
Geosci. Model Dev., 17, 477–495, 2024
https://doi.org/10.5194/gmd-17-477-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.

M
ethods

forassessm
entofm

odels

mesas.py v1.0: a flexible Python package for modeling solute
transport and transit times using StorAge Selection functions
Ciaran J. Harman1,2 and Esther Xu Fei1
1Department of Environmental Health and Engineering, Johns Hopkins University, Baltimore, MD, USA
2Department of Earth and Planetary Sciences, Johns Hopkins University, Baltimore, MD, USA

Correspondence: Ciaran J. Harman (charman1@jhu.edu)

Received: 14 November 2022 – Discussion started: 12 December 2022
Revised: 22 August 2023 – Accepted: 1 September 2023 – Published: 19 January 2024

Abstract. StorAge Selection (SAS) transport theory has re-
cently emerged as a framework for representing material
transport through a control volume. It can be seen as a gener-
alization of transit time theories and lumped-parameter mod-
els to allow for arbitrary temporal variability in the rate
of material flow in and out of the control volume, and in
the transport dynamics. SAS is currently the state-of-the-art
approach to interpreting tracer transport. Here, we present
mesas.py, a Python package implementing the SAS frame-
work. mesas.py allows SAS functions to be specified using
several built-in common distributions, as a piecewise linear
cumulative distribution function (CDF), or as a weighted sum
of any number of such distributions. The distribution param-
eters and weights used to combine them can be allowed to
vary in time, permitting SAS functions of arbitrary complex-
ity to be specified. mesas.py simulates tracer transport using
a novel mass-tracking scheme and can account for first-order
reactions and fractionation. We present a number of analyt-
ical solutions to the governing equations and use these to
validate the code. For a benchmark problem the time-step-
averaging approach of the mesas.py implementation provides
a reduction in mass balance errors of up to 15 times in some
cases compared with a previous implementation of SAS.

1 Introduction

StorAge Selection (SAS) is a theoretical framework for mod-
eling transport dynamics through spatially integrated systems
(control volumes). It is applicable for any system in which it
is reasonable to assume that the bulk material flowing out of
the system (at rateQ(t)) at some time t is some conservative

mixture of the bulk material that flowed in at earlier times
(at rate J (t)). For example, it is often reasonable to assume
that the streamflow and evapotranspiration leaving a water-
shed are some conservative mixture of precipitation that fell
on that watershed at earlier times. The conservative bulk ma-
terial in that case is simply the water comprising the rainfall,
streamflow, and evapotranspiration. The development of this
theory and related issues in watershed hydrology have been
recently reviewed in Benettin et al. (2022).

SAS is a generalization of the idea of a transit time dis-
tribution (TTD), which has proven useful in a wide range
of disciplines, including chemical engineering (Ross et al.,
2006), transportation engineering (Tyworth and Zeng, 1998),
groundwater hydrology (Dupas et al., 2020; Rinaldo et al.,
2015; Danesh-Yazdi et al., 2018), surface water hydrology
(Stockinger et al., 2016; Rodriguez and Klaus, 2019; Ro-
driguez et al., 2021), medicine (Rossum et al., 1989), and
others. However TTDs have previously required that the bulk
material flow through the system be approximately steady
(i.e., J (t)=Q(t)= a constant). SAS relaxes this assumption
in a rigorous and general way, so that it can (in principle) be
used to characterize transport through any system in which
the bulk material flow is conserved. However, to date, SAS
functions have not been widely adopted in practice. In part,
this is due to the perception that they are too complex and
data-hungry.

Our objective here is to provide detailed documentation
of mesas.py, a Python implementation of SAS functions that
is easy to use, highly flexible, and computationally accurate.
This implementation is already the basis of online teaching
resources (Harman, 2020), and we hope to develop more in

Published by Copernicus Publications on behalf of the European Geosciences Union.

478 C. J. Harman and E. Xu Fei: SAS transport modeling

the future. It is essential, therefore, that a peer-reviewed pub-
lication exists that supports and documents the software.

In a typical forward-modeling use-case, we wish to predict
the concentration CQ(t) of a conservative tracer in the bulk
material outflowQ(t), which is assumed to be a conservative
mixture of previous bulk material inflows J (t) in which the
tracer concentration was CJ (t). If this is the case, the outflow
concentration CQ(t) will be some weighted average of past
values of CJ (t). The transit time distribution pQ(T , t) gives
those weights:

CQ(t)=

∞∫
0

CJ (t − T)pQ(T , t)dT . (1)

SAS provides a means to calculate the time-varying distri-
bution pQ(T , t) for a given system. An overview of SAS
and related approaches can be found in Botter (2012), Har-
man (2015), Rinaldo et al. (2015), and Benettin and Bertuzzo
(2018).

The basic equations required to calculate pQ(T , t) (dis-
cussed in Sect. 2 below) are not especially difficult to solve
numerically, but some care is required. An implementation of
SAS in MATLAB (tran-SAS) is already available (Benettin
and Bertuzzo, 2018). mesas.py replicates the functionality of
tran-SAS but offers the following features:

– mesas.py offers an extremely flexible framework for
specifying SAS functions, allowing them to be arbitrar-
ily complex and variable in time. This includes the abil-
ity to specify SAS functions as a time-varying weighted
sum of other functions (Rodriguez and Klaus, 2019) and
as a (time-varying) piecewise linear cumulative distri-
bution function (CDF) with any number of segments.

– mesas.py uses a novel mass-tracking approach that esti-
mates solute/tracer mass storage as part of the solution.

– mesas.py estimates the time-step-averaged transit times
and mass fluxes using a fourth-order Runge–Kutta
method, and it provides superior numerical accuracy
and mass balance accounting (as we shall demonstrate).

– mesas.py allows for time-varying first-order reactions
and time-varying solute/tracer fractionation.

– mesas.py is implemented in Python and Fortran and is
designed to be easy to install (through conda-forge) and
user-friendly.

The governing equations of the SAS framework are given
in Sect. 2 of this paper, including the novel approach to so-
lute/tracer mass tracking. Calculating the storage and release
of solutes/tracers continuously in tandem with calculation of
the TTD (rather than using the convolution after the TTD has
been obtained) makes incorporating reactions and fractiona-
tion into the SAS function simple and intuitive. Section 3

gives details of the code, including the numerical implemen-
tation, the method for specifying SAS functions, and proce-
dures for running the code.

In Sect. 4 of the paper, we test the code against a num-
ber of benchmarks in the form of analytical solutions to the
governing equations. These include cases of steady and un-
steady flow. We compare the accuracy of mesas.py against
that of tran-SAS for the unsteady-flow case.

2 Governing equations

To estimate pQ and solve Eq. (1), two key pieces of informa-
tion are required: (1) time series of inflows J (t) and outflows
Qq(t) (there may be more than one outflow, hence the sub-
script index q) and (2) SAS functions �q (one for each out-
flow q) that capture the way each outflow is drawn from the
water of different ages available to be removed from storage.
The inflow and outflow data are used to solve expressions of
conservation of mass that describe how the age distribution
of the material in storage changes over time as material is
added and removed. The SAS functions are needed to calcu-
late this solution because they characterize the relative rate
at which material of different relative ages is selected for re-
moval.

2.1 Conservation laws

2.1.1 Conservation law for the bulk material flows

The bulk flow is the material that makes up the inflows and
outflows from the system, carrying tracers and other species
of material with it. Typically, in hydrologic applications, the
bulk flow is water. As is typical in hydrology, we assume that
the water is incompressible so we can refer to units of volume
for convenience, but the framework is valid for any conserva-
tive bulk flow as long as fluxes, storages, and concentrations
are expressed in consistent compatible units.

The conservation equation for the bulk flow can be ob-
tained by considering an incremental volume sT (T , t) that
has an age T at time t ; therefore, it entered at time ti = t−T .
Note that sT (T , t) has units of volume (or mass) per time, as
it is the amount that entered in an infinitesimal increment of
time. If the inflow rate is J (t) at some time in the past t = ti ,
then sT (0, t)= J (t). Over time, the quantity of bulk flow re-
siding in storage represented by sT depletes due to outflows.
Assuming that outflows are indexed by q, and each has an
outflow rate Qq and transit time distribution pq(T , t), the
time evolution of sT from some initial time ti to the present
time t is given by the following:

d
dt
sT (t − ti, t)= J (t)δ(t − ti)−

∑
q

Qq(t)pq(t − ti, t), (2)

where δ(·) is the Dirac delta distribution. Typically, the
derivative on the left here is broken up into two terms, as

Geosci. Model Dev., 17, 477–495, 2024 https://doi.org/10.5194/gmd-17-477-2024

C. J. Harman and E. Xu Fei: SAS transport modeling 479

follows:
d
dt
sT (t − ti, t)=

∂sT

∂t
+
∂sT

∂T
. (3)

However, the form given in Eq. (2) serves to remind us that
these two derivatives can be thought of as representing the
rate at which sT changes as it simultaneously moves through
time and ages. We can think of it moving along a characteris-
tic curve that is a straight line in age–time space, with a slope
of one unit of age per unit of time and passing through the
point (T , t)= (0, ti). The computational method of mesas.py
is based on numerically integrating along this characteristic
curve.

