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Abstract. Evapotranspiration (ET) is a crucial flux of the hy-
drological water balance, commonly estimated using (semi-
)empirical formulas. The estimated flux may strongly depend
on the formula used, adding uncertainty to the outcomes of
environmental studies using ET. Climate change may cause
additional uncertainty, as the ET estimated by each formula
may respond differently to changes in meteorological input
data. To include the effects of model uncertainty and climate
change and facilitate the use of these formulas in a consistent,
tested, and reproducible workflow, we present PyEt. PyEt is
an open-source Python package for the estimation of daily
potential evapotranspiration (PET) using available meteoro-
logical data. It allows the application of 20 different PET
methods on both time series and gridded datasets. The ma-
jority of the implemented methods are benchmarked against
literature values and tested with continuous integration to en-
sure the correctness of the implementation. This article pro-
vides an overview of PyEt’s capabilities, including the esti-
mation of PET with 20 PET methods for station and gridded
data, a simple procedure for calibrating the empirical coeffi-
cients in the alternative PET methods, and estimation of PET
under warming and elevated atmospheric CO2 concentration.
Further discussion on the advantages of using PyEt estimates
as input for hydrological models, sensitivity and uncertainty
analyses, and hindcasting and forecasting studies (especially
in data-scarce regions) is provided.

1 Introduction

Evaporation – the process by which water is converted from
its liquid to vapor phase – is a central component of the
global hydrological cycle (Katul et al., 2012). Evapora-
tion has far-reaching impacts on both human societies and
ecosystems (Oki and Kanae, 2006; Fisher et al., 2011). In
the remainder of this paper, the term evapotranspiration (ET)
is used to refer to the total evaporation flux from soil and wa-
terbodies (evaporation) and vegetated surfaces (transpiration;
Allen et al., 1998; Dingman, 2015). Information about the
magnitude of the ET flux is important across different geo-
science disciplines: it assists in predicting irrigation demands
and crop water requirements in agriculture, supports efficient
water resource management, guides operational strategies in
hydropower and meteorological studies, and plays a crucial
role in ecological research and climate-change impact assess-
ments. Given that climate change – through warming and ele-
vated CO2 concentrations – is set to alter evapotranspiration,
the need for its accurate estimation is of paramount impor-
tance, as it affects our understanding and assessment of past,
present, and potential future impacts on ecosystem function-
ing (Milly and Dunne, 2016; Yang et al., 2019; Caretta et al.,
2022).

Evapotranspiration can hardly be measured directly (Wang
and Dickinson, 2012; Jensen and Allen, 2016) and is there-
fore commonly estimated using (semi-)empirical formulas
from other, more easily obtained meteorological variables
such as temperature, wind speed, and radiation. Over time,
dozens of methods have been proposed and applied. Each
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of these methods generally results in slightly different esti-
mates of evapotranspiration, depending on the methods and
data used (Oudin et al., 2005; McMahon et al., 2013; Xu and
Singh, 2000, 2001; Lemaitre-Basset et al., 2022). Most of
these formulas estimate either the reference crop evapotran-
spiration (ET0), which is ET from a reference surface or crop
that is not short of water (Allen et al., 1998), or the poten-
tial evapotranspiration (PET), which is the maximum rate of
ET that would occur given a sufficient water supply (Xiang
et al., 2020). Potential evapotranspiration is determined by
meteorological conditions, whereas water availability deter-
mines if actual evapotranspiration occurs at its potential rate
(Jensen and Allen, 2016). Differences in the potential evapo-
transpiration estimate may cascade through a modeling chain
and ultimately impact the results of a study. For example,
Prudhomme and Williamson (2013), Lemaitre-Basset et al.
(2022), and Bormann (2010) showed that the method used
affects the results from hydrological climate change impact
studies. Similarly, the estimation of water demand for effi-
cient crop and irrigation management depends on potential
evapotranspiration, and it may thus be impacted by the meth-
ods used (Kumar et al., 2012).

To account for the structural uncertainty of the differ-
ent PET models, it has been recommended to use multiple
methods (Seiller and Anctil, 2016; Beven and Freer, 2001;
Velázquez et al., 2013). Such an approach can help improve
the understanding of the effect of model uncertainty on PET
estimates in, for example, historical climate studies (Zhou
et al., 2020; Dakhlaoui et al., 2020; Yang et al., 2019) and
climate change impact studies (Bormann, 2010; Seiller and
Anctil, 2016; Gharbia et al., 2018; Shi et al., 2020). Cli-
mate change impact studies often rely on climate projec-
tion data or global observational datasets, which are gener-
ally available in a gridded format (i.e., netCDF, GRIB), thus
requiring tools that can efficiently process such data. Some
of these datasets also contain only a limited set of observed
or projected meteorological variables, requiring PET esti-
mation methods that use fewer inputs. It may also be nec-
essary to account for environmental variables that change
over time and impact the evapotranspiration, such as vege-
tation changes and increases in atmospheric CO2 concentra-
tions (Fatichi et al., 2016; Ainsworth and Rogers, 2007; Vre-
mec et al., 2022). Studies like those mentioned above require
software programs that (1) include multiple PET estimation
methods, (2) are flexible in adjusting input parameters (e.g.,
empirical coefficients, crop data, and meteorological inputs),
and (3) are applicable to both time series and gridded data
given the spatial nature of many of these studies.

Existing tools for calculating evapotranspiration, such as
“Evapotranspiration” in R (Guo et al., 2016) and “PyETo”
(Richards, 2019) and “pyfao56” in Python (Thorp, 2022),
are primarily designed for station-based time series data.
This limits their applicability with gridded datasets. While
Peterson et al. (2020) extended “Evapotranspiration” to
“AWAPer” to process gridded data, its use is limited to Aus-

tralia. For the large community of geoscientists working with
Python, the number of available PET methods from existing
packages is limited (three for PyETo and one for pyfao56)
compared to the 21 methods in the R package. This high-
lights a gap in the availability of a software for the estima-
tion of multiple PET methods for both time series and grid-
ded data, with the input parameter flexibility required for ad-
vanced studies on PET. Given the increasing need to under-
stand and predict environmental changes accurately across
the globe, the availability of such software is of paramount
importance for the geoscience community.

Opportunities also exist to further align these tools with
the FAIR standards of findability, accessibility, interoperabil-
ity, and reusability for research software, which is of crucial
importance for the credibility and reproducibility of scien-
tific studies (Barker et al., 2022). This involves improving
methodological testing through continuous integration, in-
clusion of additional alternative PET methods, and enabling
more flexibility in adjusting internal empirical coefficients.
Such enhancements not only adhere to best practices in soft-
ware development but also broaden the scope and applicabil-
ity of these tools in diverse geoscientific contexts. The refine-
ment and development of evapotranspiration estimation tools
that fully embrace the FAIR principles are therefore crucial
steps toward advancing the field, ensuring more reliable and
comprehensive research outcomes in the face of evolving sci-
entific needs (Wood et al., 1998; DeJonge and Thorp, 2017).

