Articles | Volume 17, issue 2
https://doi.org/10.5194/gmd-17-477-2024
https://doi.org/10.5194/gmd-17-477-2024
Methods for assessment of models
 | 
19 Jan 2024
Methods for assessment of models |  | 19 Jan 2024

mesas.py v1.0: a flexible Python package for modeling solute transport and transit times using StorAge Selection functions

Ciaran J. Harman and Esther Xu Fei

Related authors

A data-driven method for estimating the composition of end-members from stream water chemistry time series
Esther Xu Fei and Ciaran Joseph Harman
Hydrol. Earth Syst. Sci., 26, 1977–1991, https://doi.org/10.5194/hess-26-1977-2022,https://doi.org/10.5194/hess-26-1977-2022, 2022
Short summary
Spatial and temporal variation in river corridor exchange across a 5th-order mountain stream network
Adam S. Ward, Steven M. Wondzell, Noah M. Schmadel, Skuyler Herzog, Jay P. Zarnetske, Viktor Baranov, Phillip J. Blaen, Nicolai Brekenfeld, Rosalie Chu, Romain Derelle, Jennifer Drummond, Jan H. Fleckenstein, Vanessa Garayburu-Caruso, Emily Graham, David Hannah, Ciaran J. Harman, Jase Hixson, Julia L. A. Knapp, Stefan Krause, Marie J. Kurz, Jörg Lewandowski, Angang Li, Eugènia Martí, Melinda Miller, Alexander M. Milner, Kerry Neil, Luisa Orsini, Aaron I. Packman, Stephen Plont, Lupita Renteria, Kevin Roche, Todd Royer, Catalina Segura, James Stegen, Jason Toyoda, Jacqueline Hager, and Nathan I. Wisnoski
Hydrol. Earth Syst. Sci., 23, 5199–5225, https://doi.org/10.5194/hess-23-5199-2019,https://doi.org/10.5194/hess-23-5199-2019, 2019
Short summary
Co-located contemporaneous mapping of morphological, hydrological, chemical, and biological conditions in a 5th-order mountain stream network, Oregon, USA
Adam S. Ward, Jay P. Zarnetske, Viktor Baranov, Phillip J. Blaen, Nicolai Brekenfeld, Rosalie Chu, Romain Derelle, Jennifer Drummond, Jan H. Fleckenstein, Vanessa Garayburu-Caruso, Emily Graham, David Hannah, Ciaran J. Harman, Skuyler Herzog, Jase Hixson, Julia L. A. Knapp, Stefan Krause, Marie J. Kurz, Jörg Lewandowski, Angang Li, Eugènia Martí, Melinda Miller, Alexander M. Milner, Kerry Neil, Luisa Orsini, Aaron I. Packman, Stephen Plont, Lupita Renteria, Kevin Roche, Todd Royer, Noah M. Schmadel, Catalina Segura, James Stegen, Jason Toyoda, Jacqueline Hager, Nathan I. Wisnoski, and Steven M. Wondzell
Earth Syst. Sci. Data, 11, 1567–1581, https://doi.org/10.5194/essd-11-1567-2019,https://doi.org/10.5194/essd-11-1567-2019, 2019
Short summary
Evaluation of statistical methods for quantifying fractal scaling in water-quality time series with irregular sampling
Qian Zhang, Ciaran J. Harman, and James W. Kirchner
Hydrol. Earth Syst. Sci., 22, 1175–1192, https://doi.org/10.5194/hess-22-1175-2018,https://doi.org/10.5194/hess-22-1175-2018, 2018
Short summary
Advancing catchment hydrology to deal with predictions under change
U. Ehret, H. V. Gupta, M. Sivapalan, S. V. Weijs, S. J. Schymanski, G. Blöschl, A. N. Gelfan, C. Harman, A. Kleidon, T. A. Bogaard, D. Wang, T. Wagener, U. Scherer, E. Zehe, M. F. P. Bierkens, G. Di Baldassarre, J. Parajka, L. P. H. van Beek, A. van Griensven, M. C. Westhoff, and H. C. Winsemius
Hydrol. Earth Syst. Sci., 18, 649–671, https://doi.org/10.5194/hess-18-649-2014,https://doi.org/10.5194/hess-18-649-2014, 2014

