Articles | Volume 15, issue 9
https://doi.org/10.5194/gmd-15-3641-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/gmd-15-3641-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Blockworlds 0.1.0: a demonstration of anti-aliased geophysics for probabilistic inversions of implicit and kinematic geological models
Richard Scalzo
CORRESPONDING AUTHOR
School of Mathematics and Statistics, The University of Sydney, Darlington, NSW 2008, Australia
ARC Industrial Transformation and Training Centre in Data Analytics for Resources and the Environment (DARE), Australia
Mark Lindsay
Centre for Exploration Targeting, School of Earth Sciences, The University of Western Australia, Crawley, WA 6009, Australia
CSIRO Mineral Resources, Kensington, WA 6151, Australia
ARC Industrial Transformation and Training Centre in Data Analytics for Resources and the Environment (DARE), Australia
Mark Jessell
Centre for Exploration Targeting, School of Earth Sciences, The University of Western Australia, Crawley, WA 6009, Australia
ARC Industrial Transformation and Training Centre in Data Analytics for Resources and the Environment (DARE), Australia
Guillaume Pirot
Centre for Exploration Targeting, School of Earth Sciences, The University of Western Australia, Crawley, WA 6009, Australia
ARC Industrial Transformation and Training Centre in Data Analytics for Resources and the Environment (DARE), Australia
Jeremie Giraud
Centre for Exploration Targeting, School of Earth Sciences, The University of Western Australia, Crawley, WA 6009, Australia
RING Team, GeoRessources, Université de Lorraine, 54000, Nancy, France
ARC Industrial Transformation and Training Centre in Data Analytics for Resources and the Environment (DARE), Australia
Edward Cripps
Department of Mathematics and Statistics, The University of Western Australia, Crawley, WA 6009, Australia
ARC Industrial Transformation and Training Centre in Data Analytics for Resources and the Environment (DARE), Australia
Sally Cripps
School of Mathematics and Statistics, The University of Sydney, Darlington, NSW 2008, Australia
CSIRO Data61, Eveleigh, NSW 2015, Australia
ARC Industrial Transformation and Training Centre in Data Analytics for Resources and the Environment (DARE), Australia
Related authors
Mark Jessell, Jiateng Guo, Yunqiang Li, Mark Lindsay, Richard Scalzo, Jérémie Giraud, Guillaume Pirot, Ed Cripps, and Vitaliy Ogarko
Earth Syst. Sci. Data, 14, 381–392, https://doi.org/10.5194/essd-14-381-2022, https://doi.org/10.5194/essd-14-381-2022, 2022
Short summary
Short summary
To robustly train and test automated methods in the geosciences, we need to have access to large numbers of examples where we know
the answer. We present a suite of synthetic 3D geological models with their gravity and magnetic responses that allow researchers to test their methods on a whole range of geologically plausible models, thus overcoming one of the fundamental limitations of automation studies.
Lawrence A. Bird, Vitaliy Ogarko, Laurent Ailleres, Lachlan Grose, Jérémie Giraud, Felicity S. McCormack, David E. Gwyther, Jason L. Roberts, Richard S. Jones, and Andrew N. Mackintosh
The Cryosphere, 19, 3355–3380, https://doi.org/10.5194/tc-19-3355-2025, https://doi.org/10.5194/tc-19-3355-2025, 2025
Short summary
Short summary
The terrain of the seafloor has important controls on the access of warm water below floating ice shelves around Antarctica. Here, we present an open-source method to infer what the seafloor looks like around the Antarctic continent and within these ice shelf cavities, using measurements of the Earth's gravitational field. We present an improved seafloor map for the Vincennes Bay region in East Antarctica and assess its impact on ice melt rates.
Vitaliy Ogarko and Mark Jessell
EGUsphere, https://doi.org/10.5194/egusphere-2025-1294, https://doi.org/10.5194/egusphere-2025-1294, 2025
This preprint is open for discussion and under review for Geoscientific Model Development (GMD).
