1002/2013WR013725, 2014. a
May, R. M., Goebbert, K. H., Thielen, J. E., Leeman, J. R., Camron, M. D., Bruick, Z., Bruning, E. C., Manser, R. P., Arms, S. C., and Marsh, P. T.: MetPy: A meteorological Python library for data analysis and visualization, B. Am. Meteorol. Soc., 103, E2273–E2284, https://doi.org/10.1175/BAMS-D-21-0125.1, 2022. a
McGuinness, J. and Bordne, E.: A comparison of lysimeter derived potential evapotranspiration with computed values, Tech. Bull., 1452, Agric. Res. Serv., US Dep. of Agric., Washington, DC, https://doi.org/10.22004/ag.econ.171893, 1972. a, b
McKinney, W.: Data Structures for Statistical Computing in Python, in: Proceedings of the 9th Python in Science Conference, edited by: Walt, S. V. D. and Millman, J., 56–61, https://doi.org/10.25080/Majora-92bf1922-00a, 201. a, b
McMahon, T. A., Peel, M. C., Lowe, L., Srikanthan, R., and McVicar, T. R.: Estimating actual, potential, reference crop and pan evaporation using standard meteorological data: a pragmatic synthesis, Hydrol. Earth Syst. Sci., 17, 1331–1363, https://doi.org/10.5194/hess-17-1331-2013, 2013. a, b, c, d, e, f, g, h, i, j
Milly, P. and Dunne, K.: Potential evapotranspiration and continental drying, Nat. Clim. Change, 6, 946–949, https://doi.org/10.1038/nclimate3046, 2016. a, b, c, d
Oki, T. and Kanae, S.: Global Hydrological Cycles and World Water Resources, Science, 313, 1068–1072, https://doi.org/10.1126/science.1128845, 2006. a
Onyutha, C.: Pros and cons of various efficiency criteria for hydrological model performance evaluation, Proc. IAHS, 385, 181–187, https://doi.org/10.5194/piahs-385-181-2024, 2024. a, b
Pastorello, G., Trotta, C., Canfora, E., Chu, H., Christianson, D., Cheah, Y.-W., Poindexter, C., Chen, J., Elbashandy, A., Humphrey, M., Isaac, P., Polidori, D., Reichstein, M., Ribeca, A., van Ingen, C., Vuichard, N., Zhang, L., Amiro, B., Ammann, C., Arain, M. A., Ardö, J., Arkebauer, T., Arndt, S. K., Arriga, N., Aubinet, M., Aurela, M., Baldocchi, D., Barr, A., Beamesderfer, E., Marchesini, L. B., Bergeron, O., Beringer, J., Bernhofer, C., Berveiller, D., Billesbach, D., Black, T. A., Blanken, P. D., Bohrer, G., Boike, J., Bolstad, P. V., Bonal, D., Bonnefond, J.-M., Bowling, D. R., Bracho, R., Brodeur, J., Brümmer, C., Buchmann, N., Burban, B., Burns, S. P., Buysse, P., Cale, P., Cavagna, M., Cellier, P., Chen, S., Chini, I., Christensen, T. R., Cleverly, J., Collalti, A., Consalvo, C., Cook, B. D., Cook, D., Coursolle, C., Cremonese, E., Curtis, P. S., D'Andrea, E., da Rocha, H., Dai, X., Davis, K. J., Cinti, B. D., Grandcourt, A. D., Ligne, A. D., De Oliveira, R. C., Delpierre, N., Desai, A. R., Di Bella, C. M., Tommasi, P. d., Dolman, H., Domingo, F., Dong, G., Dore, S., Duce, P., Dufrêne, E., Dunn, A., Dušek, J., Eamus, D., Eichelmann, U., ElKhidir, H. A. M., Eugster, W., Ewenz, C. M., Ewers, B., Famulari, D., Fares, S., Feigenwinter, I., Feitz, A., Fensholt, R., Filippa, G., Fischer, M., Frank, J., Galvagno, M., Gharun, M., Gianelle, D., Gielen, B., Gioli, B., Gitelson, A., Goded, I., Goeckede, M., Goldstein, A. H., Gough, C. M., Goulden, M. L., Graf, A., Griebel, A., Gruening, C., Grünwald, T., Hammerle, A., Han, S., Han, X., Hansen, B. U., Hanson, C., Hatakka, J., He, Y., Hehn, M., Heinesch, B., Hinko-Najera, N., Hörtnagl, L., Hutley, L., Ibrom, A., Ikawa, H., Jackowicz-Korczynski, M., Janouš, D., Jans, W., Jassal, R., Jiang, S., Kato, T., Khomik, M., Klatt, J., Knohl, A., Knox, S., Kobayashi, H., Koerber, G., Kolle, O., Kosugi, Y., Kotani, A., Kowalski, A., Kruijt, B., Kurbatova, J., Kutsch, W. L., Kwon, H., Launiainen, S., Laurila, T., Law, B., Leuning, R., Li, Y., Liddell, M., Limousin, J.