In this paper we introduce PyEt, an open-source Python
package for the estimation of potential evapotranspiration.
The aim of PyEt is to provide researchers and practition-
ers with a wide variety of tested, documented, and flexi-
ble Python functions that support multiple PET methods for
both station and gridded data. All methods have a common
application programming interface, allowing users to easily
test different PET models for their application and, if de-
sired, address structural uncertainty and changing conditions.
The majority of the implemented methods are benchmarked
against literature values and tested with continuous integra-
tion to ensure the correctness of the implementation. Allow-
ing different types of input data, PyEt is also applicable in re-
gions with sparsely distributed measurement stations where
standard meteorological data (e.g., wind, relative humidity)
are often unavailable. The software is available under MIT
license from the Python Package Index (PyPI) (Vremec and
Collenteur, 2022) and developed as a community project on
GitHub (http://www.github.com/pyet-org/PyEt, last access:
17 September 2024).

The remainder of this paper is structured as follows. In
the next section, the software design, capabilities, and bench-
marking tests are described. Section 3 introduces the soft-
ware through four examples, showing potential future users
how to apply PyEt in real-world applications. These exam-
ples concentrate on addressing practical problems commonly
faced by geoscientists in their daily work. Section 4 discusses
future potential applications of PyEt, and we detail how we
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think it can help the scientific community improve the esti-
mation of potential evapotranspiration. Conclusions and fu-
ture plans are outlined in Sect. 5.

2 PyEt Python package

2.1 Software design

The basic design principle for PyEt was to build a software
that is intuitive and easy to use by novice users with little
programming experience yet flexible enough to allow ad-
vanced users to perform more complex analyses. The soft-
ware uses a modular design, with formulas shared by dif-
ferent PET methods implemented as a single function. This
reduces the amount of code and makes it easier to maintain
the software and implement new methods. All of the PET
methods are intended to work with the minimum input data
required by the PET models (e.g., radiation, temperature) but
also allow more user input if such data are available and
allowed by the PET method (e.g., humidity, surface resis-
tance in the Penman–Monteith model). Utility functions are
available to the user or are called internally to compute un-
available variables (e.g., solar radiation from latitude value).
Moreover, the constants in the empirical PET formulas (e.g.,
the Stefan–Boltzmann constant) are function arguments with
default values from the literature, which may also be changed
by the user to adapt the empirical relationship to another re-
gion. Finally, the available methods should work for both sta-
tion (1D) and gridded data (2D/3D).

PyEt is part of the wider Python ecosystem and de-
pends on three widely used and well-developed Python
packages from the scientific Python stack: NumPy (Harris
et al., 2020), Pandas (McKinney, 201), and Xarray (Hoyer
and Hamman, 2017). The input and output data of PyEt
are formatted as time series data in Pandas.Series or
Xarray.DataArrays, which allows using all the Pan-
das or Xarray functions on the data (Harris et al., 2020;
McKinney, 201; Hoyer and Hamman, 2017). These func-
tions include gap-filling and selection functions for interpo-
lation, resampling, clustering, and many more. Being part of
a wider ecosystem, users can leverage other Python packages
for visualization (e.g., Matplotlib (Hunter, 2007), MetPy
(May et al., 2022)) and optimization and uncertainty anal-
yses (SciPy (Virtanen et al., 2020), SpotPy (Houska et al.,
2015)).

The software is hosted and developed on the GitHub plat-
form and distributed under MIT license through the Python
Packaging Index (PyPI). Documentation and example appli-
cations are available on a dedicated ReadTheDocs website
(http://pyet.readthedocs.io, last access: 17 September 2024).
The documentation for individual methods is also directly
available in Python from the documentation strings. Each re-
lease of PyEt is automatically stored in the Zenodo reposi-
tory and assigned a Digital Object Identifier (DOI). As such,

PyEt complies with many of the recommendations for good
research software development as given in, for example, Hut-
ton et al. (2016) and the FAIR4RS (FAIR for Research Soft-
ware) principles (Barker et al., 2022). The scripts or the
Jupyter notebooks used to apply PyEt improve the repro-
ducibility and provide a transparent report of the entire cal-
culation process (Kluyver et al., 2016).

2.2 Implemented methods and benchmarking

There are 20 methods currently implemented in PyEt for
the estimation of daily potential evapotranspiration. Apart
from the Penman–Monteith method, which is considered the
standard by the Food and Agriculture Organization (FAO)
(Allen et al., 1998) and the World Meteorological Organiza-
tion (WMO), multiple alternative methods are also available
in PyEt. An overview of these methods and the required input
data is provided in Table 1. Depending on the method, differ-
ent (amounts of) input data are required to compute the po-
tential evapotranspiration. It is often also possible to provide
different input data to the same method (e.g., the average or
the minimum and maximum daily temperatures) or even that
some input data is optional (as described in the footnotes of
Table 1). In the case of optional input data, utility functions
are used internally to estimate that data. In the example of the
Penman–Monteith method, solar radiation does not necessar-
ily need to be provided by the user and can be estimated from
the latitude and actual duration of sunshine hours instead.

The PyEt project is intended to be used by a wide commu-
nity, and any errors in the code may have consequences for
other studies applying PyEt to obtain PET estimates. Spe-
cial attention was therefore paid to benchmark the avail-
able methods to published literature values and data from
well-known research and meteorological institutes (Allen
et al., 1998; McMahon et al., 2013; Schrödter, 1985; Wal-
ter et al., 2000). These benchmarks are also implemented in
the continuous integration and tested using the unittest test-
ing framework (unittest, 2022). This ensures that the bench-
marks are satisfied each time the software is updated in the
future. New methods added to PyEt will be required to be
accompanied by the appropriate benchmark data and tests.
Figure 1 shows the results for each benchmarked method, in-
dicating that the PET estimates from all these methods are
equal to the benchmark values (i.e., all values are on the 1 : 1
line). Despite our best efforts, we acknowledge here that four
methods have not (yet) been benchmarked due to a lack of
appropriate data.

In various sections of the paper, the performance of PET
estimation methods are evaluated using three key perfor-
mance metrics: model bias (mm d−1), the coefficient of de-
termination (–), and the Kling–Gupta Efficiency (KGE, –)
(Gupta et al., 2009). These metrics enabled comparisons be-
tween benchmark PET values from literature and those es-
timated with PyEt, as well as between PET values derived
from alternative models and the Penman–Monteith method,
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Figure 1. Scatter plots showing estimated PET with PyEt against PET values estimated with the R package “Evapotranspiration” from Guo
et al. (2016) and literature values from Allen et al. (1998), McMahon et al. (2013), and Schrödter (1985).

both before and after calibration. The Python implementa-
tions of the package SpotPy (Houska et al., 2015) were used
for each performance metric, and the formulas of these im-
plementations are detailed in Appendix B22.

2.3 Performance

The computational efficiency of various PET methods was
assessed by examining the computation times in relation to
the time series length and the number of cells in a Xar-
ray dataset. Computation time was evaluated by running
all models on a benchmark configuration (with time se-
ries of varying lengths) using a 12th Gen Intel Core i7-
1255U processor with 10 cores and 12 logical processors. All
Xarray.DataArrays cover a period of 1 year, whereas
the spatial resolution changes. This comparison highlights
the trade-offs between computational complexity and data
size but also demonstrates the performance of the methods.