Short summary
Short summary
We developed a new method to reconstruct underground rock layers from drillhole data, using an advanced algorithm to ensure geologically realistic results. By combining data from multiple drillholes, our approach reduces uncertainty and improves accuracy. Tested on South Australian data, it successfully predicted stratigraphy and highlighted ways to enhance data quality. This innovation makes geological analysis more reliable, aiding exploration and resource management.
Mark Douglas Lindsay, Vitaliy Ogarko, Jeremie Giraud, and Mosayeb Khademi
EGUsphere, https://doi.org/10.5194/egusphere-2024-3754, https://doi.org/10.5194/egusphere-2024-3754, 2025
Preprint archived
Short summary
Short summary
Geophysical data is used to understand the Earth's structure. Geophysical inversion is an optimisation technique that constructs a model of the Earth using geophysical data. Inversion is complex and requires constraints to produce a plausible model. Overfitting is a disadvantageous effect that can affect techniques that rely on optimisation. A new feature in an inversion platform reduces overfitting by informing inversion of spatial uncertainty contained within the geophysical data.
Léonard Moracchini, Guillaume Pirot, Kerry Bardot, Mark W. Jessell, and James L. McCallum
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2024-154, https://doi.org/10.5194/gmd-2024-154, 2024
Revised manuscript accepted for GMD
Short summary
Short summary
To facilitate the exploration of alternative hydrogeological scenarios, we propose to approximate costly physical simulations of contaminant transport by more affordable shortest distances computations. It enables to accept or reject scenarios within a predefined confidence interval. In particular, it can allow to estimate the probability of a fault acting as a preferential path or a barrier.
Alan Robert Alexander Aitken, Ian Delaney, Guillaume Pirot, and Mauro A. Werder
The Cryosphere, 18, 4111–4136, https://doi.org/10.5194/tc-18-4111-2024, https://doi.org/10.5194/tc-18-4111-2024, 2024
Short summary
Short summary
Understanding how glaciers generate sediment and transport it to the ocean is important for understanding ocean ecosystems and developing knowledge of the past cryosphere from marine sediments. This paper presents a new way to simulate sediment transport in rivers below ice sheets and glaciers and quantify volumes and characteristics of sediment that can be used to reveal the hidden record of the subglacial environment for both past and present glacial conditions.
Vitaliy Ogarko, Kim Frankcombe, Taige Liu, Jeremie Giraud, Roland Martin, and Mark Jessell
Geosci. Model Dev., 17, 2325–2345, https://doi.org/10.5194/gmd-17-2325-2024, https://doi.org/10.5194/gmd-17-2325-2024, 2024
Short summary
Short summary
We present a major release of the Tomofast-x open-source gravity and magnetic inversion code that is enhancing its performance and applicability for both industrial and academic studies. We focus on real-world mineral exploration scenarios, while offering flexibility for applications at regional scale or for crustal studies. The optimisation work described in this paper is fundamental to allowing more complete descriptions of the controls on magnetisation, including remanence.
Jiateng Guo, Xuechuang Xu, Luyuan Wang, Xulei Wang, Lixin Wu, Mark Jessell, Vitaliy Ogarko, Zhibin Liu, and Yufei Zheng
Geosci. Model Dev., 17, 957–973, https://doi.org/10.5194/gmd-17-957-2024, https://doi.org/10.5194/gmd-17-957-2024, 2024
Short summary
Short summary
This study proposes a semi-supervised learning algorithm using pseudo-labels for 3D geological modelling. We establish a 3D geological model using borehole data from a complex real urban local survey area in Shenyang and make an uncertainty analysis of this model. The method effectively expands the sample space, which is suitable for geomodelling and uncertainty analysis from boreholes. The modelling results perform well in terms of spatial morphology and geological semantics.
Jérémie Giraud, Guillaume Caumon, Lachlan Grose, Vitaliy Ogarko, and Paul Cupillard
Solid Earth, 15, 63–89, https://doi.org/10.5194/se-15-63-2024, https://doi.org/10.5194/se-15-63-2024, 2024
Short summary
Short summary
We present and test an algorithm that integrates geological modelling into deterministic geophysical inversion. This is motivated by the need to model the Earth using all available data and to reconcile the different types of measurements. We introduce the methodology and test our algorithm using two idealised scenarios. Results suggest that the method we propose is effectively capable of improving the models recovered by geophysical inversion and may be applied in real-world scenarios.
