Articles | Volume 17, issue 12
https://doi.org/10.5194/gmd-17-4911-2024
https://doi.org/10.5194/gmd-17-4911-2024
Development and technical paper
 | 
21 Jun 2024
Development and technical paper |  | 21 Jun 2024

An open-source refactoring of the Canadian Small Lakes Model for estimates of evaporation from medium-sized reservoirs

M. Graham Clark and Sean K. Carey

Related authors

Low methane emissions from a boreal wetland constructed on oil sand mine tailings
M. Graham Clark, Elyn R. Humphreys, and Sean K. Carey
Biogeosciences, 17, 667–682, https://doi.org/10.5194/bg-17-667-2020,https://doi.org/10.5194/bg-17-667-2020, 2020
Short summary

Related subject area

Hydrology
EvalHyd v0.1.2: a polyglot tool for the evaluation of deterministic and probabilistic streamflow predictions
Thibault Hallouin, François Bourgin, Charles Perrin, Maria-Helena Ramos, and Vazken Andréassian
Geosci. Model Dev., 17, 4561–4578, https://doi.org/10.5194/gmd-17-4561-2024,https://doi.org/10.5194/gmd-17-4561-2024, 2024
Short summary
Modelling water quantity and quality for integrated water cycle management with the Water Systems Integrated Modelling framework (WSIMOD) software
Barnaby Dobson, Leyang Liu, and Ana Mijic
Geosci. Model Dev., 17, 4495–4513, https://doi.org/10.5194/gmd-17-4495-2024,https://doi.org/10.5194/gmd-17-4495-2024, 2024
Short summary
HGS-PDAF (version 1.0): a modular data assimilation framework for an integrated surface and subsurface hydrological model
Qi Tang, Hugo Delottier, Wolfgang Kurtz, Lars Nerger, Oliver S. Schilling, and Philip Brunner
Geosci. Model Dev., 17, 3559–3578, https://doi.org/10.5194/gmd-17-3559-2024,https://doi.org/10.5194/gmd-17-3559-2024, 2024
Short summary
Wflow_sbm v0.7.3, a spatially distributed hydrological model: from global data to local applications
Willem J. van Verseveld, Albrecht H. Weerts, Martijn Visser, Joost Buitink, Ruben O. Imhoff, Hélène Boisgontier, Laurène Bouaziz, Dirk Eilander, Mark Hegnauer, Corine ten Velden, and Bobby Russell
Geosci. Model Dev., 17, 3199–3234, https://doi.org/10.5194/gmd-17-3199-2024,https://doi.org/10.5194/gmd-17-3199-2024, 2024
Short summary
Reservoir Assessment Tool version 3.0: a scalable and user-friendly software platform to mobilize the global water management community
Sanchit Minocha, Faisal Hossain, Pritam Das, Sarath Suresh, Shahzaib Khan, George Darkwah, Hyongki Lee, Stefano Galelli, Konstantinos Andreadis, and Perry Oddo
Geosci. Model Dev., 17, 3137–3156, https://doi.org/10.5194/gmd-17-3137-2024,https://doi.org/10.5194/gmd-17-3137-2024, 2024
Short summary

Cited articles

Blanken, P. D., Spence, C., Hedstrom, N., and Lenters, J. D.: Evaporation from Lake Superior: 1. Physical controls and processes, J. Great Lakes Res., 37, 707–716, https://doi.org/10.1016/j.jglr.2011.08.009, 2011. 
Clark, M. G.: Code and Data for Clark and Carey's “An open source refactoring of the Canadian small lakes model for estimates of evaporation from medium sized reservoirs”. In Geoscientific Model Development, Zenodo [code and data set], https://doi.org/10.5281/zenodo.10470869, 2024. 
Clark, M. G., Drewitt, G. B., and Carey, S. K.: Energy and carbon fluxes from an oil sands pit lake, Sci. Total Environ., 752, 141966, https://doi.org/10.1016/j.scitotenv.2020.141966, 2021. 
Czikowsky, M. J., MacIntyre, S., Tedford, E. W., Vidal, J., and Miller, S. D.: Effects of wind and buoyancy on carbon dioxide distribution and air-water flux of a stratified temperate lake, J. Geophys. Res.-Biogeo., 123, 2305–2322, https://doi.org/10.1029/2017JG004209, 2018. 
Fairall, C. W., Bradley, E. F., Rogers, D. P., Edson, J. B., and Young, G. S.: Bulk parameterization of air-sea fluxes for tropical ocean-global atmosphere coupled-ocean atmosphere response experiment, J. Geophys. Res.-Oceans, 101, 3747–3764, https://doi.org/10.1029/95JC03205, 1996. 
Download
Short summary
This paper provides validation of the Canadian Small Lakes Model (CSLM) for estimating evaporation rates from reservoirs and a refactoring of the original FORTRAN code into MATLAB and Python, which are now stored in GitHub repositories. Here we provide direct observations of the surface energy exchange obtained with an eddy covariance system to validate the CSLM. There was good agreement between observations and estimations except under specific atmospheric conditions when evaporation is low.