Figure 2 demonstrates that all PyEt methods maintain
computational times below 1 s for time series data with
lengths ranging from 10 to 10 000 d. For multidimensional
data, the computation time does not exceed 10 s for larger
Xarray.DataArrays up to 100 000 cells. Moreover, the
results in Fig. 2 show that the problem scales well and pro-
portionally does not take more time for larger datasets. No-
tably, the Penman–Monteith and Priestley–Taylor methods
exhibited the largest processing times, whereas methods like
Jensen–Haise, Turc, Makkink, and Romanenko were faster.
Future improvements will aim to increase this efficiency, in
particular to support faster calculations in large-scale global
studies.

3 Example use cases

Below, four use cases of PyEt are presented to illustrate how
the software can be used. The first example shows how to
efficiently compute different potential evapotranspiration es-
timates using 20 various methods for station data. This ex-

Figure 2. Computational efficiency of different PET methods. This
figure shows the comparative processing times of different PET es-
timation methods regarding the length of the time series (a) and the
size of the Xarray data (b).

ample also illustrates how to use PyEt in general. The sec-
ond example illustrates how to provide 3D estimates of PET
using three different methods and gridded Xarray data. The
third example shows how to calibrate different PET methods
to local conditions and use the calibrated formula for hind-
casting. The fourth and final example illustrates a workflow
to account for the effects of warming and elevated CO2 in
climate change impact studies. The source code for these and
other examples can be found in a Zenodo repository related
to this paper (Vremec and Collenteur, 2024a).

3.1 Example 1: estimation of PET from station data

In this example, potential evapotranspiration is estimated for
the town of De Bilt in The Netherlands using data provided
by the Royal Netherlands Meteorological Institute (KNMI).

Geosci. Model Dev., 17, 7083–7103, 2024 https://doi.org/10.5194/gmd-17-7083-2024
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Table 1. Data requirements for different PET or ET0 models, the corresponding PyEt function, and if benchmarking of the method was per-
formed. The references include both the original publications of the models and the papers from which the equations were taken: (1) McMa-
hon et al. (2013), (2) Oudin et al. (2005), (3) Xu and Singh (2001), (4) Ansorge and Beran (2019), Rosenberry et al. (2004), (5) Schrödter
(1985), (6) Schiff (1975), (7) Jensen and Allen (2016), (8) Xu and Singh (2000).

Method namea PyEt function Climate data Location Bench. Literature

T RH R u2 Lat. El.

Penman–Monteith pmg,h Xb Xc,d Xe X Xe Xf X Monteith (1965)
ET0: ASCE-PM pm_asce Xb Xc,d Xe X Xe Xf X Walter et al. (2000)
ET0: FAO-56 pm_fao56 Xb Xc,d Xe X Xe Xf X Allen et al. (1998)
Penman penman Xb Xc,d Xe X Xe Xf X Penman (1948)
Priestley–Taylor priestley_taylor X Xi Xi – Xi Xf X Priestley and Taylor (1972)
Kimberly–Penman kimberly_penman Xb Xc,d Xe X Xe Xf – Wright (1982)
Thom–Oliver thom_oliver Xb Xc,d Xe X Xe Xf – Thom and Oliver (1977)
Blaney–Criddle blaney_criddle X –j –j –j X – X Blaney and others (1952), McMa-

hon et al. (2013), Xu and Singh
(2001), Schrödter (1985)

Hamon hamon X – – – X – X Hamon (1963), Oudin et al. (2005),
Ansorge and Beran (2019)

Romanenko romanenko X X – – – – X Romanenko (1961), Xu and Singh
(2001)

Linacre linacre Xk – – – – X X Linacre (1977), Xu and Singh
(2001)

Haude haude X Xl – – – – X Haude (1955), Schiff (1975)
Turc turc X X X – – – X Turc (1961), Xu and Singh (2000)
Jensen–Haise jensen_haise X – Xm – Xm – X Jensen and Haise (1963), Oudin

et al. (2005), Jensen and Allen
(2016)

McGuinness–Bordne mcguinness_bordne X – – – X – X McGuinness and Bordne (1972),
Xu and Singh (2000)

Hargreaves hargreaves Xn – – – X – X Hargreaves and Samani (1982),
McMahon et al. (2013), Jensen and
Allen (2016)

ET0: FAO-24 fao_24 X X X X – Xf – Jensen et al. (1990)
ET0: Abtew abtew X – X – – – X Abtew (1996), Xu and Singh (2000)
Makkink makkink X – X – – Xf X Makkink (1957), McMahon et al.

(2013)
Oudin oudin X – – – X – – Oudin et al. (2005)

a The corresponding literature for each method is provided in the Appendix B22.
b Tmax and Tmin can also be provided.
c RHmax and RHmin can also be provided.
d If actual vapor pressure is provided, RH is not needed.
e Input for radiation can be (1) net radiation, (2) solar radiation, or (3) sunshine hours. If it is (1), then latitude is not needed. If it is (1, 3) latitude and elevation are needed.
f One must provide either the atmospheric pressure or elevation.
g The PM method can be used to estimate potential crop evapotranspiration if leaf area index or crop height data are available.
h The effect of CO2 on stomatal resistance can be included using the formulation of Yang et al. (2019).
i If net radiation is provided, RH and latitude are not needed.
j If method 2 is used, u2, RHmin and sunshine hours are required.
k Additional input of Tmax and Tmin or Tdew.
l Input can be RH or actual vapor pressure.
m If method 1 is used, latitude is needed instead of Rs.
n Tmax and Tmin are also needed.

The reference method used by the KNMI for the estima-
tion of potential evapotranspiration is the Makkink method,
which is also implemented in PyEt. The PET computed with
the Makkink method is compared to the PET values from all
other methods in PyEt. Several steps are taken in a Python

script to estimate PET. The code implementing these steps
is shown in the code example below. PyEt provides a con-
venient way to compute the PET with all available methods,
pyet.calculate_all().

1. Import the necessary Python packages.
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Figure 3. Potential evapotranspiration estimates for the year 2018
computed with all available PET methods plotted as (a) time series,
(b) box plots, and (c) cumulative PET.

import pandas as pd
import pyet

2. Load the meteorological data.

meteo = pd.read_csv("meteo.csv",
index_col=0, parse_dates=True)

3. Determine the necessary input data for the PET model.

tmean, tmax, tmin, rh, rs, wind, \
pet_knmi = (meteo[col] for col in

meteo.columns)
lat = 0.91 # latitude
elev = 4 # elevation

4. Estimate the potential evapotranspiration with all meth-
ods or the method of choice.

pet_df = pyet.calculate_all(tmean,
wind, rs, elev, lat, tmax, tmin, rh)

pet_mak = pyet.makkink(tmean, rs,
elevation=elev)

5. Visualize and analyze the results.

pet_df.plot()
pet_df.boxplot()
pet_df.cumsum().plot()

The results from this analysis are shown in Fig. 3. From
these visualizations, it is clear that the potential evapotran-
spiration depends on the chosen method. This can accumu-
late up to a 35 % deviation of the estimated annual flux from

the mean in this example. Such substantial differences be-
tween the estimated fluxes motivate the use of multiple meth-
ods (ensemble modeling) (Beven and Freer, 2001; Krueger
et al., 2010; Shi et al., 2020; Oudin et al., 2005). This exam-
ple showed how PyEt can be used efficiently for this task.