Jérémie Giraud, Hoël Seillé, Mark D. Lindsay, Gerhard Visser, Vitaliy Ogarko, and Mark W. Jessell
Solid Earth, 14, 43–68, https://doi.org/10.5194/se-14-43-2023, https://doi.org/10.5194/se-14-43-2023, 2023
Short summary
Short summary
We propose and apply a workflow to combine the modelling and interpretation of magnetic anomalies and resistivity anomalies to better image the basement. We test the method on a synthetic case study and apply it to real world data from the Cloncurry area (Queensland, Australia), which is prospective for economic minerals. Results suggest a new interpretation of the composition and structure towards to east of the profile that we modelled.
Guillaume Pirot, Ranee Joshi, Jérémie Giraud, Mark Douglas Lindsay, and Mark Walter Jessell
Geosci. Model Dev., 15, 4689–4708, https://doi.org/10.5194/gmd-15-4689-2022, https://doi.org/10.5194/gmd-15-4689-2022, 2022
Short summary
Short summary
Results of a survey launched among practitioners in the mineral industry show that despite recognising the importance of uncertainty quantification it is not very well performed due to lack of data, time requirements, poor tracking of interpretations and relative complexity of uncertainty quantification. To alleviate the latter, we provide an open-source set of local and global indicators to measure geological uncertainty among an ensemble of geological models.
Mark Jessell, Jiateng Guo, Yunqiang Li, Mark Lindsay, Richard Scalzo, Jérémie Giraud, Guillaume Pirot, Ed Cripps, and Vitaliy Ogarko
Earth Syst. Sci. Data, 14, 381–392, https://doi.org/10.5194/essd-14-381-2022, https://doi.org/10.5194/essd-14-381-2022, 2022
Short summary
Short summary
To robustly train and test automated methods in the geosciences, we need to have access to large numbers of examples where we know
the answer. We present a suite of synthetic 3D geological models with their gravity and magnetic responses that allow researchers to test their methods on a whole range of geologically plausible models, thus overcoming one of the fundamental limitations of automation studies.
Ranee Joshi, Kavitha Madaiah, Mark Jessell, Mark Lindsay, and Guillaume Pirot
Geosci. Model Dev., 14, 6711–6740, https://doi.org/10.5194/gmd-14-6711-2021, https://doi.org/10.5194/gmd-14-6711-2021, 2021
Short summary
Short summary
We have developed a software that allows the user to extract and standardize drill hole information from legacy datasets and/or different drilling campaigns. It also provides functionality to upscale the lithological information. These functionalities were possible by developing thesauri to identify and group geological terminologies together.
Jérémie Giraud, Vitaliy Ogarko, Roland Martin, Mark Jessell, and Mark Lindsay
Geosci. Model Dev., 14, 6681–6709, https://doi.org/10.5194/gmd-14-6681-2021, https://doi.org/10.5194/gmd-14-6681-2021, 2021
Short summary
Short summary
We review different techniques to model the Earth's subsurface from geophysical data (gravity field anomaly, magnetic field anomaly) using geological models and measurements of the rocks' properties. We show examples of application using idealised examples reproducing realistic features and provide theoretical details of the open-source algorithm we use.
Mahtab Rashidifard, Jérémie Giraud, Mark Lindsay, Mark Jessell, and Vitaliy Ogarko
Solid Earth, 12, 2387–2406, https://doi.org/10.5194/se-12-2387-2021, https://doi.org/10.5194/se-12-2387-2021, 2021
Short summary
Short summary
One motivation for this study is to develop a workflow that enables the integration of geophysical datasets with different coverages that are quite common in exploration geophysics. We have utilized a level set approach to achieve this goal. The utilized technique parameterizes the subsurface in the same fashion as geological models. Our results indicate that the approach is capable of integrating information from seismic data in 2D to guide the 3D inversion results of the gravity data.