Integrating sT over all ages up to some age T gives the
cumulative form ST , known as the age-ranked storage:

ST (T , t)=

T∫
0

sT (τ, t) dτ. (4)

This is the volume of bulk material residing in storage that
is younger than T at time t . The bulk material conservation
equation is often expressed in terms of this cumulative quan-
tity and Pq(T , t), the cumulative form of pq(T , t). Equa-
tion (2) can be obtained from the cumulative form by taking
the derivative with respect to T .
ST is also essential for solving Eq. (2) through its role in

evaluating the SAS function (see Sect. 2.2 below). Therefore,
even though the primary state variable that mesas.py solves
for is sT (T , t), the code must also keep track of the accumu-
lating values of ST (T , t).

2.1.2 Conservation law for solutes

Consider a conservative solute or tracer that travels ideally
with the bulk material. We can define mT (T , t) as the in-
cremental tracer mass that entered at time ti and is now re-
maining in storage (mT). We can also define a notion of
age-ranked concentration in storage as the increment of age-
ranked solute mass per increment of age-ranked storage:

CT (T , t)=
mT (T , t)

sT (T , t)
. (5)

Note that this is not a concentration in the usual sense. CT
may not correspond to an actual measurable concentration
anywhere in the system if materials of different ages have
intermingled sufficiently. However, it does (by definition)
equal the input concentration CJ (t) just as water enters the
system; thus,

mT (0, t)= CT (0, t)sT (0, t)= CJ (t)J (t). (6)

It also gives the effective concentration of the solute in the
increment of water at age T = t − ti that is contributing to
each outflow, and thus controls the mass flux out for a given
age increment, which we will term ṁq :

ṁq(T , t)=Qq(t)CT (T , t)pq(T , t). (7)

Putting these together, we can write a conservation law for
the solute as follows:

d
dt
mT (t − ti, t)= J (t)CJ (t)δ(t − ti)−

∑
q

ṁq(t − ti, t). (8)

This equation is analogous to Eq. (2), but instead of track-
ing the bulk material along a characteristic curve in age–time
space, it tracks the mass of solute/tracer.

2.1.3 Accounting for fractionation and reactions

We can easily generalize Eq. (8) in two ways. First, we can
account for the effect of fractionation in the outflows. Some-
times the concentration of a solute in an outflow is differ-
ent from its concentration in storage. For example, chloride
(which has been used as a tracer in catchment studies, such
as Harman, 2015) can leave in discharge, but it is not carried
out of the catchment by evapotranspiration. Thus, the effec-
tive concentration of chloride in the evaporative flux must be
zero. A less extreme example is where stable water isotope
ratios in evaporation tend to be lighter than those in the water
left behind.

We can account for this fractionation in a simple way by
assuming that the concentration of the solute in outflow q is
some (possibly time-varying) multiple αq(t) of the concen-
tration in storage. To accomplish this we modify Eq. (7) to
include the following:

ṁq(T , t)= αq(t)Qq(t)CT (T , t)pq(T , t). (9)

When αq = 1, there is no fractionation. αq < 1 will result in
reduced concentrations in the given outflow, and αq = 0 ex-
cludes the solute from the outflow. It is also possible to set
αq > 1 if the solute is preferentially entrained in the outflow.
Note that if isotope fractionation is being modeled, the iso-
tope data must be given as an isotope ratio, rather than a δ
value (per mill). For example, values of δ18O must be con-
verted using R = δ18O/1000+ 1. The value of α is simply
the regular fractionation factor αA/B (Kendall and Caldwell,
1998). If fractionation is being neglected, δ values may be
used.

Second, we can account for first-order reactions. The
change in CT resulting from mass introduced or removed by
such a reaction can be modeled as follows:

dCT
dt
= k1(Ceq−CT). (10)

From this we can define a reaction term ṁR as follows:

ṁR(T , t)= sT (T , t)
dCT

dt
= k1(t)(Ceq(t)sT (T , t)

−mT (T , t)), (11)

where k1 is a first-order reaction rate and Ceq is an equilib-
rium concentration (both of which may vary in time).

https://doi.org/10.5194/gmd-17-477-2024 Geosci. Model Dev., 17, 477–495, 2024

480 C. J. Harman and E. Xu Fei: SAS transport modeling

Including fractionation and the reaction terms in the solute
conservation law gives

d
dt
mT (t − ti, t)= J (t)CJ (t)δ(t − ti)−

∑
q

ṁq(T , t)

+ ṁR(T , t), (12)

where ṁq is given by Eq. (9) and ṁR is given by Eq. (11).
The actual outflow concentration at time t is obtained by

integrating ṁq(T , t) over all ages T ≤ Tmax and then adding
the “old-water” contribution:

Cq(t)=
1

Qq(t)

Tmax∫
0

ṁq(T , t)dT +Cold

× (1−Pq(Tmax, t)), (13)

where Cold is the concentration assigned to all the water in
storage with an age greater than Tmax. Tmax = t usually, but
it may be set to be less than t to reduce memory demands
or speed up computation (at the cost of potentially truncating
the contributions of water that entered early in the simulation
to outflows later).

2.2 StorAge Selection (SAS) functions

The equations above cannot be solved on their own, as pQ
is not known. The SAS functions provide the required ad-
ditional relationship linking the age-ranked storage and the
transit time distribution.

Given a volume of age-ranked storage ST representing all
the bulk material in a control volume with an age of T or less,
the cumulative SAS function �q is defined as a function that
gives the fraction of outflow Qq drawn from ST (T , t). This
is also (by definition) the fraction of discharge with an age of
T or less, which is simply Pq(T , t). Thus, we can write the
following:

Pq(T , t)=�q(ST , t), (14)

where ST = ST (T , t). That is, the SAS function and the cu-
mulative transit time distribution both give the fraction of dis-
charge with age T or less, but the SAS function expresses the
age in terms of age-ranked storage ST (T , t), rather than age
T . This has proven to be very useful because Pq(T , t) varies
in time due to variations in fluxes, whereas �q(ST , t) only
varies when the manner in which storage turns over varies. In
many applications, SAS functions have been approximated
by a variety of continuous distributions with good results
(Benettin et al., 2022). We will discuss several that have been
implemented in mesas.py in the next section.

By taking the derivative of the equation above and apply-
ing the chain rule, we can see that

pq(T , t)= ωq(ST , t)sT (T , t), (15)

where ωq is the density form of �q . The left-hand side of
this equation is the rate of discharge of water with age T . The
right-hand side is the rate at which water is removed from the
age-ranked storage at ST (T , t).

The SAS functions needed to represent a particular sys-
tem are typically obtained by first choosing a functional form
from those presented below and then tuning the parameters
of that functional form such that the model predictions match
the tracer observations. It should be noted that there is cur-
rently an element of subjectivity and imprecision here, as
multiple functional forms may produce equally acceptable
fits to the available data (Harman, 2019). In previous appli-
cations to watersheds, streamflow has been represented with
a heavily right-skewed distribution whose mean varies in-
versely with catchment wetness, whereas evapotranspiration
(ET) has been represented by uniform distributions over the
youngest water in storage. More physically based parameter-
izations may be available in the future.

2.2.1 Continuous SAS functions available in mesas.py

The SAS function must be specified so that it accurately cap-
tures how a system turns over, releasing storage as bulk out-
flow. At present, three continuous distributions commonly
used for specifying SAS functions are available as built-in
options in mesas.py: the beta, Kumaraswamy, and gamma
distributions. More details on each distribution are given be-
low.

These distributions each have at least two parameters: a
location parameter (Smin) and a scale parameter (S0). These
parameters both have units of storage, and they serve to shift
and scale the values of ST into a normalized form:

x =
ST − Smin

S0
. (16)

Here, x = 0 if ST < Smin. In mesas.py, the values of S0, Smin,
and all other parameters can be given as constant values, or
different values for every time step can be provided.

Briefly, the three aforementioned built-in distributions are
as follows:

– Beta distribution. The CDF of the beta distribution is
given by

Beta(ST ;Smin,S0,α,β)=
B(x;α,β)

B(α,β)

Smin ≤ ST ≤ Smin+ S0, (17)

where B(x;α,β) and B(α,β) are the incomplete and
complete beta functions, and α,β > 0. This distribution
has been used to represent the SAS function of systems
whose total active storage volume S(t) has been esti-
mated (Benettin et al., 2022). In those cases, Sm is set to
zero and S0 = S(t).

Geosci. Model Dev., 17, 477–495, 2024 https://doi.org/10.5194/gmd-17-477-2024

C. J. Harman and E. Xu Fei: SAS transport modeling 481

– Kumaraswamy distribution. The CDF of the Ku-
maraswamy distribution is given by

Kumaraswamy(ST ;Smin,S0,a,b)= 1− (1− xa)b

Smin ≤ ST ≤ Smin+ S0, (18)

where a,b > 0. This distribution has also been used to
represent the SAS function of systems whose total ac-
tive storage volume has been estimated.

– Gamma distribution. The gamma distribution is given
by

Gamma(ST ;Smin,S0,α)=
0(α,x)

0(α)

for Smin ≤ ST <∞. (19)

This distribution has been used to represent the SAS
function of systems whose total volume is unknown,
and the right tail of the SAS function is assumed to taper
exponentially for sufficiently large ST (Harman, 2015;
Benettin et al., 2022).

In addition, any distribution specified by the scipy.stats li-
brary can be used in mesas.py by converting its CDF into a
piecewise linear form (see next section). This is done auto-
matically within mesas.py. The accuracy of the results ob-
tained this way may be poor. The piecewise linear form may
be inaccurate where the PDF changes rapidly (as a gamma
distribution does near ST = 0 when α < 1) or where it ap-
proaches an asymptotic value at the tails.