3.2 Example 2: estimate PET for gridded data

Gridded three-dimensional data (x, y, and t) obtained from
satellites, radar imagery, or post-processed products are
rapidly becoming widely available. More and more pub-
lic datasets exist with global PET estimates at 0.1° reso-
lution (e.g., Martens et al., 2017; Xie et al., 2022). PyEt
also supports such gridded data, as illustrated here for
the E-OBS gridded dataset (Cornes et al., 2018) for Eu-
rope. The application of PyEt on gridded datasets is illus-
trated for the FAO-56, Makkink, and Hargreaves method.
Xarray.DataArrays are used as input data instead of
Pandas.Series. PyEt methods will return the same data
type, a Xarray.DataArray. The workflow is compara-
ble to that in the first example, except that now the individual
PET methods are used.

The results for the three methods and three time steps
are shown in Fig. 4. These again show that results may
also differ spatially depending on the PET method. Look-
ing more closely at Fig. 4, we can observe that the FAO-56
and Makkink methods do not compute PET in eastern parts
of Europe. The data do not include relative humidity and so-
lar radiation for these areas, and thus PET cannot be com-
puted using the FAO-56 or Makkink method. If NaN (not-
a-number) values are present in the required input data for
a PyEt method, the method also returns a NaN value. The
Hargreaves method, on the other hand, does not require solar
radiation or relative humidity data. It can therefore be used
to compute PET in the eastern parts of Europe. This example
showed how PyEt can be applied to estimate PET using grid-
ded data and demonstrated the benefits of using alternative
PET methods when data such as radiation or relative humid-
ity are missing.

3.3 Example 3: calibration of PET models

The available input data often does not suffice to compute po-
tential evapotranspiration with the Penman–Monteith equa-
tion. This can be the case in data-scarce regions or time peri-
ods or when using historical data or data from climate mod-
els. In such cases, alternative PET methods can be calibrated
to the estimates obtained from the Penman–Monteith equa-
tion for a period when sufficient data are available. The cal-
ibrated method can then be used to estimate PET in periods
of data scarcity. As concluded by several authors (Jensen and
Allen, 2016; Valipour, 2015; Yang et al., 2021; Dlouhá et al.,
2021), calibration of alternative models is often crucial to en-
sure that the model fits the regional climate. In this example,
it is shown how the calibration of temperature-based PET
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Figure 4. Daily PET estimates for Europe from 6 to 8 June 2018 using meteorological data obtained from the E-OBS dataset (Cornes et al.,
2018).

models affects the model uncertainty for studies focusing on
current and past climates.

The approach is illustrated for the town of Graz, Aus-
tria, where the input data required for Penman–Monteith
are only available from 2000 to 2021. Imagine, however,
that for our study we also need potential evapotranspiration
data for the period 1961 to 2021, but only temperature data
are available (e.g., from the Spartacus temperature dataset
(Hiebl and Frei, 2016)). Several steps are taken to calibrate
the following five temperature-based methods: Oudin, Har-
greaves, McGuinness–Bordne, Hamon, and Blaney–Criddle.
First, the PET for the period 2000–2021 is computed using
the Penman–Monteith equation. In the second step, the co-
efficients of the temperature-based PET equations are esti-
mated by calibrating the estimated PET from temperature-
based methods to the Penman–Monteith PET. Calibration is
done by minimizing the sum of the squared residuals be-
tween these two PET estimates using SciPy’s (Virtanen et al.,
2020) least_squares method. In the third and final step, these
calibrated coefficients are used to estimate the PET for the
period 1961–2021.

Figure 5 shows the computed PET with the default (row 1)
and calibrated coefficients (row 2). The model bias (mm d−1)
and the Kling–Gupta efficiency between simulated and ob-
served (Penman–Monteith) PET show an improved model fit
for all methods after calibration. The use of calibrated meth-
ods reduces the model bias, which is visually illustrated by
the annual PET flux (composed of daily values) in the last
column of Fig. 5. Using the Spartacus temperature dataset

(Hiebl and Frei, 2016), PET can now be estimated back to
1961 using the calibrated alternative PET methods.

3.4 Example 4: the effect of CO2 on future PET
estimates

In this example, it is shown how to account for changing en-
vironmental conditions affecting the PET flux when model-
ing the effects of climate change. Under a warmer and CO2-
richer future (Caretta et al., 2022), potential evapotranspira-
tion tends to increase with increasing temperature (and vapor
pressure deficit). A reduction in PET is expected under el-
evated CO2 due to an increased stomatal resistance (Field
et al., 1995; Ainsworth and Rogers, 2007). The increase in
CO2 is still commonly ignored in PET models employed for
climate change studies, although excluding its stomatal ef-
fect may lead to an overestimation of PET (Kingston et al.,
2009; Milly and Dunne, 2016; Vremec et al., 2022; Riedel
et al., 2023). The effect of temperature increases on PET can
be easily modeled with all available PET methods, as tem-
perature is an input for all methods. The CO2 stomatal ef-
fect, however, can only be directly accounted for with the
Penman–Monteith method (Liu et al., 2022). Using a CO2-
dependent stomatal resistance model implemented in PyEt
(Yang et al., 2019), the effect of elevated CO2 on stomatal
resistance can be considered (see Eq. B2). When calculat-
ing PET with alternative methods, Kruijt et al. (2008) and
Trnka et al. (2014) argued that an adjustment factor for the at-
mospheric CO2 concentration (fCO2 ) can be used to account
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Figure 5. Density scatter plots comparing simulated and observed (FAO-56) PET for uncalibrated (row 1) and calibrated models (row 2).
The performance of the calibrated models is evaluated using the model bias in mm d−1 (Bias), the coefficient of determination (R2), and
the Kling–Gupta efficiency (KGE). The last column shows the annual PET sums for the period 1961–2021 using uncalibrated (row 1) and
calibrated models (row 2).

for the effect of elevated CO2 concentrations on PET. The
scaling factor can be obtained from literature values (Kruijt
et al., 2008; Trnka et al., 2014). Alternatively, the factor can
be calibrated using the Penman–Monteith equation together
with the CO2-dependent stomatal resistance model (Eq. B1)
to match the local climate and vegetation:

PETCO2 = fCO2PET300

= (1+ SPETCO2
(CO2− 300))PET300, (1)

where SPETCO2
is the relative sensitivity of PET to CO2,

PET300 is the computed Penman–Monteith estimate at
300 ppm [CO2] (preindustrial concentration), and PETCO2

is the computed Penman–Monteith estimate under elevated
CO2 concentration (Yang et al., 2019). Such relationships
can be easily implemented in PyEt, and fCO2 can be ob-
tained by calculating PET300 and PETCO2 with the Penman–
Monteith equation (Eq. B1) at ambient and elevated CO2
concentration, respectively.