Lachlan Grose, Laurent Ailleres, Gautier Laurent, Guillaume Caumon, Mark Jessell, and Robin Armit
Geosci. Model Dev., 14, 6197–6213, https://doi.org/10.5194/gmd-14-6197-2021, https://doi.org/10.5194/gmd-14-6197-2021, 2021
Short summary
Short summary
Fault discontinuities in rock packages represent the plane where two blocks of rock have moved. They are challenging to incorporate into geological models because the geometry of the faulted rock units are defined by not only the location of the discontinuity but also the kinematics of the fault. In this paper, we outline a structural geology framework for incorporating faults into geological models by directly incorporating kinematics into the mathematical framework of the model.
Mark Jessell, Vitaliy Ogarko, Yohan de Rose, Mark Lindsay, Ranee Joshi, Agnieszka Piechocka, Lachlan Grose, Miguel de la Varga, Laurent Ailleres, and Guillaume Pirot
Geosci. Model Dev., 14, 5063–5092, https://doi.org/10.5194/gmd-14-5063-2021, https://doi.org/10.5194/gmd-14-5063-2021, 2021
Short summary
Short summary
We have developed software that allows the user to extract sufficient information from unmodified digital maps and associated datasets that we are able to use to automatically build 3D geological models. By automating the process we are able to remove human bias from the procedure, which makes the workflow reproducible.
Lachlan Grose, Laurent Ailleres, Gautier Laurent, and Mark Jessell
Geosci. Model Dev., 14, 3915–3937, https://doi.org/10.5194/gmd-14-3915-2021, https://doi.org/10.5194/gmd-14-3915-2021, 2021
Short summary
Short summary
LoopStructural is an open-source 3D geological modelling library with a model design allowing for multiple different algorithms to be used for comparison for the same geology. Geological structures are modelled using structural geology concepts and techniques, allowing for complex structures such as overprinted folds and faults to be modelled. In the paper, we demonstrate automatically generating a 3-D model from map2loop-processed geological survey data of the Flinders Ranges, South Australia.
Cited articles
Backus, G. and Gilbert, F.: The Resolving Power of Gross Earth Data, Geophys. J. Royal Astron. Soc., 16, 169–205, https://doi.org/10.1111/j.1365-246X.1968.tb00216.x, 1968. a
Backus, G. and Gilbert, F.: Uniqueness in the inversion of inaccurate gross
Earth data, Philos. T. Roy. Soc. Lond A, 266, 123–192,
https://doi.org/10.1111/j.1365-246X.1968.tb00216.x, 1970. a
Backus, G. E.: Long-wave elastic anisotropy produced by horizontal layering, J. Geophys. Res., 67, 4427–4440, 1962. a
Backus, G. E. and Gilbert, J. F.: Numerical Applications of a Formalism for
Geophysical Inverse Problems, Geophys. J. Roy. Astron. Soc., 13, 247–276, https://doi.org/10.1111/j.1365-246X.1967.tb02159.x, 1967. a
Beardsmore, G., Durrant-Whyte, H., and Callaghan, S. O.: A Bayesian inference tool for geophysical joint inversions, ASEG Extended Abstracts 2016.1 (2016), 1–10, https://doi.org/10.1071/ASEG2016ab131, 2016. a, b, c
Bond, C. E.: Uncertainty in structural interpretation: Lessons to be learnt,
J. Struct. Geol., 74, 185–200, https://doi.org/10.1016/j.jsg.2015.03.003, 2015. a
Bosch, M.: Lithologic tomography: From plural geophysical data to lithology
estimation, J. Geophys. Res.-Solid, 104, 749–766, https://doi.org/10.1029/1998JB900014, 1999. a