Related subject area

Hydrology
STORM v.2: A simple, stochastic rainfall model for exploring the impacts of climate and climate change at and near the land surface in gauged watersheds
Manuel F. Rios Gaona, Katerina Michaelides, and Michael Bliss Singer
Geosci. Model Dev., 17, 5387–5412, https://doi.org/10.5194/gmd-17-5387-2024,https://doi.org/10.5194/gmd-17-5387-2024, 2024
Short summary
Fluvial flood inundation and socio-economic impact model based on open data
Lukas Riedel, Thomas Röösli, Thomas Vogt, and David N. Bresch
Geosci. Model Dev., 17, 5291–5308, https://doi.org/10.5194/gmd-17-5291-2024,https://doi.org/10.5194/gmd-17-5291-2024, 2024
Short summary
RoGeR v3.0.5 – a process-based hydrological toolbox model in Python
Robin Schwemmle, Hannes Leistert, Andreas Steinbrich, and Markus Weiler
Geosci. Model Dev., 17, 5249–5262, https://doi.org/10.5194/gmd-17-5249-2024,https://doi.org/10.5194/gmd-17-5249-2024, 2024
Short summary
Coupling a large-scale glacier and hydrological model (OGGM v1.5.3 and CWatM V1.08) – towards an improved representation of mountain water resources in global assessments
Sarah Hanus, Lilian Schuster, Peter Burek, Fabien Maussion, Yoshihide Wada, and Daniel Viviroli
Geosci. Model Dev., 17, 5123–5144, https://doi.org/10.5194/gmd-17-5123-2024,https://doi.org/10.5194/gmd-17-5123-2024, 2024
Short summary
An open-source refactoring of the Canadian Small Lakes Model for estimates of evaporation from medium-sized reservoirs
M. Graham Clark and Sean K. Carey
Geosci. Model Dev., 17, 4911–4922, https://doi.org/10.5194/gmd-17-4911-2024,https://doi.org/10.5194/gmd-17-4911-2024, 2024
Short summary

Cited articles

Benettin, P. and Bertuzzo, E.: tran-SAS v1.0: a numerical model to compute catchment-scale hydrologic transport using StorAge Selection functions, Geosci. Model Dev., 11, 1627–1639, https://doi.org/10.5194/gmd-11-1627-2018, 2018. a, b, c, d, e, f, g, h, i, j, k
Benettin, P., Rodriguez, N. B., Sprenger, M., Kim, M., Klaus, J., Harman, C. J., van der Velde, Y., Hrachowitz, M., Botter, G., McGuire, K. J., Kirchner, J. W., Rinaldo, A., and McDonnell, J. J.: Transit Time Estimation in Catchments: Recent Developments and Future Directions, Water Resour. Res., 58, e2022WR033096, https://doi.org/10.1029/2022WR033096, 2022. a, b, c, d, e
Berghuijs, W. R. and Kirchner, J. W.: The Relationship between Contrasting Ages of Groundwater and Streamflow, Geophys. Res. Lett., 44, 8925–8935, https://doi.org/10.1002/2017GL074962, 2017. a
Botter, G.: Catchment mixing processes and travel time distributions, Water Resour. Res., 48, https://doi.org/10.1029/2011WR011160, 2012. a, b, c
Danesh-Yazdi, M., Klaus, J., Condon, L. E., and Maxwell, R. M.: Bridging the gap between numerical solutions of travel time distributions and analytical storage selection functions, Hydrol. Process., 32, 1063–1076, https://doi.org/10.1002/hyp.11481, 2018. a
Download
Short summary
Over the last 10 years, scientists have developed StorAge Selection: a new way of modeling how material is transported through complex systems. Here, we present some new, easy-to-use, flexible, and very accurate code for implementing this method. We show that, in cases where we know exactly what the answer should be, our code gets the right answer. We also show that our code is closer than some other codes to the right answer in an important way: it conserves mass.