2.2.2 Piecewise linear SAS functions in mesas.py

SAS functions can also be specified as a piecewise lin-
ear CDF with N segments. When N = 1, this is simply
a uniform distribution. These linear segments join con-
trol points (ST q,0,�q,0), (ST q,1,�q,1). . .(ST q,N ,�q,N).
To ensure that the result is a probability distribution, we
require 0=�q,0 ≤�q,1 ≤ . . .≤�q,N = 1 and 0≤ ST q,0 ≤

ST q,1 ≤ . . .≤ ST q,N . The SAS function is specified by giv-
ing these control points, which may vary in time. The PDF
ωq(ST , t) is piecewise constant:

ωq(ST , t)=



�q,1−�q,0
ST q,1−ST q,0

ST q,0 ≤ ST < ST q,1
�q,2−�q,1
ST q,2−ST q,1

ST q,1 ≤ ST < ST q,2

· · ·
�q,N−�q,N−1
ST q,N−ST q,N−1

ST q,N−1 ≤ ST < ST q,N

0 otherwise.

(20)

The parameters of the N -segment piecewise SAS function
are the N + 1 values of ST q,n and the N − 1 values of �q,n
(recall that �q,0 = 0 and �q,N = 1).

2.2.3 SAS functions built from weighted sums of
components

mesas.py also allows an SAS function to be specified as a
(time-varying) weighted sum of component SAS functions,

each of which may specified in any of the available ways.
This approach was first suggested by Rodriguez and Klaus
(2019), and Wilusz et al. (2020) provided evidence support-
ing its validity.

Given M component SAS functions (indexed by m) de-
fined using one of the methods presented above, the overall
SAS function can be obtained as follows:

ωq(ST , t)=

M∑
m=1

fq,m(t)ωq,m(ST , t), (21)

where fq,m(t) is a (possibly time-varying) weight. These
weights must be provided as inputs to the model. The weights
should sum to 1 at each time step (although this is not en-
forced by mesas.py).

3 Methods

3.1 Numerical implementation

The numerical implementation of the governing equations
in mesas.py is reminiscent of a numerical finite-volume
scheme. We will assume that time steps 1t and age steps
1T are equal.

First, age-step-averaged forms of the state variables are
obtained by integrating in T over an interval of past input
times [ti −1T,ti]:

si(t)=
1
1T

ti∫
ti−1T

sT (t − τ, t)dτ, (22)

mi(t)=
1
1T

ti∫
ti−1T

mT (t − τ, t)dτ. (23)

For notational consistency, we can define the cumulative ver-
sion of this as Si(t), but it is precisely equal to ST (t − ti, t).
We can use these to write age-step-averaged forms of Eqs. (2)
and (12), respectively:

1T
dsi
dt
= J (t)

ti∫
ti−1T

δ(t − τ)dτ −
∑
q

Qq(t)

ti∫
ti−1T

pq(t − τ, t)dτ, (24)

https://doi.org/10.5194/gmd-17-477-2024 Geosci. Model Dev., 17, 477–495, 2024

482 C. J. Harman and E. Xu Fei: SAS transport modeling

1T
dmi
dt
= J (t)CJ (t)

ti∫
ti−1T

δ(t − τ)dτ

−

∑
q

 ti∫
ti−1T

ṁq(t − τ, t)dτ


−

ti∫
ti−1T

ṁR(t − τ, t)dτ. (25)

There are a few things to unpack here. First, note that,
due to the properties of the Dirac δ-function, the integral∫ ti
ti−1T

δ(t − τ)dτ is 1 if ti −1T < t < ti but is 0 otherwise.
Thus, for all times after ti , the first term disappears in both
equations above. This behavior can be represented using the
indicator function 1[ti−1T,ti)(t), which we will write as 1i(t)
for short.

The age-step-averaged TTD pqi(t) can be expressed in
terms of the cumulative TTD, and thus in terms of the SAS
function, as follows:

pqi(t)1T =

ti∫
ti−1T

pq(t − τ, t)dτ = Pq(t − ti +1T,t)

−Pq(t − ti, t)

=�q(ST (t − (ti −1T), t), t)

−�q(ST (t − ti, t), t)

=�q(Si(t)+ si(t), t)−�q(Si(t), t). (26)

The time-step-averaged values of ṁq and ṁR can then be
obtained if we are willing to approximate that the age-ranked
concentration CT is constant over the interval 1T at CT =
mi/si . This amounts to approximating the concentration CJ
in the corresponding input bulk material as constant over this
interval.

Thus, we can express the governing equations as the set of
ordinary differential equations (ODEs):

1T
dsi
dt
= J (t)1i(t)−

∑
q

Qq(t)pqi(t)1T

= fs(si,Si, t)1T , (27)

1T
dmi
dt
= J (t)CJ (t)1i(t)−

mi(t)

si(t)(∑
q

αq(t)Qq(t)pqi(t)1T

)
− k1(t)(Ceq(t)si(t)−mi(t))

= fm(mi, si,Si, t)1T . (28)

If the right-hand side of these equations were functions of
the state variables si and mi and a number of time-variable

coefficients (J , Qq , CJ , αq , k1, and Ceq), these would be
ODEs. The dependence of the SAS function on the cumula-
tive value Si(t) complicates matters only slightly.

The numerical solution of these equations involves two
core tasks:

1. estimating the rates of change fs(si,Si, t) and
fm(mi, si,Si, t) and

2. using these to estimate the state variables si andmi (and
Si) at a future time.

Let us assume t = j1t and T = i1T , and recall that age
and time steps are equal in size. Now define sji = si(j1t),
and define mji similarly. Particular care must be taken to en-
sure that an accurate value of ST is used to evaluate the SAS
function. Let

Sji =
j∑

k=i+1
sjk1t. (29)

Note that, by this definition, the value of Sji depends on sji+1
but not on sji. For the fourth-order Runge–Kutta (RK4) and
midpoint methods, the state variables must be evaluated at an
intermediate point halfway between the regular time steps.

The value of S
j+ 1

2
i can be estimated as follows:

S
j+ 1

2
i =

Sji+S
j+1
i

2
. (30)

However, note that Sj+1
i can be found only after an estimate

of sj+1
i+1 is obtained. This suggests that, in order to calculate

how sji becomes sj+1
i , we must first have determined both

sji+1 and sj+1
i+1. In other words, for an accurate numerical

solution, we need to know the fate of younger material before
we can determine the fate of older material. Because of this,
mesas.py solves j → j+1 for all i before moving on to i+1,
and so on.

By default, mesas.py uses the RK4 method to estimate the
value of sj+1

i as follows:

k1 = fs

(
sji,S

j
i,j1t

)
,

k2 = fs

(
sji+

1
2
k11t,S

j+ 1
2

i ,

(
j +

1
2

)
1t

)
,

k3 = fs

(
sji+

1
2
k21t,S

j+ 1
2

i ,

(
j +

1
2

)
1t

)
,

k4 = fs

(
sji+ k31t,S

j+1
i , (j + 1)1t

)
,

k∗ =
k1+ 2k2+ 2k2+ k1

6
,

sj+1
i = sji+ k∗1t. (31)

Similar steps are followed to estimate mj+1
i using

fm(mi, si,Si, t). During the calculation, the intermediate val-
ues of pq , ṁq , and ṁR are also tracked and time-step-
averaged according to the same scheme. It is also possible

Geosci. Model Dev., 17, 477–495, 2024 https://doi.org/10.5194/gmd-17-477-2024

C. J. Harman and E. Xu Fei: SAS transport modeling 483

to run mesas.py with a midpoint method or with a forward
Euler scheme, although at some sacrifice in terms of numer-
ical accuracy.

The state variables are held in memory in arrays whose
columns are times and whose rows are ages. Thus, stepping
through time steps j for a fixed input time i corresponds to
stepping along a diagonal of a state variable matrix.

mesas.py allows initial conditions to be specified for the
age-ranked storage sT and solute mass mT . This is useful
for restarting calculations or spinning up the simulation. The
initial conditions are supplied as a vector of values s0

k and m0
k

for ages k. Each entry represents the value of sT and mT at
t = 0 averaged over each age interval and is used to populate
the first column of the matrices holding the state variables.

mesas.py proceeds by solving all the time steps j → j+1
for the first age step before moving on to second, and so forth.
Typically, when there are N time steps, the solution is found
for N age steps also. This is sometimes excessive because
the contributions of bulk flow from the start of the simulation
to the final time step may be negligible. The number of age
steps can also be larger than N , although this will only have
value if an initial condition is provided that gives values of
s0
i for more than >N ages. Note that all outflow with an

unknown age is assigned concentration Cold.

3.2 Model specification and input structure

Inputs to mesas.py come in two main forms:

1. parameters specifying the SAS function(s), solute prop-
erties, and other model settings and

2. time series of inflows, outflows, and other variables.

The parameters are specified using a nested data structure
that can be stored and read from a JSON-formatted text file
or fed into a model object instance directly as a Python dic-
tionary. The time series can be provided as a .csv text file or
as a pandas data frame.

The parameter data structure consists of a dictionary of
key:value pairs, where a “key” is an immutable label (typi-
cally a string) and a “value” is an object that can be retrieved
from the dictionary using the associated key. The values can
themselves be dictionaries, allowing for a nested structure to
the data.

The top-level dictionary in the parameter specification
must have a key "sas_specs". The associated value must
be a dictionary of SAS specifications. It may also have two
optional entries: "solute_parameters", which pro-
vides information about the solutes to be routed through the
model, and "options", which can be used to set a number
of model options.

3.2.1 SAS function specification

A basic example of the "sas_specs" key:value pair is
shown below.