Bosch, M.: Inference Networks in Earth Models with Multiple Components and Data, in: Geophysical Monograph Series, edited by: Moorkamp, M., Lelièvre, P. G., Linde, N., and Khan, A., John Wiley & Sons, Inc, Hoboken, NJ, 29–47, https://doi.org/10.1002/9781118929063.ch3, 2016. a
Bosch, M., Guillen, A., and Ledru, P.: Lithologic tomography: an application to geophysical data from the Cadomian belt of northern Brittany, France,
Tectonophysics, 331, 197–227, https://doi.org/10.1016/S0040-1951(00)00243-2, 2001. a
Brunetti, C., Bianchi, M., Pirot, G., and Linde, N.: Hydrogeological Model
Selection Among Complex Spatial Priors, Water Resour. Res., 55, 6729–6753, https://doi.org/10.1029/2019WR024840, 2019. a
Cai, H. and Zhdanov, M.: Application of Cauchy-type integrals in developing
effective methods for depth-to-basement inversion of gravity and gravity
gradiometry data, Geophysics, 80, G81–G94, https://doi.org/10.1190/geo2014-0332.1, 2015. a
Calcagno, P., Chilès, J., Courrioux, G., and Guillen, A.: Geological modelling from field data and geological knowledge, Phys. Earth Planet. Inter., 171, 147–157, https://doi.org/10.1016/j.pepi.2008.06.013, 2008. a, b
Capdeville, Y., Guillot, L., and Marigo, J. J.: 1-D non-periodic homogenization for the seismic wave equation. Geophysical Journal International, Geophys. J. Int., 181, 897–910, 2010. a
Catmull, E.: A hidden-surface algorithm with anti-aliasing, in: Proceedings of the 5th Annual Conference on Computer Graphics and Interactive Techniques,
Atlanta, Georgia, USA, 6–11, https://doi.org/10.1145/800248.807360, 1978. a
Cockett, R., Kang, S., Heagy, L. J., Pidlisecky, A., and Oldenburg, D. W.:
SimPEG: An open source framework for simulation and gradient based parameter estimation in geophysical applications, Comput. Geosci., 85, 142–154, https://doi.org/10.1016/j.cageo.2015.09.015, 2015. a, b
Cook, R. L.: Stochastic sampling in computer graphics, ACM T. Graph., 5, 51–72, 1986. a
Cordua, K. S., Hansen, T. M., and Mosegaard, K.: Monte Carlo full-waveform
inversion of crosshole GPR data using multiple-point geostatistical a priori
information, Gwophysics, 77, H19–H31, https://doi.org/10.1190/geo2011-0170.1, 2012. a
Crow, F. C.: The aliasing porblem in computer-generated shaded images, Commun. ACM, 20, 799–805, 1977. a
de la Varga, M., Schaaf, A., and Wellmann, F.: GemPy 1.0: open-source stochastic geological modeling and inversion, Geosci. Model Dev., 12, 1–32, https://doi.org/10.5194/gmd-12-1-2019, 2019. a
de Pasquale, G., Linde, N., Doetsch, J., and Holbrook, W. S.: Probabilistic
inference of subsurface heterogeneity and interface geometry using geophysical data, Geophys. J. Int., 217, 816–831, https://doi.org/10.1093/gji/ggz055, 2019. a
Frodeman, R.: Geological reasoning: Geology as an interpretive and historical
science, Geol. Soc. Am. Bull., 107, 960–0968, https://doi.org/10.1130/0016-7606(1995)107<0960:GRGAAI>2.3.CO;2, 1995. a
Gallardo, L. A. and Meju, M. A.: Structure-coupled multiphysics imaging in
geophysical sciences, Rev.f Geophys., 49, RG1003, https://doi.org/10.1029/2010RG000330, 2011. a
Giraud, J., Pakyuz-Charrier, E., Jessell, M., Lindsay, M., Martin, R., and
Ogarko, V.: Uncertainty reduction through geologically conditioned
petrophysical constraints in joint inversion, Geophysics, 82, ID19–ID34,
https://doi.org/10.1190/geo2016-0615.1, 2017. a
Giraud, J., Pakyuz-Charrier, E., Ogarko, V., Jessell, M., Lindsay, M., and