Building on the previous example, the Graz study area
served as a practical example to demonstrate the application
of the calibrated models in assessing the impact of warming
and elevated CO2 concentration on PET based on the pro-
jected increase in temperature and CO2 concentration from
the representative concentration pathways (RCPs) (Van Vu-
uren et al., 2011). Daily PET was calculated for each RCP
scenario (2.6, 4.5, 6.0, and 8.5) by adding the projected in-
crease in temperature and CO2 concentration to the existing
data for 2020–2021. Figure 6 shows the increase in the aver-
age annual PET (aggregated from daily values) under warm-
ing and elevated CO2 concentrations according to the RCP
scenarios. In Fig. 6c, the effects of elevated CO2 concentra-
tion on PET were neglected, and only increases in temper-
ature were considered. Similar to Milly and Dunne (2016),
Yang et al. (2019), and Vremec et al. (2022), this example

Figure 6. Projected increase in temperature (a) and atmospheric
CO2 concentration (b) under the RCP scenarios, calculated increase
in the average annual PET with warming (c), and PET with warm-
ing and elevated CO2 concentration (d). The uncertainty bounds
represent the 5th–95th percentile of the PET model ensemble.

shows that neglecting the effect of elevated CO2 on PET
(Fig. 6c) can lead to overestimation of PET under future con-
ditions.

4 Discussion

4.1 Improved handling of PET in scientific studies

Evapotranspiration data from lysimeter or eddy correlation
measurements (Pastorello et al., 2020) are rare and, if avail-
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able at all, only locally available for relatively short time
periods. Thus, there is a widespread need to estimate evap-
otranspiration from more readily available meteorological
data using (semi-)empirical approaches. In general, these ap-
proaches follow three steps, as outlined for example by Allen
et al. (1998). Firstly, the potential evapotranspiration of a ref-
erence surface (hence reference evapotranspiration) is esti-
mated using meteorological data. Secondly, a crop coefficient
may be applied to transform the reference evapotranspiration
into the potential crop evapotranspiration. Thirdly, a soil–
water balance approach is used to account for reduced actual
evapotranspiration if the soil–water storage is depleted. PyEt
is designed to perform the first two steps. It can be easily
complemented by soil–water balance approaches to calculate
actual evapotranspiration. Hydrological models, however, of-
ten use PET directly as input.

Rainfall–runoff models represent one type of hydrologi-
cal model where PET is commonly used as an input, ei-
ther as gridded data in distributive models or as a spa-
tially aggregated values in lumped-parameter models. Some
studies (e.g., Andréassian et al., 2004; Oudin et al., 2005;
Sperna Weiland et al., 2012) found that PET had little im-
pact on the performance of such models, and they thus ad-
vocated for the use of simplistic PET models. However, Jay-
athilake and Smith (2021) found that model performance was
clearly sensitive to PET at sites with water-limited evapotran-
spiration. More importantly, the choice of the PET model has
been shown to affect the results of hydrological projections in
climate change impact assessments (Kay and Davies, 2008;
Seiller and Anctil, 2016; Dallaire et al., 2021; Lemaitre-
Basset et al., 2022). PET is expected to be even more influen-
tial in the assessment of groundwater recharge (e.g., Bakun-
dukize et al., 2011) and crop water demands (e.g., Webber
et al., 2016), which – compared to runoff – are more directly
linked to evapotranspiration. Thus, the selection of appropri-
ate PET models needs to account for the research context and
variable of interest.

Bormann (2010) found that PET models that are based on
the same or similar climate variables exhibit different sensi-
tivity to observed climate change. This finding suggests that
appropriate PET models need to be specifically selected for
the given region of interest. Guo et al. (2017) provides point-
ers to examining which variables are likely to be the most
important for a particular location. For more detailed insights
into the application of individual PET methods across vari-
ous climates, refer to Table A2 and the studies by Allen et al.
(1998), McMahon et al. (2013), Jensen and Allen (2016),
Yang et al. (2021), and Pimentel et al. (2023). The com-
parison of PET estimates for Europe shown in Fig. 4 illus-
trates the spatial variability of differences in PET estimates
obtained from different methods; as can be seen, the magni-
tude and pattern of PET estimates are similar in some regions
(e.g., Scandinavia) but differ more strongly in others (e.g.,
southeastern Europe).

As indicated above, the performance of PET models may
vary depending on the region considered. Approaches that
were found to be applicable in one region may perform less
well in other regions. In this case, PET models can be cali-
brated to a reference dataset by adjustment of the coefficients
in the model equation, as shown in the third example. The
reference dataset can either be observed evapotranspiration
(e.g., from lysimeters) or PET obtained from a model consid-
ered to be reliable. This has been illustrated by Example 3,
where the coefficients of temperature-based models were ad-
justed to achieve the best fit to the Penman–Monteith model.
This approach can also be used to obtain consistent spatial
distributions of PET. As shown in Example 2 (Fig. 4), the
limited data availability for eastern Europe did not allow the
application of the FAO-56 or Makkink method, while suffi-
cient data were available for the Hargreaves method. Thus,
one may consider calibrating the latter to one of the for-
mer methods where these are applicable and only then ap-
plying it to obtain estimates for the entire region. For a more
advanced calibration procedure, see, for example, Haslinger
and Bartsch (2016).

Often the range of PET models that can potentially be em-
ployed is pre-determined by data availability. This may be the
case if historical records of climate data are to be used for the
PET estimation, for example, as many weather stations do
not measure all climate variables included in the Penman–
Monteith equation. However, this is also often the case in
assessments of hydrological impacts of climate change if
projected climate variables have high uncertainty. Lai et al.
(2022), for example, concluded that the high uncertainty of
wind speed projected in complex terrain may increase the
uncertainty in PET, whereas air temperature and solar radi-
ation have low uncertainty and thus should be the parame-
ters preferred in the PET model. Given the climate variables
for which data is available, Table 1 can be used to identify
the PET models that come into consideration. However, it
is advised to evaluate the assumptions and limitations of the
individual methods regarding their applicability in the given
case. Please refer to the comments in Table A2 and the refer-
ences in Table 1 for this purpose. We generally recommend
applying all models that have been identified as suitable (PET
model ensemble), but the purpose and specific implementa-
tion of such a multi-model approach will depend on the re-
search context. Example 4 (Sect. 3.4) illustrated how PET
model ensembles can be used to include model uncertainties
in PET projections under warming and elevated atmospheric
CO2 concentration. Since the latter effect is frequently ex-
cluded in hydrological projections, Milly and Dunne (2016)
and Yang et al. (2019) advocate the inclusion of the effect of
elevated CO2 on stomatal resistance when estimating PET
under warming and elevated atmospheric CO2 concentra-
tions.

To evaluate the performance of the estimated PET against
observed values or other PET methods, performance metrics
are employed. In this paper, the model bias and coefficient
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of determination (R2) are used to provide readers and prac-
titioners with a clear and concise assessment of the over-
all deviation in flux and the percentage of the variability
explained by the model (Onyutha, 2024). Additionally, the
Kling–Gupta Efficiency (KGE) (Gupta et al., 2009) is used,
offering a comprehensive view by incorporating correlation,
variability, and bias into a single statistic. KGE is particu-
larly valued in hydrological modeling, as it addresses some
limitations of the R2 by providing a differentiated perspec-
tive on model performance. The choice of the most appro-
priate performance metric is important to reduce model un-
certainty, as it affects the judgment of the performance of
a method. For further guidance on the evaluation of vari-
ous performance metrics, readers are referred to Krause et al.
(2005) and Onyutha (2024).