"sas_specs":{

"Q":{
"Q SAS function 1":{

"func": "gamma",
"args": {

"loc": 0.0,
"scale": "S_scale",
"a": 0.6856

}
},
"Q SAS function 2":{

"func": "beta",
"args": {

"loc": 0.0,
"scale": 150.0,
"a": 1.0,
"b": 3.0

}
}

},

"ET":{
"ET SAS function":{

"ST": [0.0, "S_ET"],
"P": [0.0, 1.0]

}
}

},

The "sas_specs" dictionary should contain one key
for each bulk flux out of the control volume, and each key
must exactly match the heading of a column in the time series
dataset giving that flux rate. In the example above, mesas.py
would expect the time series dataset to contain columns "Q"
and "ET".

Each of the keys naming a bulk flux in "sas_specs"
is associated with a dictionary specifying the SAS func-
tions for that flux. That dictionary can also include multi-
ple SAS functions, which are combined together using time-
varying weights. In the example above, mesas.py would ex-
pect to find columns in the time series dataset titled "Q SAS
function 1" and "Q SAS function 2" containing
weights to multiply each SAS function. These weights
should add up to 1, although this is not checked. If the dictio-
nary associated with each flux contains only one key:value
pair, it is not necessary to provide a weights column in the
time series dataset.

Presently, each SAS function can be specified in three dif-
ferent ways:

– as a gamma, beta, or Kumaraswamy distribution;

– using any distribution from scipy.stats;

– as a piecewise linear CDF.

https://doi.org/10.5194/gmd-17-477-2024 Geosci. Model Dev., 17, 477–495, 2024

484 C. J. Harman and E. Xu Fei: SAS transport modeling

Table 1. The relationship between the parameters in Eqs. (17), (18), and (19) and the keys used to specify the value of these parameters in
the SAS function specification.

Gamma distribution (19) Beta distribution (17) Kumaraswamy distribution (18)

Smin ↔ "loc"

S0 ↔ "scale"

α ↔ "a"

Smin ↔ "loc"

S0 ↔ "scale"

α ↔ "a"

β ↔ "b"

Smin ↔ "loc"

S0 ↔ "scale"

a ↔ "a"

b ↔ "b"

The gamma, beta, or Kumaraswamy distributions are
coded into the core computational code, whereas the
scipy.stats distributions are approximated as piecewise lin-
ear CDFs. In either case, the distribution is selected based
on the value associated with "func". In the example above,
gamma and beta distributions are combined to produce the
SAS function for outflow "Q".

The distribution parameters are given by the dictionary
associated with the key "args". The expected content of
this varies between distributions (see Table 1). Any pa-
rameter value can be specified as a fixed number or can
be allowed to vary in time. Time-varying parameters are
given as a string identical to a column in the time series
dataset where the time-varying values are provided. In the
example "sas_specs" above, the scale parameter of the
gamma distribution used in "Q SAS function 1" is set
to "S_scale". This tells mesas.py to use the time series of
values found in that column of the input dataset for the scale
parameter.

To use a distribution from scipy.stats the key:value pair
"use":"scipy.stats" should be included. An optional
parameter "nsegments" sets the number of segments used
to approximate the distribution. Note that this approach is
included for convenience but is not recommended when the
tails of the SAS distribution are important for the problem
being considered, as they may not be well captured by the
piecewise linear CDF.

Alternatively, the SAS function can be specified as a piece-
wise linear CDF. In the example above, this option is used to
specify a uniform SAS function for ET using a single linear
segment. The cumulative age-ranked storage values "ST"
and corresponding cumulative probabilities "P" (varying
from zero to one) must be provided as lists of increasing val-
ues. Any of the values in these lists may be allowed to vary
in time by instead providing a string corresponding to the
heading of a column in the input time series dataset – see, for
example, "S_ET" in the "ET SAS function" above.

3.2.2 Solute parameters

Solute properties are given in a dictionary associated with
the top-level key "solute_parameters". The keys in
this dictionary should correspond to columns in the time se-
ries dataset giving inflow concentrations. Each key should
be associated with a dictionary giving additional parameters.
If defaults are to be used, the associated dictionary may be
empty and is then simply given as {}. An example is given
below.

"solute_parameters":{

"Cl mg/l":{
"C_old": 7.11,
"alpha": {"Q": 1.0, "ET": 0.0}

}
},

In this case, mesas.py will look for a time series of solute
inflows in column "Cl mg/l" and produce predictions of
the outflow concentrations associated with this input. Two
additional parameters are specified: "C_old" gives the old-
water concentration (Cold) and "alpha" corresponds to the
αq partitioning parameter in Eq. (9). In the given example, no
chloride can leave the system through ET, as the correspond-
ing value of α is zero. See Table 2 for more information.

3.2.3 Options

Additional options can also be set in the "options" dic-
tionary of the parameter inputs. The available options are de-
scribed in Table 3.

3.2.4 Time series

The time series input can be provided as a .csv file or as a
Python pandas data frame. The order of the columns is not
important, but the column names should be consistent with
references to time series data in the SAS function specifica-
tion, solute parameters, and options.

For example, to be consistent with the specifications given
in the example in Sect. 3.2.1 and 3.2.2, the input data frame
would have the following columns:

– "Q" and "ET", which refer to the outflow rates
(e.g., discharge and evapotranspiration, respectively) at

Geosci. Model Dev., 17, 477–495, 2024 https://doi.org/10.5194/gmd-17-477-2024

C. J. Harman and E. Xu Fei: SAS transport modeling 485

Table 2. Description of the keys that may optionally be associated with each solute in the "solute_parameters" section of the config-
uration file.

Key Symbol(s) Description

"C_old" Cold The old-water concentration: the concentration of all water released of unknown
age. If "sT_init" is not specified, this will be all water in storage at t = 0; if
"sT_init" is specified, it will be all water older than the last nonzero entry
in "sT_init". The default is 0.0. It cannot be set as variable in time.

"k1" k1 The first-order reaction rate constant in Eq. (11). The default is 0.0. It may be
variable in time if a time series column name is provided.

"C_eq" Ceq The equilibrium concentration in Eq. (11). The default is 0.0. It may be variable
in time if a time series column name is provided.

"alpha" αq A dictionary giving the partitioning coefficients for each outflow, as in Eq. (9).
The default is 1.0. Dictionary keys must correspond to named outflow columns
in the SAS specification. Each αq may be variable in time if a time series col-
umn name is provided.

"sT_init" sT (T ,0) A list or array of values specifying the initial age-ranked storage distribution in
the system. This is useful if the system is initialized by some sort of spin-up.
Each entry is age-ranked storage in an age interval of duration 1t .

"mT_init" mT (T ,0) A list or array of values specifying the initial age-ranked mass in the system.
This is useful if the system is initialized by some sort of spin-up. Each en-
try is age-ranked mass in an age interval of duration 1t . If "mT_init" is
specified, "sT_init" must also be specified in the "options" and be of
the same length. The element-wise ratio "mT_init"/"sT_init" gives the
age-ranked concentration CT of the water in storage at time zero. Note that if
"sT_init" is specified but "mT_init" is not, the concentrations associated
with each nonzero value of "sT_init" will be zero. The default is "None".
It cannot be set as variable in time.

each time step. These are assumed to be average rates
over the time step (rather than instantaneous rates at the
start or end).

– "J", which gives the average inflow rate over each time
step.

– "Cl mg/l", which gives the inflow concentration at
each time step.

– "Q SAS function 1" and "Q SAS function
2", which are weights associated with the two compo-
nent SAS functions that will be combined to give the
SAS function for "Q". Note that a column for "ET
SAS function" is not required because there is only
one component.

– "S_ET" and "S_scale", which are time-varying pa-
rameters of the SAS functions.

After running, the output time series would include the fol-
lowing new columns:

– "Cl mg/l -> Q",

– "Cl mg/l -> ET".

These time series represent the concentration of the solute
in those outflow fluxes. The values of "Cl mg/l -> ET"
would all be zero, as the partitioning coefficient "alpha"
associated with that solute and outflow was set to zero.

3.3 Running the model and querying results

The model is set up and run by instantiating a model object
provided with all the needed input data and then calling its
run method.

from mesas.sas.model import Model
my_model = Model(data_df='/path/to/data.csv',
config='/path/to/config.json')

my_model.run()

The time series inputs and outputs will then be available
in a data frame accessible as an attribute of the model object.
For example, this would allow the user to plot the input and
output concentrations.

import matplotlib.pyplot as plt

Extract the timeseries
C_in = my_model.data_df['Cl mg/l']
C_out = my_model.data_df['Cl mg/l --> Q']

https://doi.org/10.5194/gmd-17-477-2024 Geosci. Model Dev., 17, 477–495, 2024

486 C. J. Harman and E. Xu Fei: SAS transport modeling

Table 3. Description of the keys that may optionally be in the "options" entry in the configuration file.

Key Description

"influx" This key is a string (the default is ”J”). It gives the name of the column in the time series dataset containing the
inflow rate.

"dt" This key is the time step 1t , such that 1t multiplied by any of the fluxes in the time series dataset gives the
total volume of flux over the time step. The default is 1.0. It cannot be set as variable in time.

"n_substeps" This key is an integer (the default is 1) that gives the number of substeps used in each time step of the calculation.
Subdividing the time steps can increase the numerical accuracy of the solution and address some numerical
issues, at the cost of longer run times. Note that the substep calculations are not retained in the output – only
aggregate time step results are provided.