Martin, R.: Impact of uncertain geology in constrained geophysical inversion,
ASEG Extend. Abstr., 2018, 1, https://doi.org/10.1071/ASEG2018abM1_2F, 2018. a
Giraud, J., Lindsay, M., Ogarko, V., Jessell, M., Martin, R., and
Pakyuz-Charrier, E.: Integration of geoscientific uncertainty into geophysical inversion by means of local gradient regularization, Solid Earth,
10, 193–210, https://doi.org/10.5194/se-10-193-2019, 2019a. a
Giraud, J., Ogarko, V., Lindsay, M., Pakyuz-Charrier, E., Jessell, M., and
Martin, R.: Sensitivity of constrained joint inversions to geological and
petrophysical input data uncertainties with posterior geological analysis, Geophys. J. Int., 218, 666–688, https://doi.org/10.1093/gji/ggz152, 2019b. a
Giraud, J., Lindsay, M., and Jessell, M.: Generalization of level-set inversion to an arbitrary number of geologic units in a regularized least-squares framework, Geophysics, 86, R623–R637, https://doi.org/10.1190/geo2020-0263.1, 2021a. a
Giraud, J., Ogarko, V., Martin, R., Jessell, M., and Lindsay, M.: Structural, petrophysical, and geological constraints in potential field inversion using the Tomofast-x v1.0 open-source code, Geosci. Model Dev., 14, 6681–6709, https://doi.org/10.5194/gmd-14-6681-2021, 2021b. a, b
Götze, H. and Lahmeyer, B.: Application of three‐dimensional interactive
modeling in gravity and magnetics, Geophysics, 53, 1096–1108, https://doi.org/10.1190/1.1442546, 1988. a
Grose, L., Ailleres, L., Laurent, G., and Jessell, M.: LoopStructural 1.0: time-aware geological modelling, Geosci. Model Dev., 14, 3915–3937, https://doi.org/10.5194/gmd-14-3915-2021, 2021. a
Haario, H., Saksman, E., and Tamminen, J.: An Adaptive Metropolis Algorithm, Bernoulli, 223, ISBN 1350-7265, https://doi.org/10.2307/3318737, 2001. a
Haber, E. and Heldmann, S.: An octree multigrid method for quasi-static
Maxwell's equations with highly discontinuous coefficients, J. Comput. Phys., 223, 783–796, https://doi.org/10.1016/j.jcp.2006.10.012, 2007. a
Hastings, W. K.: Monte Carlo sampling methods using Markov chains and their
applications, Biometrika, 57, 97–109, https://doi.org/10.1093/biomet/57.1.97, 1970. a
Heagy, L., Kang, S., Fournier, D., Rosenkjaer, G. K., Capriotti, J., Astic, T., Cowan, D. C., Marchant, D., Mitchell, M., Kuttai, J., Werthmüller, D., Caudillo Mata, L. A., Ye, Z.-K., Koch, F., Smithyman, B., Martens, K., Miller, C., Gohlke, C., … and Perez, F.: simpeg/simpeg: Simulation (v0.14.0), Zenodo [code], https://doi.org/10.5281/zenodo.3860973, 2020. a, b
Houlding, S. W.: 3D Geoscience modeling: computer techniques for geological
characterization, Springer Verlag, 85–90, ISBN 3-540-58015-8, 1994. a
Jessell, M., Pakyuz-Charrier, E., Lindsay, M., Giraud, J., and de Kemp, E.:
Assessing and Mitigating Uncertainty in Three-Dimensional Geologic Models in Contrasting Geologic Scenarios, in: Metals, Minerals, and Society, SEG – Society of Economic Geologists, https://doi.org/10.5382/SP.21.04, 2018. a
Jessell, M. W. and Valenta, R. K.: Structural geophysics: Integrated structural and geophysical modelling, in: Structural Geology and Personal Computers, edited by: De Paor, D. G., Elsevier, Oxford, UK, 303–324, https://doi.org/10.1016/S1874-561X(96)80027-7, 1993. a, b
Jessell, M. W., Ailleres, L., and de Kemp, E. A.: Towards an integrated
inversion of geoscientific data: What price of geology?, Tectonophysics, 490, 294–306, https://doi.org/10.1016/j.tecto.2010.05.020, 2010. a