To improve reliability and efficiency in estimating PET, it
is crucial to use a reproducible workflow. Scripts provide an
efficient way to document the modeling process and are an
important step towards full reproducibility. As shown in the
examples, Jupyter Notebooks (Kluyver et al., 2016) provide
a solution for publishing code, results, and explanations in a
single document. As such, the presented package and its ap-
plication in this paper are in line with the steps suggested by
Hutton et al. (2016) to improve reproducibility in hydrologi-
cal studies. To speed up adaptation of the methods and allow
a faster transfer between research teams, formal procedures
such as benchmarking (e.g., Maxwell et al., 2014) can help
to ensure confidence in key complex codes.

4.2 Building the PyEt community and outlook

As a community project, the success of PyEt depends on
the uptake from and interaction with the community. This,
in turn, depends on the ease of use and the trust in the
project. Emphasis was put on designing user-friendly and
well-documented software, including various user examples,
and extensive benchmark testing using continuous integra-
tion. Since the initial launch of PyEt, the package has al-
ready seen a good community uptake. Apart from applica-
tions of the software in projects related to the authors, which
include estimating PET under conditions of warming and el-
evated CO2 concentrations, assessing potential crop evapo-
transpiration, and providing inputs for hydrological models
(e.g., Vremec et al., 2022; Forstner et al., 2022; Collenteur
et al., 2023; Jemeljanova et al., 2023), PyEt has also been
independently used by other researchers. These studies have
used PyEt for various purposes: integrating PET estimates
with machine learning models for enhanced analytical capa-
bilities (Vaz et al., 2022; Kajári et al., 2024) and combining
them with software for computing groundwater recharge and
the water balance (Hassanzadeh et al., 2024). The software
has also played a role in evaluating hydroclimatic changes
and generating regional and global PET estimates (e.g., Ter-
cini and Mello Júnior, 2023; Aguayo et al., 2024; Ha et al.,

2024). The quick uptake of the software by the community
confirms the need for this software.

The primary channel for communication with the PyEt
community is GitHub, which provides several options for
discussions, tracking code issues, and code development.
Users are encouraged to ask questions in GitHub discussions
and to report potential issues, suggest improvements, and
feature requests via the GitHub issue tracker. As a commu-
nity project, we plan to continue to improve the existing code
and develop new capabilities based on feedback and with
help from the community. An example of developments that
are currently underway is the adaptation of the current meth-
ods to also work for hourly data, allowing the estimation of
hourly PET. Other future work will focus on improvements
in usability and the inclusion of other alternative methods.

5 Conclusions

This paper introduced PyEt, a Python package for the estima-
tion of daily potential evapotranspiration (PET). The pack-
age enables the inclusion of model uncertainty and climate
change in the PET estimation in a consistent, tested, and re-
producible environment. With PyEt, PET can be estimated
using 20 different methods with just a few lines of Python
code. Unlike existing tools for PET calculation, which are
designed for station-based time series, PyEt can also be ap-
plied to gridded (3D) datasets. This is of great practical rele-
vance, particularly in climate impact studies, where gridded
datasets are often used. The examples described in this pa-
per illustrate how PyEt can be used in geoscientific studies
to (1) facilitate the characterization of model uncertainty us-
ing a multimodel approach (model ensembles), (2) calibrate
PET models and apply them in data-scarce regions and time
periods, and (3) include the effects of warming and elevated
atmospheric CO2 concentrations. The use of Python scripts
and Jupyter Notebooks ensures reproducibility and provides
a transparent report of the PET computation process. We be-
lieve that PyEt will help improve the handling of PET and
allow a more sophisticated and comprehensive consideration
of PET in environmental studies, particularly those related to
climate change.
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Appendix A: PET methods – climate suitability and
applications

Table A1. List of variables and symbols used in the paper and appendix.

Variable Description Units

PET Potential evapotranspiration mm d−1

T Mean daily temperature °C
Tmax Maximum daily temperature °C
Tmin Minimum daily temperature °C
Tdew Mean daily dew point temperature °C
RH Mean daily relative humidity %
RHmax Maximum daily relative humidity %
RHmin Minimum daily relative humidity %
u2 Wind speed measured at 2 m m s−1

Rn Net radiation MJ m−2 d−1

Rs Incoming solar radiation MJ m−2 d−1

Ra Extraterrestrial daily radiation MJ m−2 d−1

G Soil heat flux MJ m−2 d−1

n Actual duration of sunshine hour
N Maximum possible duration of sunshine or daylight hours hour
Elev Elevation above sea level m
lat Latitude radians
latdeg Latitude degrees
p Atmospheric pressure kPa
λ Latent heat of vaporization MJ kg−1

1 Slope of the saturation vapor pressure curve kPa K−1

ρa Air density kg m−3

ρw Water density (= 1) Mg m−3

cp Specific heat of dry air MJ kg−1 K−1

e0 Saturation vapor pressure of the air at T kPa
es Saturation vapor pressure of the air kPa
ea Actual vapor pressure of the air kPa
γ Psychrometric constant kPa K−1

rs Bulk surface resistance s m−1

rl Bulk stomatal resistance s m−1

Srl−[CO2] Relative sensitivity of rl to 1 [CO2] ppm−1

ra Bulk aerodynamic resistance s m−1

hc Crop height m
LAI Leaf area index –
CO2 Atmospheric CO2 concentration ppm
Ku Unit conversion factor (= 86400) s d−1

aw Penman wind coefficient –
bw Penman wind coefficient –
Cn Numerator constant that changes with reference type K mm s3 Mg−1 d−1

Cd Denominator constant that changes with reference type s m−1

α Surface albedo –
αL Priestley–Taylor coefficient –
Py Percentage of actual daylight hours for the day compared to the number of day-

light hours during the entire year
–

as1 Empirical coefficient for extraterrestrial radiation –
bs1 Empirical coefficient for extraterrestrial radiation –
a Empirical coefficient for net longwave radiation –
b Empirical coefficient for net longwave radiation –
k Empirical or calibration coefficient –
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Table A2. Overview of PET methods: climate suitability, applications, and limitations. ET0 refers to reference crop or surface ET, PETC
refers to potential crop or surface ET, PETOW refers to potential ET for open water, PETSL refers to potential ET for shallow lakes, PETRR
refers to potential ET for rainfall–runoff modeling. Based on Allen et al. (1998), McMahon et al. (2013), Jensen and Allen (2016), Yang
et al. (2021), and Pimentel et al. (2023).