"num_scheme" This key is an integer (the default is 4) defining the numerical scheme used to solve the SAS function. The de-
fault is a fourth-order Runge–Kutta scheme (num_scheme=4). Valid alternatives are a second-order accurate
midpoint scheme (num_scheme=2) and a first-order accurate forward Euler scheme (num_scheme=1).

"max_age" This key is an integer (the default is the length of the time series dataset) that gives the maximum number of
age steps that will be calculated. This controls the number of rows in the output matrices. It is set to a smaller
value than the default to reduce the calculation time (at the cost of replacing calculated concentrations of older
water with the value of "C_old")

"sT_init" This key is a list or array (the default is a zero array of the length of the time series dataset) of the initial
distribution of age-ranked storage (in density form). It is useful for starting a run using output from another
model run, e.g., for the spin-up. If the length of this array is less than the length of the time series dataset,
"max_age" will be set to the length of "sT_init".

"record_state" This key is a record the state variables at some or all time steps. A default value of false will still record the
final state of the model. Note that setting this to True can greatly increase the memory requirements for large
datasets. It can also be set to a string representing a column of Boolean values in data_df.

"verbose" This key is a Boolean value (the default is false): print information about the calculation progress.

"warning" This key is a Boolean value (the default is true): print warnings about calculation issues.

"debug" This key is a Boolean value (the default is false): print a very large amount of information about the calcula-
tion progress. Do not use.

t = my_model.data_df.index

Make the plots
plt.plot(t, C_in, label = "Cl in precip")
plt.plot(t, C_out, label = "Cl in discharge")

Finishing touches
plt.legend(frameon=False)
plt.xlabel('time')
plt.ylabel('Cl [mg/l]')

Users can access further results by employing accessor
functions. These can return the values for a particular time
step, age step, or input time. The latter is useful for exam-
ining how water that entered at a particular time evolves in
time. If none of these are given, the entire array is returned.
Both density (sT, pQ, mT, mQ, and mR) and cumulative (ST,
PQ, MT, MQ, and MR) forms are available.

Make an array of ages to plot against
T = my_model.options['dt'] *

np.arange(my_model.options['max_age'])

Extract and plot the TTD at a particular
timestep

pQ = my_model.get_pQ(timestep=100, flux='Q')
plt.figure()
plt.step(T, pQ, where='post')

Extract and plot the volume of water
in storage with an age less than 90

ST = my_model.get_ST(agestep=90)
plt.figure()
plt.step(T+1, ST, where='pre')

Extract and plot the concentration
of water in storage as it evolves due
to evapoconcentration

sT = my_model.get_sT(inputtime=328)
mT = my_model.get_mT(inputtime=328,

sol='Cl mg/l')
CT = mT/sT
plt.step(t, CT, where='post')

Geosci. Model Dev., 17, 477–495, 2024 https://doi.org/10.5194/gmd-17-477-2024

C. J. Harman and E. Xu Fei: SAS transport modeling 487

Figure 1. Results of the benchmark runs under steady flow. Panels (a) to (f) present the SAS functions used in each case. In each case,
"loc"= 1 and "scale"= 5. The steady flow rate was Q= 1 and the time step was 1t = 0.1. Panels (g) to (l) show the predictions pro-
duced by mesas.py and the analytical benchmark solutions (dashed black lines). The inflow concentrations were Gaussian random variables
with a mean of 1 and a standard deviation of 1. The initial concentration in storage was 1. Panels (m) to (r) give the absolute error relative
to the benchmark with "n_substeps"= 1. Panels (s) to (x) give the error with "n_substeps"= 10. Note that the annotation “1e-6” on
an axis indicates that the axis values are multiples of 10−6.

More information on these functions is available in the
documentation (see the “Code and data availability” section
of this paper).

4 Code validation and comparison

To validate the numerical implementation, mesas.py was
tested against several analytical benchmark solutions. Six of
these are analytical solutions for different SAS functions un-
der steady-flow conditions. Additional benchmark solutions
for unsteady flow are identical to those presented for tran-
SAS in Benettin and Bertuzzo (2018) and can, therefore, be
used for comparison.

4.1 Validation against benchmarks: steady flow

4.1.1 Approach

For certain SAS functions, it is possible to find a closed-form
expression for the corresponding TTD under steady flow. For
the six cases considered here, the details of the derivations
are given in Appendix A and the mathematical results are
listed in Table 4. Several of these have been found previously

(Botter, 2012; Harman, 2015; Berghuijs and Kirchner, 2017),
although others are new.

The six cases (also shown in the top row of Fig. 1) are a
uniform distribution; an exponential distribution; a “biased
old” distribution and a “biased young” distribution, which
encode a bias for older or younger storage, respectively, that
varies linearly with age rank in storage; and a “partial piston”
distribution and a “partial bypass” distribution, both of which
encode a strong preference for the oldest and youngest stor-
age, respectively. The latter four scenarios are special cases
of both beta and Kumaraswamy distributions.

To assess the validity of our implementation of the numer-
ical solution against these closed-form expressions, we can
either (a) use very fine time steps, and thus more closely
approximate the continuous result, or (b) find an analytical
form of the discrete solution. The latter is preferable, as we
can compare the numerical and analytical results directly,
rather than asymptotically at the limit of small time steps.
We have, therefore, taken the additional step of obtaining dis-
crete versions of each expression (rightmost column of Ta-
ble 4), which (when convolved with a synthetic time series
of input concentrations) yield the average output concentra-
tion over each time step. These exact values can be compared

https://doi.org/10.5194/gmd-17-477-2024 Geosci. Model Dev., 17, 477–495, 2024

488 C. J. Harman and E. Xu Fei: SAS transport modeling

Table 4. Analytic solutions for the continuous and discrete TTD for a number of benchmark SAS functions with uniform, gamma, and
beta distributions. The discrete form is obtained by averaging the value of pQ over each age step and time step. In the time-variable cases,
it is assumed that fluxes are constant over each time step, so Sj+1 = Sj +1t(Jj −Qj). For notational convenience, we have defined
δj =1TQj /Sj ; κ = k1t ; ηj = Sj+1/Sj − 1; n= 2

δ −
1
2 ; and φj = log(ηj + 1)/ηj if ηj 6= 0 or φj = 1 otherwise.

Case Flux SAS function Continuous TTD Discrete TTD
Q(t)= �(ST , t)= pQ(T , t)= pQi,j =

1
1tδj
×

Uniform Q Uniform(0,S0)
Q
S0
e
−T

Q
S0

δ+ e
−δ
− 1 i = 0

e−(1+i)δ
(
eδ − 1

)2
i > 0

Exponential Q Gamma(1,S0)
Q
S0

(
T
Q
S0
+ 1

)−2
δ+ log

(
1
δ+1

)
i = 0

log
(

(δi+1)2
(δ(i−1)+1)(δ(i+1)+1)

)
i > 0

Biased old Q Kumaraswamy(2,1)
2Q tanh

(
T
Q
S0

)
S0cosh2

(
T
Q
S0

)
δ− tanh(δ) i = 0

2sinh2(δ) tanh(δi)
cosh((i−1)δ)cosh((i+1)δ) i > 0

or Beta(2,1)
on ST ∈ [0,S0]

Biased young Q Kumaraswamy(1,2) 2Q
S0

(
T
Q
S0
+ 1

)−3
 δ2

δ+1 i = 0
2δ2

(δ(i−1)+1)(δi+1)(δ(i+1)+1) i > 0
or Beta(1,2)
on ST ∈ [0,S0]

Partial bypass Q Kumaraswamy(1
2 ,1) −

Q
2S0

(
W

(
−e
−
QT
2S0
−1
)−1
+ 1

)−1 {
δ+M(1)− 1 i = 0

M(i− 1)− 2M(i)+M(i+ 1) i > 0

or Beta
(

1
2 ,1

)
M(`)=W

(
−e−

δ`
2 −1

)(
W
(
−e−

δ`
2 −1

)
+ 2

)
on ST ∈ [0,S0]

Partial piston Q Kumaraswamy(1, 1
2)

Q
2S0

on T ∈ [0,2S0/Q]


δ2

4 i = 0
δ2

2 0< i ≤ n

(n−bnc) δ
2

2 i = dne

or Beta
(

1, 1
2

)
on ST ∈ [0,S0]

Uniform Q(t) Uniform(0,S(t)) J (t−T)
S(t)

exp
(
−
∫ t
t−T

Q(τ)
S(τ)

dτ
) 

e−δjφj + δj − 1 i = 0
Sj−i
Sj

exp
(
−
∑i
k=0δj−kφj−k

)
×

(
eδjφj − 1

)(
e
(
δj−i+ηj−i

)
φj−i − 1

)
i > 0

and time-varying flux

directly to the numerical results, which are also intended to
represent the average value over each time step.

In each scenario, the flow rate was set to J (t)=Q(t)= 1
and the time step to 1t = 0.1. The value of the scale pa-
rameter was set to S0 = 5, and an offset of Smin = 1 was
used. Consequently, outflow concentrations are delayed rel-
ative to inflows by five time steps. Inflow concentrations
were synthetically generated as independent, identically dis-
tributed random values (white noise) that were normally dis-
tributed with a mean of 0.0 and a standard deviation of 1.0.
Initial concentration in storage (Cold) was set to 1.0. The
n_substeps parameter was initially set to 1 and then in-
creased to 10 to examine how a greater number of numerical
substeps improved the solution accuracy.