-M., Lion, M., Liska, A. J., Lohila, A., López-Ballesteros, A., López-Blanco, E., Loubet, B., Loustau, D., Lucas-Moffat, A., Lüers, J., Ma, S., Macfarlane, C., Magliulo, V., Maier, R., Mammarella, I., Manca, G., Marcolla, B., Margolis, H. A., Marras, S., Massman, W., Mastepanov, M., Matamala, R., Matthes, J. H., Mazzenga, F., McCaughey, H., McHugh, I., McMillan, A. M. S., Merbold, L., Meyer, W., Meyers, T., Miller, S. D., Minerbi, S., Moderow, U., Monson, R. K., Montagnani, L., Moore, C. E., Moors, E., Moreaux, V., Moureaux, C., Munger, J. W., Nakai, T., Neirynck, J., Nesic, Z., Nicolini, G., Noormets, A., Northwood, M., Nosetto, M., Nouvellon, Y., Novick, K., Oechel, W., Olesen, J. E., Ourcival, J.-M., Papuga, S. A., Parmentier, F.-J., Paul-Limoges, E., Pavelka, M., Peichl, M., Pendall, E., Phillips, R. P., Pilegaard, K., Pirk, N., Posse, G., Powell, T., Prasse, H., Prober, S. M., Rambal, S., Rannik, Ã., Raz-Yaseef, N., Rebmann, C., Reed, D., Dios, V. R. d., Restrepo-Coupe, N., Reverter, B. R., Roland, M., Sabbatini, S., Sachs, T., Saleska, S. R., Sánchez-Cañete, E. P., Sanchez-Mejia, Z. M., Schmid, H. P., Schmidt, M., Schneider, K., Schrader, F., Schroder, I., Scott, R. L., Sedlák, P., Serrano-Ortíz, P., Shao, C., Shi, P., Shironya, I., Siebicke, L., Šigut, L., Silberstein, R., Sirca, C., Spano, D., Steinbrecher, R., Stevens, R. M., Sturtevant, C., Suyker, A., Tagesson, T., Takanashi, S., Tang, Y., Tapper, N., Thom, J., Tomassucci, M., Tuovinen, J.-P., Urbanski, S., Valentini, R., van der Molen, M., van Gorsel, E., van Huissteden, K., Varlagin, A., Verfaillie, J., Vesala, T., Vincke, C., Vitale, D., Vygodskaya, N., Walker, J. P., Walter-Shea, E., Wang, H., Weber, R., Westermann, S., Wille, C., Wofsy, S., Wohlfahrt, G., Wolf, S., Woodgate, W., Li, Y., Zampedri, R., Zhang, J., Zhou, G., Zona, D., Agarwal, D., Biraud, S., Torn, M., and Papale, D.: The FLUXNET2015 dataset and the ONEFlux processing pipeline for eddy covariance data, Sci. Data, 7, 225, https://doi.org/10.1038/s41597-020-0534-3, 2020. a
Peterson, T. J., Wasko, C., Saft, M., and Peel, M. C.: AWAPer: An R package for area weighted catchment daily meteorological data anywhere within Australia, Hydrol. Process., 34, 1301–1306, https://doi.org/10.1002/hyp.13637, 2020. a
Pimentel, R., Arheimer, B., Crochemore, L., Andersson, J. C. M., Pechlivanidis, I. G., and Gustafsson, D.: Which Potential Evapotranspiration Formula to Use in Hydrological Modeling World-Wide?, Water Resour. Res., 59, e2022WR033447, https://doi.org/10.1029/2022WR033447, 2023. a, b
Prudhomme, C. and Williamson, J.: Derivation of RCM-driven potential evapotranspiration for hydrological climate change impact analysis in Great Britain: a comparison of methods and associated uncertainty in future projections, Hydrol. Earth Syst. Sci., 17, 1365–1377, https://doi.org/10.5194/hess-17-1365-2013, 2013. a
Richards, M.: PyETo, https://github.com/woodcrafty/PyETo (last access: 17 September 2024), 2019. a
Riedel, T., Weber, T. K. D., and Bergmann, A.: Near constant groundwater recharge efficiency under global change in a central European catchment, Hydrol. Process., 37, e14805, https://doi.org/10.1002/hyp.14805, 2023. a
Rosenberry, D. O., Stannard, D. I., Winter, T. C., and Martinez, M. L.: Comparison of 13 equations for determining evapotranspiration from a prairie wetland, Cottonwood Lake Area, North Dakota, USA, Wetlands, 24, 483–497, https://doi.org/10.1672/0277-5212(2004)024[0483:COEFDE]2.0.CO;2, 2004. a
Schiff, H.: Berechnung der potentiellen Verdunstung und deren Vergleich mit aktuellen Verdunstungswerten von Lysimetern, Archiv für Meteorologie, Geophysik und Bioklimatologie, Serie B, 23, 331–342, https://doi.org/10.1007/BF02242689, 1975. a, b, c, d
Schrödter, H.: Hinweise Für den Einsatz Anwendungsorientierter Bestimmungsverfahren, in: Verdunstung: Anwendungsorientierte Meßverfahren und Bestimmungsmethoden, Springer Berlin Heidelberg, Berlin, Heidelberg, ISBN 978-3-642-70434-5, https://doi.org/10.1007/978-3-642-70434-5_8, 1985. a, b, c, d
