Articles | Volume 17, issue 12
https://doi.org/10.5194/gmd-17-4911-2024
https://doi.org/10.5194/gmd-17-4911-2024
Development and technical paper
 | 
21 Jun 2024
Development and technical paper |  | 21 Jun 2024

An open-source refactoring of the Canadian Small Lakes Model for estimates of evaporation from medium-sized reservoirs

M. Graham Clark and Sean K. Carey

Related authors

Low methane emissions from a boreal wetland constructed on oil sand mine tailings
M. Graham Clark, Elyn R. Humphreys, and Sean K. Carey
Biogeosciences, 17, 667–682, https://doi.org/10.5194/bg-17-667-2020,https://doi.org/10.5194/bg-17-667-2020, 2020
Short summary

Related subject area

Hydrology
A reach-integrated hydraulic modelling approach for large-scale and real-time inundation mapping
Robert Chlumsky, James R. Craig, and Bryan A. Tolson
Geosci. Model Dev., 18, 3387–3403, https://doi.org/10.5194/gmd-18-3387-2025,https://doi.org/10.5194/gmd-18-3387-2025, 2025
Short summary
Graphical representation of global water models
Hannes Müller Schmied, Simon Newland Gosling, Marlo Garnsworthy, Laura Müller, Camelia-Eliza Telteu, Atiq Kainan Ahmed, Lauren Seaby Andersen, Julien Boulange, Peter Burek, Jinfeng Chang, He Chen, Lukas Gudmundsson, Manolis Grillakis, Luca Guillaumot, Naota Hanasaki, Aristeidis Koutroulis, Rohini Kumar, Guoyong Leng, Junguo Liu, Xingcai Liu, Inga Menke, Vimal Mishra, Yadu Pokhrel, Oldrich Rakovec, Luis Samaniego, Yusuke Satoh, Harsh Lovekumar Shah, Mikhail Smilovic, Tobias Stacke, Edwin Sutanudjaja, Wim Thiery, Athanasios Tsilimigkras, Yoshihide Wada, Niko Wanders, and Tokuta Yokohata
Geosci. Model Dev., 18, 2409–2425, https://doi.org/10.5194/gmd-18-2409-2025,https://doi.org/10.5194/gmd-18-2409-2025, 2025
Short summary
LM4-SHARC v1.0: resolving the catchment-scale soil–hillslope aquifer–river continuum for the GFDL Earth system modeling framework
Minki Hong, Nathaniel Chaney, Sergey Malyshev, Enrico Zorzetto, Anthony Preucil, and Elena Shevliakova
Geosci. Model Dev., 18, 2275–2301, https://doi.org/10.5194/gmd-18-2275-2025,https://doi.org/10.5194/gmd-18-2275-2025, 2025
Short summary
SWAT+MODFLOW: A New Hydrologic Model for Simulating Surface-Subsurface Flow in Managed Watersheds
Ryan Bailey, Salam Abbas, Jeffrey Arnold, and Michael White
EGUsphere, https://doi.org/10.5194/egusphere-2025-300,https://doi.org/10.5194/egusphere-2025-300, 2025
Short summary
Selecting a conceptual hydrological model using Bayes' factors computed with replica-exchange Hamiltonian Monte Carlo and thermodynamic integration
Damian N. Mingo, Remko Nijzink, Christophe Ley, and Jack S. Hale
Geosci. Model Dev., 18, 1709–1736, https://doi.org/10.5194/gmd-18-1709-2025,https://doi.org/10.5194/gmd-18-1709-2025, 2025
Short summary

Cited articles

Blanken, P. D., Spence, C., Hedstrom, N., and Lenters, J. D.: Evaporation from Lake Superior: 1. Physical controls and processes, J. Great Lakes Res., 37, 707–716, https://doi.org/10.1016/j.jglr.2011.08.009, 2011. 
Clark, M. G.: Code and Data for Clark and Carey's “An open source refactoring of the Canadian small lakes model for estimates of evaporation from medium sized reservoirs”. In Geoscientific Model Development, Zenodo [code and data set], https://doi.org/10.5281/zenodo.10470869, 2024. 
Clark, M. G., Drewitt, G. B., and Carey, S. K.: Energy and carbon fluxes from an oil sands pit lake, Sci. Total Environ., 752, 141966, https://doi.org/10.1016/j.scitotenv.2020.141966, 2021. 
Czikowsky, M. J., MacIntyre, S., Tedford, E. W., Vidal, J., and Miller, S. D.: Effects of wind and buoyancy on carbon dioxide distribution and air-water flux of a stratified temperate lake, J. Geophys. Res.-Biogeo., 123, 2305–2322, https://doi.org/10.1029/2017JG004209, 2018. 
Fairall, C. W., Bradley, E. F., Rogers, D. P., Edson, J. B., and Young, G. S.: Bulk parameterization of air-sea fluxes for tropical ocean-global atmosphere coupled-ocean atmosphere response experiment, J. Geophys. Res.-Oceans, 101, 3747–3764, https://doi.org/10.1029/95JC03205, 1996. 
Download
Short summary
This paper provides validation of the Canadian Small Lakes Model (CSLM) for estimating evaporation rates from reservoirs and a refactoring of the original FORTRAN code into MATLAB and Python, which are now stored in GitHub repositories. Here we provide direct observations of the surface energy exchange obtained with an eddy covariance system to validate the CSLM. There was good agreement between observations and estimations except under specific atmospheric conditions when evaporation is low.
Share