4.1.2 Results

Figure 1g–l plots the tracer concentration predicted by
mesas.py (blue and orange lines, as labeled in the first row)
and analytical benchmark solutions (dashed black line). The
random inputs are smoothed most by the biased old case, and
they retain much of the input variability in the partial by-
pass case. The last two rows of Fig. 1 present the percent
errors relative to the benchmark when one (Fig. 1m–r) or 10
(Fig. 1s–x) numerical steps are taken each time step.

When n_substeps=1, the root-mean-square errors
(RMSEs) for the uniform case were the smallest (at 10−9),
whereas they were largest for the partial bypass and partial
piston cases (whose errors are closer to 10−3). For the other
three cases, the errors were around 10−6. When the number

Geosci. Model Dev., 17, 477–495, 2024 https://doi.org/10.5194/gmd-17-477-2024

C. J. Harman and E. Xu Fei: SAS transport modeling 489

Figure 2. Comparison of mesas.py and tran-SAS for the case with uniform sampling and S0 = 1000 mm. Panel (a) shows CQ estimations
from mesas.py (solid orange line) and tran-SAS (solid blue line) compared to the analytical solution (dashed green line); the solid gray
line represents the input concentration from precipitation (CJ). Panel (b) presents a section of panel (a) in more detail, showing the errors
resulting from the numerical scheme.

of substeps was increased to 10, the errors for those three
cases (exponential, biased old, and biased young) decreased
by a factor of 100. For the partial piston and partial bypass
cases, the reduction was smaller (a factor of 9 and 40, re-
spectively). For the uniform case, the error actually increased
slightly, apparently due to a persistent (very small) bias asso-
ciated with the initial concentration. When Cold was instead
set to zero, the errors decrease by a factor of 2 when the sub-
steps were increased.

In the partial piston case, errors are initially very low but
suddenly become much larger later in the simulation. This
occurs when the age-ranked storage of the oldest water in
storage (that which entered in the first time step) reaches the
“spike” on the right-hand end of the distribution. That is, us-
ing the definitions in Table 4, when ST (t, t)≈ S0. The high
curvature of �Q at that point most stresses the ability of the
numerical solution to accurately determine pQ.

4.2 Validation against benchmarks: unsteady flow

4.2.1 Approach

The power of the SAS approach comes from its ability to
handle time-variable inflows and outflows. The bottom row
of Table 4 gives the analytical solution for a case in which
the SAS function is uniform but the flow rate is variable in
time. The general analytical solution was presented in Botter
(2012), but the discrete form given here is novel. The dis-
crete form is derived from the general case by assuming that
inflows and outflow are constant over a time step, so that the
storage varies linearly. Further, the solution given is not the
instantaneous PDF pQ but rather pQ averaged over an age
step/time step along a characteristic curve. Therefore, it gives
a precise estimate of the expected value of the fraction of
discharge over each time step drawn from inputs in previous
time steps.

This benchmark was used to validate the mesas.py code
for the same dataset that Benettin and Bertuzzo (2018)
used to validate the performance of tran-SAS. The dataset
was downloaded from the repository cited in Benettin and

https://doi.org/10.5194/gmd-17-477-2024 Geosci. Model Dev., 17, 477–495, 2024

490 C. J. Harman and E. Xu Fei: SAS transport modeling

Figure 3. Variations of mesas.py applied to the time series and SAS
model from Benettin and Bertuzzo (2018). The gray line shows the
input concentration CJ from precipitation; the black line presents
the base case, using the same setting as the tran-SAS model in
Benettin and Bertuzzo (2018); the blue line denotes αET = 0.8; and
the orange line denotes a first-order reaction rate k1 = 0.0003 d−1.

Bertuzzo (2018) and includes 8 years of 12 h precipita-
tion, discharge, and evapotranspiration data. Benettin and
Bertuzzo (2018) generated input concentrations by adding
noise to a seasonal sinusoidal signal. The evapotranspiration
was assumed to be drawn uniformly from the total storage in
all simulations. Total storage at the end of each time step is
calculated from the water balance assuming an initial storage
Sinit. The S0 parameter used in mesas.py was calculated by
averaging the total storage at the start and end of each time
step.

4.2.2 Results

Figure 2 showcases the effect of activating some of the fea-
tures of mesas.py: the ability to account for first-order reac-
tions (for the case where the reaction rate is 3×10−4 h−1) and
fractionation (for a case in which αET = 0.8, so that evapo-
transpiration enriches the tracer concentration in storage).

Figure 3 shows the input solute concentration as well as
the output concentration predictions of mesas.py and tran-
SAS for a case in which the discharge SAS function is uni-
form and Sinit = 1000 mm. Errors resulting from the numeri-
cal scheme are reduced in mesas.py relative to tran-SAS.

Closer inspection of the residuals between the model con-
centration predictions and the analytical benchmarks re-
veals differences between the performance of tran-SAS and
mesas.py. Figure 4a and b show the time series and distribu-
tion of errors for tran-SAS and mesas.py for a case in which
Sinit = 1000 mm. Although the overall distribution of abso-
lute error magnitudes is similar, tran-SAS produces relatively
large errors about 15 % of the time. Overall, the RMSE of
mesas.py is 0.3 % (of the output standard deviation), whereas
the RMSE for tran-SAS is 1.5 %.

These differences become larger when we consider the er-
ror in the solute mass flux, as shown in Fig. 4c and d. The
RMSE of mass flux in mesas.py is 0.016 %, whereas it is
about 15 times larger for tran-SAS (0.21 %).

The differences can be almost entirely attributed to the fact
that tran-SAS provides estimates of the instantaneous tran-
sit time distribution at the end of each time step, whereas
mesas.py estimates time-step-averaged values. It is also pos-
sible to obtain the TTDs for the end of the time step from
mesas.py output and use them to estimate outflow concentra-
tions. Those estimates have errors (shown in green in Fig. 4d)
very similar to those of tran-SAS, as we would expect.

mesas.py performs better than tran-SAS for other config-
urations of the problem, although the size of the difference
changes. The normalized RMSEs of each implementation are
shown in Fig. 4f for four different values of initial storage.
The results show that the normalized RMSE is larger for both
codes when storage is small; however, mesas.py has a lower
RMSE than tran-SAS in all cases.

We can also compare the performance of these models for
a case in which the discharge SAS function is not uniform.
Again, following Benettin and Bertuzzo (2018), we consider

the case in which �Q(ST , t)=
[
ST (T ,t)
S(t)

]k
. This is equivalent

to a Kumaraswamy distribution with Smin = 0, S0 = S(t),
a = k, and b = 1. The required parameter JSON file is given
below.

"sas_specs":{

"Q":{
"Q SAS function":{

"func": "kumaraswamy",
"args": {

"loc": 0.0,
"scale": "S",
"a": "k",
"b": 1.0

}
}

},

"ET":{
"ET SAS function":{

"ST": [0.0, "S"],
"P": [0.0, 1.0]

}
}

},

"solute_parameters":{
"C":{

"C_old": 50,
}

},

Geosci. Model Dev., 17, 477–495, 2024 https://doi.org/10.5194/gmd-17-477-2024

C. J. Harman and E. Xu Fei: SAS transport modeling 491

Figure 4. Comparison of mesas.py with tran-SAS for a benchmark problem presented by Benettin and Bertuzzo (2018). Panel (a) shows
the normalized RMSE of outflow concentration estimates from mesas.py (orange) and tran-SAS (blue) relative to the time-step-averaged
analytical solution with Sinit = 1000 and k = 1. Panel (b) presents the absolute concentration error CDF for mesas.py and tran-SAS. Panels (c)
and (d) are the same as panels (a) and (b) but show errors in the mass flux, rather than the concentration. Panel (e) displays the effect of
varying k ∈ [0.2,0.3,0.5,1,1.2,1.5,2,3] with Sinit = 1000 on the difference between each code’s predictions and a run of mesas.py with
10 substeps as a high-accuracy estimate. Panel (f) shows the effect of varying Sinit ∈ [300,500,1000,2000] with k = 1 on the concentration
estimates of tran-SAS and mesas.py relative to the analytical solution.

"options":{
"influx": "J"
"n_substeps": 1

},

The time series dataset includes columns "Q", "J",
"ET", "S", "k", and input concentrations "C".

As analytical solutions are unavailable for this more gen-
eral case, the results obtained from tran-SAS and mesas.py
were compared against a higher-accuracy mesas.py solution

(obtained by setting "n_substeps" to 10). The RMSEs
for a range of values of k are shown in Fig. 4c. The mesas.py
RMSE was consistently lower than that of tran-SAS. The
RMSE for the mesas.py forward Euler is less than that of
tran-SAS because it does not include the modification intro-
duced by Benettin and Bertuzzo (2018) to improve the accu-
racy of the first age step.

https://doi.org/10.5194/gmd-17-477-2024 Geosci. Model Dev., 17, 477–495, 2024

492 C. J. Harman and E. Xu Fei: SAS transport modeling

Figure 5. Comparison of the computational time and time series
length for three mesas.py and two tran-SAS numerical computa-
tion settings. The plot shows the mean computational time and
95 % confidence interval for each case, represented by a line and
corresponding colored region, respectively. The mesas.py cases in-
clude the EF (forward Euler), midpoint (midpoint method), and
RK4 (fourth-order Runge–Kutta) methods, whereas the tran-SAS
cases include the EF* (modified forward Euler) and ODE (MAT-
LAB ODE solver) methods.

4.3 Performance

Computation time was compared by running all models for
a benchmark configuration (with various lengths of time se-
ries) on a single-core Intel Xeon Gold Cascade Lake 6248R
CPU with 192 GB DDR4 2933 MHz RAM. The benchmark
configuration is the uniform sampling discharge SAS func-
tion case described above. Each configuration was run 100
times to establish confidence bounds on the run time.