Method name Application Climate Limitations and comments

Penman–Monteith ET0, PETC, PETRR All climates High input data requirement
FAO-56 ET0 All climates High input data requirement
Penman PETOW, PETSL, PETRR All climates High input data requirement
Priestley–Taylor PETC, PETRR Temperate and polar Calibration recommended for semi-arid and arid re-

gions (often underestimates in high vapor pressure
deficit areas)

Kimberly–Penman ET0-alfalfa Temperate and continental High input data requirement
Thom–Oliver ET0 Temperate and continental High input data requirement
Blaney–Criddle ET0, PETRR Temperate Overestimates in calm, moist, and shaded areas and un-

derestimates in windy, dry, and sunny ones
Hamon PETC All climates Recommended regional calibration
Romanenko PETC, PETRR All climates Best recommended model for PET in China
Linacre PETC All climates Recommended regional calibration
Haude PETC All climates Recommended regional calibration
Turc ET0, PETC Humid Underestimates in areas with large daily vapor pressure

deficits
Jensen–Haise PET0, PETRR Continental Recommended regional calibration
McGuinness–Bordne PETC, PETRR All climates Recommended regional calibration
Hargreaves ET0, PETRR Tropical and dry Not recommended in windy or low RHmin regions (may

overestimate in humid climates)
FAO-24 ET0 All climates –
Abtew PETC Humid Poor performance in arid climates
Makkink PETC, PETRR All climates Originally designed for western Europe (may underes-

timate higher PET)
Oudin PETRR All climates Mainly used for hydrological modeling
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Appendix B: PET methods – equations

B1 Penman–Monteith (pm)

Through the introduction of the Penman–Monteith equation
by Monteith (1965), a broad applicability of PET estima-
tion to different surfaces and vegetation types was achieved
(Jensen and Allen, 2016). This was done by implementing
the plant aerodynamic resistance (ra) and the surface resis-
tance (rs) in the PET formula:

PET=
1
λρw

1(Rn−G)+ ρacpKu(es− ea)/ra

1+ γ
(

1+ rs
ra

)
 . (B1)

Users of PyEt can include leaf or canopy cover measure-
ments (leaf area index, LAI) to calculate surface resistance
(rs), thereby accounting for the effects of crop manage-
ment and phenology on PET. A modified stomatal resistance
model also allows for the inclusion of the sensitivity of the
stomatal resistance (rl) to the atmospheric CO2 concentration
(e.g., Yang et al., 2019; Vremec et al., 2022):

rs =
rl(CO2)

0.5LAI
=

rrl−300

{
1+ Srl−CO2

(CO2− 300)
}

0.5LAI
, (B2)

where Srl−[CO2] [ppm−1] is the relative sensitivity of rl to 1
[CO2] and rrl−300 [s m−1] is the reference stomatal resistance
when atmospheric CO2 concentration is 300 ppm. The rela-
tive sensitivity of rl to 1 [CO2] represents the change in rl
per ppm increase in CO2 concentration.

If measurements of crop height exist, these data can be
used to calculate the aerodynamic resistance to vapor and
heat transfer (ra) to represent the effects of crop phenology
on PET:

ra =
ln
[
zm−d
zom

]
ln
[
zh−d
zoh

]
k2uz

, (B3)

where zm is the reference level at which the wind speed is
measured; zh is the height of the temperature and humidity
measurements; k is the von Karman constant (= 0.41); uz is
the measured wind speed (Allen et al., 1998); d is the zero
plane displacement height, taken as 0.67hc [m]; zom is the
roughness parameter for momentum (= 0.123hc) [m]; and
zoh is the roughness parameter for heat and water vapor (=
0.1zom) [m] (Jensen and Allen, 2016).

Free parameters in the Penman–Monteith equation, avail-
able for calibration, include the bulk stomatal rl = 100 (rang-
ing between 40–150) and surface resistance (ranging be-
tween 50–200), with values for specific surfaces or crops
found in Jensen and Allen (2016). Additionally, one can ad-
just the surface albedo (α = 0.23, ranges between 0.04 for
water surfaces and 0.9 for snow) (Jensen and Allen, 2016)
to estimate net shortwave radiation (Eq. 38 in Allen et al.,
1998), the empirical coefficients for net longwave radiation

a = 1.35 and b =−0.35 (Eq. 39 in Allen et al., 1998), or the
empirical coefficients for clear-sky radiation as1= 0.25 and
bs1= 0.5 (Eq. 36 in Allen et al., 1998). Optional meteoro-
logical inputs include G, Tmax, Tmin, RHmax, RHmin, p, and
N .

B2 ASCE-PM (pm_asce)

The ASCE Penman–Monteith equation for is computed after
Walter et al. (2000) (Eq. 1):

PET=
0.4081(Rn−G)+ γ

Cn
T+273u2(es− ea)

1+ γ (Cdu2)
, (B4)

where Cn = 900 and Cd = 0.34 are empirical coefficients for
short reference vegetation (grass), while for tall reference
vegetation (alfalfa) Cn = 1600 and Cd = 0.38 can be spec-
ified. The free parameters a, b, as1, bs1, and α are consistent
with those specified for the Penman–Monteith method, while
the optional meteorological inputs remain the same.

B3 FAO-56 (pm_fao56)

The FAO-56 Penman–Monteith equation for reference crop
evapotranspiration is computed after Allen et al. (1998)
(Eq. 6):

PET=
0.4081(Rn−G)+ γ

900
T+273u2(es− ea)

1+ γ (1+ 0.34u2)
. (B5)

The free parameters a, b, as1, bs1, and α are consistent with
those specified for the Penman–Monteith method, while the
optional meteorological inputs remain the same.

B4 Penman (penman)

The Penman’s PET formulation is computed after Penman
(1948):

PET=
1
λρw

[
1(Rn−G)+ γ (es− ea)(aw+ bwu2)

1+ γ

]
, (B6)

where free parameters for the Penman’s wind function in-
clude aw = 1 and bw = 0.537 (Valiantzas, 2006), while Pen-
man (1948) suggested values of aw = 2.626 and bw = 1.381.
The free parameters a, b, as1, bs1, and α are consistent with
those specified for the Penman–Monteith method, while the
optional meteorological inputs remain the same.

B5 Priestley–Taylor (priestley_taylor)

Priestley–Taylor’s PET formulation is computed after Priest-
ley and Taylor (1972):

PET= αL
1(Rn−G)

λρw(1+ γ )
, (B7)

where αL = 1.26 is an empirical coefficient. The free param-
eters a, b, as1, bs1, and α are consistent with those specified
for the Penman–Monteith method, while the optional meteo-
rological inputs remain the same.
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B6 Kimberly–Penman (kimberly_penman)

The Kimberly–Penman equation (Wright, 1982) is computed
after Oudin et al. (2005):

PET=
1(Rn−G)+ γ (es− ea)w

λρw(1+ γ )
, (B8)

where w = u2

[
0.4+ 0.14exp

(
−

(
(j−173)

58

)2
)]
+[

0.605+ 0.345exp
(
−

(
j−243

80

)2
)]

.

The free parameters a, b, as1, bs1, and α are consistent
with those specified for the Penman–Monteith method, while
the optional meteorological inputs remain the same.

B7 Thom–Oliver (thom_oliver)

Thom–Oliver’s PET formulation is computed (Thom and
Oliver, 1977) the same way as in Oudin et al. (2005)

PET=
1(Rn−G)+ 2.5γ (es− ea) · aw(1+ bwu2)

λρw(1+ γ (1+ rs
ra
))

, (B9)

where aw = 2.6 and bw = 0.536. The free parameters a, b,
as1, bs1, α, rl, rs, and Srl−[CO2] are consistent with those
specified for the Penman–Monteith method, while the op-
tional meteorological inputs remain the same.

B8 Blaney–Criddle (blaney_criddle)

Three different approaches can be taken to estimate the
Blaney–Criddle PET, depending on the selected method.