Koene, E. F. M., Wittsten, J., and Robertsson, J. O. A.: Finite-difference
modeling of 2-D wave propagation in the vicinity of dipping interfaces: a
comparison of anti-aliasing and equivalent medium approaches, https://doi.org/10.1093/gji/ggab444, 2021. a
Lajaunie, C., Courrioux, G., and Manuel, L.: Foliation fields and 3D cartography in geology: Principles of a method based on potential interpolation, Math. Geol., 29, 571–584, https://doi.org/10.1007/BF02775087, 1997. a, b
Li, W., Lu, W., Qian, J., and Li, Y.: A multiple level-set method for 3D inversion of magnetic data, Geophysics, 82, J61–J81, https://doi.org/10.1190/GEO2016-0530.1, 2017. a
Li, Y. and Oldenburg, D. W.: 3-D inversion of gravity data, Geophysics, 63,
109–119, https://doi.org/10.1190/1.1444302, 1998. a
Linde, N., Ginsbourger, D., Irving, J., Nobile, F., and Doucet, A.: On
uncertainty quantification in hydrogeology and hydrogeophysics, Adv. Water Resour., 110, 166–181, https://doi.org/10.1016/j.advwatres.2017.10.014, 2017. a
Lindsay, M., Jessell, M., Ailleres, L., Perrouty, S., de Kemp, E., and Betts,
P.: Geodiversity: Exploration of 3D geological model space, Tectonophysics,
594, 27–37, https://doi.org/10.1016/j.tecto.2013.03.013, 2013. a
Lindsay, M. D., Aillères, L., Jessell, M. W., de Kemp, E. A., and Betts, P. G.: Locating and quantifying geological uncertainty in three-dimensional
models: Analysis of the Gippsland Basin, southeastern Australia, Tectonophysics, 546–547, 10–27, https://doi.org/10.1016/j.tecto.2012.04.007, 2012. a
McCalman, L., O'Callaghan, S. T., Reid, A., Shen, D., Carter, S., Krieger, L., Beardsmore, G. R., Bonilla, E. V., and Ramos, F. T.: Distributed Bayesian
geophysical inversions, in: Proceedings of the Thirty-Ninth Workshop on
Geothermal Reservoir Engineering, Stanford University, Stanford, California, USA, 1–11, 2014. a, b, c
Metropolis, N. and Ulam, S.: The Monte Carlo Method, J. Am. Stat. Assoc., 44, 335–341, 1949. a
Metropolis, N., Rosenbluth, A. W., Rosenbluth, M. N., Teller, A. H., and
Teller, E.: Equation of State Calculations by Fast Computing Machines, J. Chem. Phys., 21, 1087–1092, https://doi.org/10.1063/1.1699114, 1953. a
Moczo, P., Kristek, J., Vavrycuk, V., Archuleta, R. J., and Halada, L.: 3d heterogeneous staggered-grid finite-difference modeling of seismic motion
with volume harmonic and arithmetic averaging of elastic moduli and densities, Bull. Seismol. Soc. Am., 92, 3042–3066, 2002. a
Mosegaard, K. and Sambridge, M.: Monte Carlo analysis of inverse problems,
Inverse Problems, 18, R29–R54, https://doi.org/10.1088/0266-5611/18/3/201, 2002. a, b
Mosegaard, K. and Tarantola, A.: Monte Carlo sampling of solutions to inverse
problems, J. Geophys. Res.-Solid, 100, 12431–12447, https://doi.org/10.1029/94JB03097, 1995. a, b
Muir, F., Dellinger, J., Etgen, J., and Nichols, D.: Modeling elastic fields
across irregular boundaries, Geophysics, 57, 1189–1193, 1992. a
Nishimura, A., Dunson, D., and Lu, J.: Discontinuous Hamiltonian Monte Carlo for discrete parameters and discontinuous likelihoods, Biometrika, 107, 365–380, https://doi.org/10.1093/biomet/asz083, 2020. a
Ogarko, V., Giraud, J., Martin, R., and Jessell, M.: Disjoint interval bound
constraints using the alternating direction method of multipliers for
geologically constrained inversion: Application to gravity data, Geophysics,