Seiller, G. and Anctil, F.: How do potential evapotranspiration formulas influence hydrological projections?, Hydrol. Sci. J., 61, 2249–2266, https://doi.org/10.1080/02626667.2015.1100302, 2016. a, b, c
Shi, L., Feng, P., Wang, B., Liu, D. L., Cleverly, J., Fang, Q., and Yu, Q.: Projecting potential evapotranspiration change and quantifying its uncertainty under future climate scenarios: A case study in southeastern Australia, J. Hydrol., 584, 124756, https://doi.org/10.1016/j.jhydrol.2020.124756, 2020. a, b
Sperna Weiland, F. C., Tisseuil, C., Dürr, H. H., Vrac, M., and van Beek, L. P. H.: Selecting the optimal method to calculate daily global reference potential evaporation from CFSR reanalysis data for application in a hydrological model study, Hydrol. Earth Syst. Sci., 16, 983–1000, https://doi.org/10.5194/hess-16-983-2012, 2012. a
Tercini, J. R. B. and Mello Júnior, A. V.: Impact of Hydroclimatic Changes on Water Security in the Cantareira Water Production System, Brazil, Atmosphere, 14, 1836, https://doi.org/10.3390/atmos14121836, 2023. a
Thorp, K. R.: pyfao56: FAO-56 evapotranspiration in Python, SoftwareX, 19, 101208, https://doi.org/10.1016/j.softx.2022.101208, 2022. a
Trnka, M., Rötter, R. P., Ruiz-Ramos, M., Kersebaum, K. C., Olesen, J. E., Žalud, Z., and Semenov, M. A.: Adverse weather conditions for European wheat production will become more frequent with climate change, Nat. Clim. Change, 4, 637–643, https://doi.org/10.1038/nclimate2242, 2014. a, b
unittest: unittest, https://docs.python.org/3/library/unittest.html (last access: 17 September 2024), 2022. a
Valiantzas, J. D.: Simplified versions for the Penman evaporation equation using routine weather data, J. Hydrol., 331, 690–702, https://doi.org/10.1016/j.jhydrol.2006.06.012, 2006. a
Valipour, M.: Evaluation of radiation methods to study potential evapotranspiration of 31 provinces, Meteorol. Atmos. Phys., 127, 289–303, https://doi.org/10.1007/s00703-014-0351-3, 2015. a
Van Vuuren, D. P., Edmonds, J., Kainuma, M., Riahi, K., Thomson, A., Hibbard, K., Hurtt, G. C., Kram, T., Krey, V., Lamarque, J.-F., Masui, T., Meinshausen, M., Nakicenovic, N., Smith, S. J., and Rose, S. K.: The representative concentration pathways: an overview, Clim. Change, 109, 5–31, https://doi.org/10.1007/s10584-011-0148-z, 2011. a
Vaz, P. J., Schütz, G., Guerrero, C., and Cardoso, P. J. S.: A Study on the Prediction of Evapotranspiration Using Freely Available Meteorological Data, in: Computational Science – ICCS 2022, edited by: Groen, D., de Mulatier, C., Paszynski, M., Krzhizhanovskaya, V. V., Dongarra, J. J., and Sloot, P. M. A., 436–450, Springer International Publishing, Cham, ISBN 978-3-031-08760-8, 2022. a
Velázquez, J. A., Schmid, J., Ricard, S., Muerth, M. J., Gauvin St-Denis, B., Minville, M., Chaumont, D., Caya, D., Ludwig, R., and Turcotte, R.: An ensemble approach to assess hydrological models' contribution to uncertainties in the analysis of climate change impact on water resources, Hydrol. Earth Syst. Sci., 17, 565–578, https://doi.org/10.5194/hess-17-565-2013, 2013. a
Virtanen, P., Gommers, R., Oliphant, T. E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S. J., Brett, M., Wilson, J., Millman, K. J., Mayorov, N., Nelson, A. R. J., Jones, E., Kern, R., Larson, E., Carey, C. J., Polat, Ä., Feng, Y., Moore, E. W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E. A., Harris, C. R., Archibald, A. M., Ribeiro, A. H., Pedregosa, F., van Mulbregt, P., and SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python, Nature Methods, 17, 261–272, https://doi.org/10.1038/s41592-019-0686-2, 2020. a, b