As the results in Fig. 5 show, mesas.py and tran-SAS had
comparable performance for time series less than 1000 time
steps, but tran-SAS was generally computationally faster
than mesas.py for longer time series. mesas.py was always
faster than tran-SAS with the MATLAB ODE solver enabled.
Using the midpoint and forward Euler numerical schemes in
mesas.py resulted in a modest increase in performance (at the
cost of numerical accuracy, as shown above).

5 Conclusions

SAS transport theory provides a very general framework for
modeling material transport through control volumes (Benet-
tin et al., 2022). At its core, it is based on a statement of
conservation of mass of bulk material of different ages. This
must be augmented with an SAS function that captures how
outflow preferentially removes bulk material from storage
according to the rank of its age. The mesas.py code pre-
sented here implements this theory, allows SAS functions to
be expressed in a very flexible way, and solves the underlying
equations with high accuracy with regard to mass balance.

The code is also intended to be user-friendly. A num-
ber of resources are available, including a free online
course via HydroLearn. The course, entitled “JHU 570.412
Tracers and transit times in time-variable hydrologic sys-
tems: A gentle introduction to the StorAge Selection
(SAS) approach” can be found at https://edx.hydrolearn.org/
courses/course-v1:JHU+570.412+Sp2020/course/ (last ac-
cess: 8 November 2023) (free registration required). This
course includes three sections of introductory SAS function
theory accompanied by a mesas.py walk-through.

Further work is needed to augment the code with addi-
tional useful tools. Three sets of tools are particularly impor-
tant. First, tools for generating ensembles of input concentra-
tion data. In hydrology, observations of input concentrations
are often bulk samples that represent amount-weighted aver-
ages over multiple time steps. These must be disaggregated
to the resolution at which we want to run the model. Second,
tools for parameterizing SAS functions and fitting them to
data, preferably in a way that can adapt to any specification
of the SAS function. Third, tools for assessing uncertainty in
both the disaggregated inputs, the SAS function shape, and
the model predictions.

Appendix A: Analytical benchmarks

A1 Steady-state solutions

At steady state with one outflow and J =Q, Eq. (2) can be
written as follows:

dsT
dT
=−QpQ(T), (A1)

sT (0)=Q. (A2)

This is a separable differential equation, which we can inte-
grate twice to give the following:

ST (T)=Q

T − T∫
0

PQ(τ) dτ

 . (A3)

This gives the steady-state cumulative age-ranked storage in
terms of the cumulative transit time distribution PQ.

Alternatively, we can use the fact that pQ = ωQsT and
sT = dST /dT to write the conservation law as follows:

dST
dT
=Q−Q�Q(ST (T)), (A4)

ST (0)= 0. (A5)

This can likewise be integrated to obtain the age of water at
a given location in age-ranked storage in terms of the SAS
function:

T =
1
Q

ST (T)∫
0

1
1−�Q(σ)

dσ. (A6)

Geosci. Model Dev., 17, 477–495, 2024 https://doi.org/10.5194/gmd-17-477-2024

https://edx.hydrolearn.org/courses/course-v1:JHU+570.412+Sp2020/course/
https://edx.hydrolearn.org/courses/course-v1:JHU+570.412+Sp2020/course/

C. J. Harman and E. Xu Fei: SAS transport modeling 493

Using these equations, we can (in principle) find the steady-
state transit time distributions if we know the SAS function,
and vice versa. In many cases, a closed-form solution is not
possible.

For example, for a uniform distribution U(0,S0), the SAS
function is given by �Q(ST)= ST /S0 for ST ∈ [0,S0]. Sub-
stituting this into Eq. (A6) givesQT =−S0 log(1− ST /S0),

and rearranging gives ST (T)= S0

(
1− e

Q
S0
T
)

. This is the

cumulative age-ranked storage when �Q is a uniform distri-
bution and the flow is steady. Substituting this into the defi-
nition of the uniform �Q yields the cumulative transit time
distribution (as PQ(T , t)=�Q(ST , t) by definition). Conse-
quently, we can say that

�Q(ST)= U(0,S0)⇔ PQ(T)= 1− e−
Q
S0
T (A7)

at steady state. That is, a uniform SAS function is equivalent
to an exponential TTD.

A similar set of steps can be used to show that an expo-
nential SAS function (which is a special case of a gamma
distribution with shape parameter α = 1) is equivalent to a
TTD following a Lomax distribution with exponent 1:

�Q (ST)= 0(1,S0)⇔ PQ(T)= 1− (1+QT/S0)
−1. (A8)

We were not able to obtain a solution for the general case of
a gamma distribution. Similarly, solutions for the TTD when
the SAS function is given by a beta distribution B(α,β) over
0≤ ST /S0 ≤ 1 could only be found for particular values of
(α,β). For example, with α = 1 and β = 2, we have the bi-
ased young case:

�Q(ST)= B(1,2)⇔ PQ(T)= 1− (1+ TQ/S0)
−2, (A9)

which is a Lomax distribution with exponent 2. Similarly the
biased old, partial bypass, and partial piston cases are as fol-
lows:

�Q(ST)= B(2,1)⇔ PQ(T)= tanh2 (TQ/S0) , (A10)

�Q(ST)= B

(
1
2
,1
)
⇔ PQ(T)

=W

(
−e
−
QT
2S0
−1
)
+ 1, (A11)

�Q(ST)= B(1,β)⇔ PQ(T)= 1− ((β − 1)

QT/S0+ 1)
β

1−β . (A12)

Here, W(·) is the Lambert W function.

A2 Accounting for discretization effects

To obtain a discrete form of the analytical solution, we can
make two assumptions. First, that the time series of inflow
concentrations and of water inflows and outflows are in fact
constant within a time step 1t , so

CJj = CJ (t) for j ≤ t/1t < j + 1, (A13)

Jj = J (t) for j ≤ t/1t < j + 1, (A14)
Qj =Q(t) for j ≤ t/1t < j + 1. (A15)

Here, CJj and CQj are the discrete forms ofCJ (t) andCQ(t).
Second, we assume that the numerical estimates of the

outflow concentration time series should reflect the average
value of the analytical solution over each time step. That is,

CQj =
1
1t

1t∫
0

CQ(j1t + ν) dν. (A17)

In the continuous form, CQ is obtained by the convolution
of pQ with CJ , as shown in Eq. (1). If we assume that the
input concentrations are constant over each time step, Eq. (1)
can be expressed as the sum of integrals over each time step
interval j1t ≤ t < (j + 1)1t with the subsequent addition
the old-water contribution:

CQ(t)=

t∫
0

CJ (t − T)pQ(T , t) dT +ColdPQ(t, t)

=

j−1∑
i=0

t−(j−i−1)1t∫
t−(j−i))1t

CJ (t − T)pQ(T , t) dT


+

t−j1t∫
0

CJ (t − T)pQ(T , t) dT +ColdPQ(t, t)

=

j−1∑
i=0

CJj−i−1

t−(j−i−1)1t∫
t−(j−i))1t

pQ(T , t) dT


+CJj

t−j1t∫
0

pQ(T , t) dT +ColdPQ(t, t)

=

(
j−1∑
i=0

CJj−i−1
(
PQ(t − (j − i− 1)1t, t)

−PQ(t − (j − i)1t, t)
))
+CJjPQ

(t − j1t, t)+ColdPQ(t, t). (A18)

To obtain the discrete outflow concentrations, we must ap-
ply the time step averaging in Eq. (A17) to Eq. (A18), which
yields the discrete convolution:

CQj =
j∑
i=0

CJj−ipQi,j1t +ColdPQj,j . (A19)

Here, the time-step-averaged TTD PQi,j is given by

PQi,j =
1
1t

1t∫
0

PQ(i1t + ν,j1t + ν) dν. (A20)

https://doi.org/10.5194/gmd-17-477-2024 Geosci. Model Dev., 17, 477–495, 2024

494 C. J. Harman and E. Xu Fei: SAS transport modeling

pQi,j is obtained via the discrete derivative

pQi,j =


PQi,j
1t

i = 0

PQi,j −PQi−1,j

1t
i > 0.

(A21)

For the elementary case of steady flow and uniform sam-
pling, this gives

pQi,j =
1
1tδ
×

{
δ+ e−δ − 1 i = 0

e−(1+i)δ
(
eδ − 1

)2
i ≥ 1,

(A22)

where δ =1tQ/S0. Other forms are given in Table 4. Note
that δ must be less than 1 in the exponential and biased young
cases.

Code and data availability. mesas.py v1.0 is open source and dis-
tributed under the terms of the MIT License. The code is available
on Zenodo (https://doi.org/10.5281/zenodo.7144730, Harman et al.,
2023). Version 1.0 is tagged as https://github.com/charman2/mesas/
releases/tag/v1.20231108 (last access: 8 November 2023). Users are
encouraged to use GitHub’s issue-tracking framework to submit bug
reports and feature requests. Python 3.8 or higher is required.

The most up-to-date version of mesas.py along with its depen-
dencies can be installed into a new environment from the command
line using conda with the following command: conda install
-y -c conda-forge mesas. You may need to run conda
config -append channels conda-forge first.

The model can also be installed by building from the source code
(see the documentation for steps required). A FORTRAN compiler
is required to do so (but is not required when installing through
conda). Documentation for mesas.py is available at https://mesas.
readthedocs.io/en/latest/ (last access: 16 January 2024). This docu-
mentation is also stored on the GitHub repository. No datasets were
used in this article.