PET=



a+ bPy (0.46T + 8.13) if Method= 0
(after ),

k ·Py (0.457T + 8.128) if Method= 1
(after , Eq. 6),

k1+ bvar ·Py (0.46T + 8.13) if Method= 2
(after ,

Eqs. S9.7 and S9.8),

(B10)

Here, k = 0.65, a =−1.55, and b = 0.96 are empirical co-
efficients, while k1= 0.0043 ·RHmin−

n
N
− 1.41 and bvar =

0.81917−0.0040922 ·RHmin+1.0705 · n
N
+0.065649 ·u2−

0.0059684 ·RHmin ·
n
N
− 0.0005967 ·RHmin · u2.

B9 Hamon (hamon)

The PET formulation after Hamon (1963), as used in Oudin
et al. (2005), is as follows:

PET= k ·
(
N

12

)2

· exp
(
T

16

)
, (B11)

where k = 1 is a calibration coefficient.

B10 Romanenko (romanenko)

Romanenko’s PET formulation (Romanenko, 1961), as used
in Oudin et al. (2005), is as follows:

PET= k
(

1+
T

25

)2

·

(
1−

ea

es

)
, (B12)

where k = 4.5 is an empirical coefficient (Oudin et al., 2005).
Optional meteorological inputs include Tmax, Tmin, RHmax,
and RHmin.

B11 Linacre (linacre)

Linacre’s PET formula (Linacre, 1977), as used in Oudin
et al. (2005), is as follows:

PET=
500·Tm

100−latdeg
+ 15 · (T − Tdew)

80− T
, (B13)

where Tm = T + 0.006 ·Elev.

B12 Haude (haude)

Haude’s PET formulation (Haude, 1955), as used in Schiff
(1975), is computed as follows:

PET= k ·FK · (e0− ea) · 10, (B14)

where k = 1 is a calibration coefficient and FK represents
Haude’s monthly coefficients, as adapted by Schiff (1975).

B13 Turc (turc)

The PET formula, as derived from Turc (1961) and used in
McMahon et al. (2013) (Eqs. S9.10 and S9.11), is computed
as follows:

PET= k · c ·
T

T + 15
(23.88Rs+ 50), (B15)

where k = 0.013 is an empirical coefficient and c, dependent
on the relative humidity (RH), is defined as follows:

c =

{
1+ 50−rh

70 if RH< 50,

1 otherwise.
(B16)

B14 Jensen–Haise (jensen_haise)

The PET according to the Jensen–Haise model (Jensen and
Haise, 1963), varies depending on the chosen method.

PET=


k Rs
λρw

(T − Tx) if Method= 0
(after ),

k RaT
λρw

if Method= 1
(after ),

(B17)

Here, cr = 0.025 is an empirical coefficient, while Tx =−3,
as used in Jensen and Allen (2016).
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B15 McGuinness–Bordne (mcguinness_bordne)

McGuinness–Bordne’s PET equation (McGuinness and Bor-
dne, 1972), as used in Oudin et al. (2005), is as follows:

PET= k
Ra(T + 5)
λρw

, (B18)

where k = 0.0147 is an empirical coefficient as suggested by
Xu and Singh (2000).

B16 Hargreaves (hargreaves)

The Hargreaves PET equation (Hargreaves and Samani,
1982) is computed as follows:

PET= kcHS
Ra

λρw

√
Tmax− Tmin(T + 17.8). (B19)

B17 FAO-24 (fao_24)

The FAO-24 PET equation from Doorenbos (1977); Jensen
et al. (1990), as used in Xu and Singh (2000) (Eqs. 11 and
12), is as follows:

PET= a+
1

1+ γ

Rs

λρw
(1−α)b, (B20)

where a =−0.3 and b = 1.066−0.13· RH
100+0.045u2−0.02·

RH
100u2−0.315·( RH

100 )
2
−0.0011u2. Free parameters include the

surface albedo α, consistent with those used in the Penman–
Monteith method.

B18 Abtew (abtew)

Abtew’s PET equation (Abtew, 1996), as used in Xu and
Singh (2000) (Eq. 14), is as follows:

PET= k
Rs

λρw
, (B21)

where k = 0.53 is an empirical coefficient as suggested by
Xu and Singh (2000).

B19 Makkink (makink)

Makkink’s PET equation (Makkink, 1957) is as follows:

PET=
1

1+ γ

Rs

λρw
, (B22)

where k = 0.65 is the empirical coefficient recommended
by Hiemstra and Sluiter (2011) and ranging between (0.61–
0.77) (Jensen and Allen, 2016).

B20 Makkink–KNMI (makink_knmi)

The Royal Netherlands Meteorological Institute (KNMI) em-
ploys a slightly modified version of the Makkink equation,

tailored specifically for conditions in the Netherlands, as de-
scribed by Hiemstra and Sluiter (2011):

PET= k
1

1+ γ

Rs

λρw
, (B23)

where k = 0.65. The calculations for s, es, γ , and λ are spec-
ified as follows:

– 1= 7.5·237.3
(237.3+T )2 ln(10) · es,

– es = 0.6107 · 10
7.5T

237.3+T ,

– γ = 0.0646+ 0.00006T ,

– λ= (2501− 2.375T )1000.

B21 Oudin (oudin)

According to Oudin et al. (2005) (Eq. 2), the potential evap-
otranspiration (PET) can be expressed as follows:

PET=

{
Ra

(T+k2)
λρwk1

if T + k2 > 0

0 otherwise,
(B24)

where k2 = 5 and k1 = 100 (ranging between 75–100) are
empirical coefficients recommended by Oudin et al. (2005).

B22 Performance metrics

He we provide mathematical definitions of the performance
metrics used to evaluate the PET models discussed in the
main text. The model bias (mm d−1) is calculated as the aver-
age difference between the PET values estimated using PyEt
(ŷi) and the reference PET values, which include (i) litera-
ture values presented in Fig. 1 and (ii) PET values computed
using the Penman–Monteith method in Example 3 (yi) over
n time steps:

Bias=
1
n

n∑
i=1
(ŷi − yi). (B25)

The coefficient of determination (R2) was computed as fol-
lows:

R2
= 1−

∑n
i=1(yi − ŷi)

2∑n
i=1(yi − y)

2 , (B26)

where y is the mean of the reference data.
The Kling–Gupta efficiency (KGE) is defined as follows:

KGE= 1−
√
(r − 1)2+ (α− 1)2+ (β − 1)2, (B27)

where r is the correlation coefficient between the reference
and estimated data, α is the ratio of the standard deviation
of estimated data to that of reference data, and β is the ratio
of the mean of estimated data to that of reference data (bias
ratio).
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Code and data availability. The Jupyter Notebook and data used
in this study are available in the “examples” folder of the
GitHub repository (http://www.github.com/pyet-org/pyet, last ac-
cess: 17 September 2024) and are also available on Zenodo (version
v.1.3.1; DOI: https://doi.org/10.5281/zenodo.5896799; Vremec and
Collenteur, 2024a). The authors welcome code contributions, bug
reports, and feedback from the community to further improve the
software. PyEt is free and open-source software available under the
MIT license. The source code is available at the project’s home page
on GitHub (http://www.github.com/pyet-org/pyet). The full docu-
mentation is available on https://PyEt.readthedocs.io (Vremec and
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project are welcome.
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