Vremec, M. and Collenteur, R.: pyet-pypi, https://pypi.org/project/pyet/ (last access: 17 September 2024), 2022. a
Vremec, M. and Collenteur, R.: PyEt: A Python package for estimating potential evapotranspiration, Zenodo [code], https://doi.org/10.5281/ZENODO.5896799, 2024a. a, b
Vremec, M. and Collenteur, R.: pyet – Estimation of Potential Evapotranspiration, PyData [code and data set], https://PyEt.readthedocs.io (last access: 17 September 2024), 2024b. a
Vremec, M., Forstner, V., Herndl, M., Collenteur, R., Schaumberger, A., and Birk, S.: Sensitivity of evapotranspiration and seepage to elevated atmospheric C O 2 from lysimeter experiments in a montane grassland, J. Hydrol., 617, 128875, https://doi.org/10.1016/j.jhydrol.2022.128875, 2022. a, b, c, d, e
Walter, I. A., Allen, R. G., Elliott, R., Jensen, M., Itenfisu, D., Mecham, B., Howell, T., Snyder, R., Brown, P., Echings, S., Spofford, T., Hattendorf, M., Martin, D., Cuenca, R. H., and Wright, L.: ASCE's standardized reference evapotranspiration equation, in: Watershed management and operations management 2000, pp. 1–11, 2000. a, b, c
Wang, K. and Dickinson, R. E.: A review of global terrestrial evapotranspiration: Observation, modeling, climatology, and climatic variability, Rev. Geophys., 50, https://doi.org/10.1029/2011RG000373, 2012. a
Webber, H., Gaiser, T., Oomen, R., Teixeira, E., Zhao, G., Wallach, D., Zimmermann, A., and Ewert, F.: Uncertainty in future irrigation water demand and risk of crop failure for maize in Europe, Environ. Res. Lett., 11, 074007, https://doi.org/10.1088/1748-9326/11/7/074007, 2016. a
Wood, E. F., Lettenmaier, D. P., Liang, X., Lohmann, D., Boone, A., Chang, S., Chen, F., Dai, Y., Dickinson, R. E., Duan, Q., Ek, M., Gusev, Y. M., Habets, F., Irannejad, P., Koster, R., Mitchel, K. E., Nasonova, O. N., Noilhan, J., Schaake, J., Schlosser, A., Shao, Y., Shmakin, A. B., Verseghy, D., Warrach, K., Wetzel, P., Xue, Y., Yang, Z.-L., and Zeng, Q.-C.: The Project for Intercomparison of Land-surface Parameterization Schemes (PILPS) Phase 2(c) Red–Arkansas River basin experiment, Global Planet. Change, 19, 115–135, https://doi.org/10.1016/S0921-8181(98)00044-7, 1998. a
Xiang, K., Li, Y., Horton, R., and Feng, H.: Similarity and difference of potential evapotranspiration and reference crop evapotranspiration – a review, Agric. Water Manage., 232, 106043, https://doi.org/10.1016/j.agwat.2020.106043, 2020. a
Xie, Z., Yao, Y., Zhang, X., Liang, S., Fisher, J. B., Chen, J., Jia, K., Shang, K., Yang, J., Yu, R., Guo, X., Liu, L., Ning, J., and Zhang, L.: The Global LAnd Surface Satellite (GLASS) evapotranspiration product Version 5.0: Algorithm development and preliminary validation, J. Hydrol., 610, 127990, https://doi.org/10.1016/j.jhydrol.2022.127990, 2022. a
Yang, Y., Chen, R., Han, C., and Liu, Z.: Evaluation of 18 models for calculating potential evapotranspiration in different climatic zones of China, Agric. Water Manage., 244, 106545, https://doi.org/10.1016/j.agwat.2020.106545, 2021. a, b, c
Zhou, J., Wang, Y., Su, B., Wang, A., Tao, H., Zhai, J., Kundzewicz, Z. W., and Jiang, T.: Choice of potential evapotranspiration formulas influences drought assessment: A case study in China, Atmos. Res., 242, 104979, https://doi.org/10.1016/j.atmosres.2020.104979, 2020. a
Short summary
Geoscientists commonly use various potential evapotranpiration (PET) formulas for environmental studies, which can be prone to errors and sensitive to climate change. PyEt, a tested and open-source Python package, simplifies the application of 20 PET methods for both time series and gridded data, ensuring accurate and consistent PET estimations suitable for a wide range of environmental applications.
Geoscientists commonly use various potential evapotranpiration (PET) formulas for environmental...