Author contributions. CJH contributed to the conceptualization,
methodology, formal analysis, investigation, software development,
validation and evaluation, visualization, original draft preparation,
funding acquisition, project administration, and supervision. EXF
contributed to the software development, validation and evaluation,
visualization, original draft preparation, and review and editing.

Competing interests. The contact author has declared that neither
of the authors has any competing interests.

Disclaimer. Publisher’s note: Copernicus Publications remains
neutral with regard to jurisdictional claims made in the text, pub-
lished maps, institutional affiliations, or any other geographical rep-
resentation in this paper. While Copernicus Publications makes ev-
ery effort to include appropriate place names, the final responsibility
lies with the authors.

Acknowledgements. The authors are grateful to Eric Hutter,
Oliver Evans and Fei Lu for their contributions to the mesas.py
code. We would also like to thank Paolo Benettin and the anony-
mous reviewer for their helpful reviews.

Financial support. This work was supported by the US National
Science Foundation Directorate of Geosciences (grant no. EAR-
1654194).

Review statement. This paper was edited by Carlos Sierra and re-
viewed by Paolo Benettin and one anonymous referee.

References

Benettin, P. and Bertuzzo, E.: tran-SAS v1.0: a numerical model
to compute catchment-scale hydrologic transport using Stor-
Age Selection functions, Geosci. Model Dev., 11, 1627–1639,
https://doi.org/10.5194/gmd-11-1627-2018, 2018.

Benettin, P., Rodriguez, N. B., Sprenger, M., Kim, M., Klaus,
J., Harman, C. J., van der Velde, Y., Hrachowitz, M., Bot-
ter, G., McGuire, K. J., Kirchner, J. W., Rinaldo, A., and Mc-
Donnell, J. J.: Transit Time Estimation in Catchments: Re-
cent Developments and Future Directions, Water Resour. Res.,
58, e2022WR033096, https://doi.org/10.1029/2022WR033096,
2022.

Berghuijs, W. R. and Kirchner, J. W.: The Relation-
ship between Contrasting Ages of Groundwater and
Streamflow, Geophys. Res. Lett., 44, 8925–8935,
https://doi.org/10.1002/2017GL074962, 2017.

Botter, G.: Catchment mixing processes and travel
time distributions, Water Resour. Res., 48,
https://doi.org/10.1029/2011WR011160, 2012.

Danesh-Yazdi, M., Klaus, J., Condon, L. E., and Maxwell, R. M.:
Bridging the gap between numerical solutions of travel time dis-
tributions and analytical storage selection functions, Hydrol. Pro-
cess., 32, 1063–1076, https://doi.org/10.1002/hyp.11481, 2018.

Dupas, R., Ehrhardt, S., Musolff, A., Fovet, O., and Durand, P.:
Long-term nitrogen retention and transit time distribution in agri-
cultural catchments in western France, Environ. Res. Lett., 15,
115011, https://doi.org/10.1088/1748-9326/abbe47, 2020.

Harman, C. J.: Time-variable transit time distributions and trans-
port: Theory and application to storage-dependent transport
of chloride in a watershed, Water Resour. Res., 51, 1–30,
https://doi.org/10.1002/2014WR015707, 2015.

Harman, C. J.: Age-ranked Storage-discharge Relations: A Uni-
fied Description of Spatially Lumped Flow and Water Age
in Hydrologic Systems, Water Resour. Res., 55, 7143–7165,
https://doi.org/10.1029/2017WR022304, 2019.

Harman, C. J.: Tracers and transit times in time-variable hydro-
logic systems: A gentle introduction to the StorAge Selection
(SAS) approach, https://apps.edx.hydrolearn.org/learning/
course/course-v1:JHU+570.412+Sp2020/home (last access:
8 November 2023), 2020.

Harman, C. J., Hutton, E., Xu Fei, E., Evans, O., and Lu, F.:
charman2/mesas: mesas.py v1.20230728 (v1.20231108), Zen-
odo [code], https://doi.org/10.5281/zenodo.7144730, 2023.

Geosci. Model Dev., 17, 477–495, 2024 https://doi.org/10.5194/gmd-17-477-2024

https://doi.org/10.5281/zenodo.7144730
https://github.com/charman2/mesas/releases/tag/v1.20231108
https://github.com/charman2/mesas/releases/tag/v1.20231108
https://mesas.readthedocs.io/en/latest/
https://mesas.readthedocs.io/en/latest/
https://doi.org/10.5194/gmd-11-1627-2018
https://doi.org/10.1029/2022WR033096
https://doi.org/10.1002/2017GL074962
https://doi.org/10.1029/2011WR011160
https://doi.org/10.1002/hyp.11481
https://doi.org/10.1088/1748-9326/abbe47
https://doi.org/10.1002/2014WR015707
https://doi.org/10.1029/2017WR022304
https://apps.edx.hydrolearn.org/learning/course/course-v1:JHU+570.412+Sp2020/home
https://apps.edx.hydrolearn.org/learning/course/course-v1:JHU+570.412+Sp2020/home
https://doi.org/10.5281/zenodo.7144730

C. J. Harman and E. Xu Fei: SAS transport modeling 495

Kendall, C. and Caldwell, E. A.: Chapter 2 – Fundamentals of Iso-
tope Geochemistry, in: Isotope Tracers in Catchment Hydrology,
edited by: Kendall, C. and McDonnell, J. J., 51–86, Elsevier,
https://doi.org/10.1016/B978-0-444-81546-0.50009-4, 1998.

Rinaldo, A., Benettin, P., Harman, C. J., Hrachowitz, M., McGuire,
K. J., Velde, Y. V. D., Bertuzzo, E., and Botter, G.: A coher-
ent framework for quantifying how catchments store and re-
lease water and solutes, Water Resour. Res., 51, 4840–4847,
https://doi.org/10.1002/2015WR017273, 2015.

Rodriguez, N. B. and Klaus, J.: Catchment Travel Times From
Composite StorAge Selection Functions Representing the Su-
perposition of Streamflow Generation Processes, Water Resour.
Res., 55, 9292–9314, https://doi.org/10.1029/2019WR024973,
2019.

Rodriguez, N. B., Pfister, L., Zehe, E., and Klaus, J.: A comparison
of catchment travel times and storage deduced from deuterium
and tritium tracers using StorAge Selection functions, Hydrol.
Earth Syst. Sci., 25, 401–428, https://doi.org/10.5194/hess-25-
401-2021, 2021.

Ross, J., Schreiber, I., and Vlad, M. O.: Lifetime and
transit time distributions and response experiments
in chemical kinetics, in: Determination of Com-
plex Reaction Mechanisms, Oxford University Press,
https://doi.org/10.1093/oso/9780195178685.003.0014, 2006.

Rossum, J. M. V., Bie, J. E. G. M. D., Lingen, G. V., and
Teeuwen, H. W. A.: Pharmacokinetics from a Dynamical Sys-
tems Point of View, J. Pharmacokinet. Biop., 17, 365–392,
https://doi.org/10.1007/BF01061902, 1989.

Stockinger, M. P., Bogena, H. R., Lücke, A., Diekkrüger, B.,
Cornelissen, T., and Vereecken, H.: Tracer sampling fre-
quency influences estimates of young water fraction and
streamwater transit time distribution, J. Hydrol., 541, 952–964,
https://doi.org/10.1016/j.jhydrol.2016.08.007, 2016.

Tyworth, J. E. and Zeng, A. Z.: Estimating the effects of carrier
transit-time performance on logistics cost and service, Transport.
Res. A-Pol., 32, 89–97, 1998.

Wilusz, D. C., Harman, C. J., Ball, W. B., Maxwell, R. M.,
and Buda, A. R.: Using Particle Tracking to Under-
stand Flow Paths, Age Distributions, and the Paradoxical
Origins of the Inverse Storage Effect in an Experimen-
tal Catchment, Water Resour. Res., 56, e2019WR025140,
https://doi.org/10.1029/2019WR025140, 2020.

https://doi.org/10.5194/gmd-17-477-2024 Geosci. Model Dev., 17, 477–495, 2024

https://doi.org/10.1016/B978-0-444-81546-0.50009-4
https://doi.org/10.1002/2015WR017273
https://doi.org/10.1029/2019WR024973
https://doi.org/10.5194/hess-25-401-2021
https://doi.org/10.5194/hess-25-401-2021
https://doi.org/10.1093/oso/9780195178685.003.0014
https://doi.org/10.1007/BF01061902
https://doi.org/10.1016/j.jhydrol.2016.08.007
https://doi.org/10.1029/2019WR025140

	Abstract
	Introduction
	Governing equations
	Conservation laws
	Conservation law for the bulk material flows
	Conservation law for solutes
	Accounting for fractionation and reactions

	StorAge Selection (SAS) functions
	Continuous SAS functions available in mesas.py
	Piecewise linear SAS functions in mesas.py
	SAS functions built from weighted sums of components

	Methods
	Numerical implementation
	Model specification and input structure
	SAS function specification
	Solute parameters
	Options
	Time series

	Running the model and querying results

	Code validation and comparison
	Validation against benchmarks: steady flow
	Approach
	Results

	Validation against benchmarks: unsteady flow
	Approach
	Results

	Performance

	Conclusions
	Appendix A: Analytical benchmarks
	Appendix A1: Steady-state solutions
	Appendix A2: Accounting for discretization effects

	Code and data availability
	Author contributions
	Competing interests
	Disclaimer
	Acknowledgements
	Financial support
	Review statement
	References