86, G1–G11, https://doi.org/10.1190/geo2019-0633.1, 2021. a
Okabe, M.: Analytical expressions for gravity anomalies due to homogeneous
polyhedral bodies and translations into magnetic anomalies, Geophysics, 44,
730, https://doi.org/10.1190/1.1440973, 1979. a
Olierook, H. K., Scalzo, R., Kohn, D., Chandra, R., Farahbakhsh, E., Clark, C., Reddy, S. M., and Müller, R. D.: Bayesian geological and geophysical data
fusion for the construction and uncertainty quantification of 3D geological
models, Geosci. Front., 12, 479–493, https://doi.org/10.1016/j.gsf.2020.04.015, 2020. a
Osher, S. and Sethian, J. A.: Fronts propagating with curvature-dependent
speed: Algorithms based on Hamilton-Jacobi formulations, J. Comput. Phys., 79, 12–49, https://doi.org/10.1016/0021-9991(88)90002-2, 1988. a
Öztireli, A. C.: A Comprehensive Theory and Variational Framework for
Anti-aliasing Sampling Patterns, Comput. Graph. Forum, 39, 133–148, 2020. a
Pakyuz-Charrier, E., Giraud, J., Ogarko, V., Lindsay, M., and Jessell, M.:
Drillhole uncertainty propagation for three-dimensional geological modeling
using Monte Carlo, Tectonophysics, 747–748, 16–39, https://doi.org/10.1016/j.tecto.2018.09.005, 2018a. a
Pakyuz-Charrier, E., Lindsay, M., Ogarko, V., Giraud, J., and Jessell, M.:
Monte Carlo simulation for uncertainty estimation on structural data in implicit 3-D geological modeling, a guide for disturbance distribution selection and parameterization, Solid Earth, 9, 385–402,
https://doi.org/10.5194/se-9-385-2018, 2018b. a, b, c
Pakyuz-Charrier, E., Jessell, M., Giraud, J., Lindsay, M., and Ogarko, V.:
Topological analysis in Monte Carlo simulation for uncertainty propagation,
Solid Earth, 10, 1663–1684, https://doi.org/10.5194/se-10-1663-2019, 2019. a
Patil, A., Huard, D., and Fonnesbeck, C. J.: PyMC: Bayesian stochastic
modelling in Python, J. Stat. Softw., 35, 1–81, https://doi.org/10.18637/jss.v035.i04, 2010. a
Perrouty, S., Lindsay, M., Jessell, M., Aillères, L., Martin, R., and
Bourassa, Y.: 3D modeling of the Ashanti Belt, southwest Ghana: Evidence for
a litho-stratigraphic control on gold occurrences within the Birimian Sefwi
Group, Ore Geol. Rev., 63, 252–264, https://doi.org/10.1016/j.oregeorev.2014.05.011, 2014. a
Pirot, G., Renard, P., Huber, E., Straubhaar, J., and Huggenberger, P.:
Influence of conceptual model uncertainty on contaminant transport forecasting in braided river aquifers, J. Hydrol., 531, 124–141,
https://doi.org/10.1016/j.jhydrol.2015.07.036, 2015. a
Pirot, G., Linde, N., Mariethoz, G., and Bradford, J. H.: Probabilistic
inversion with graph cuts: Application to the Boise Hydrogeophysical Research
Site, Water Resour. Res., 53, 1231–1250, https://doi.org/10.1002/2016WR019347, 2017. a
Pirot, G., Huber, E., Irving, J., and Linde, N.: Reduction of conceptual model uncertainty using ground-penetrating radar profiles: Field-demonstration for a braided-river aquifer, J. Hydrol., 571, 254–264,
https://doi.org/10.1016/j.jhydrol.2019.01.047, 2019a. a
Pirot, G., Krityakierne, T., Ginsbourger, D., and Renard, P.: Contaminant
source localization via Bayesian global optimization, Hydrol. Earth Syst. Sci., 23, 351–369, https://doi.org/10.5194/hess-23-351-2019, 2019b. a
Quigley, M. C., Bennetts, L. G., Durance, P., Kuhnert, P. M., Lindsay, M. D.,
Pembleton, K. G., Roberts, M. E., and White, C. J.: The provision and utility of science and uncertainty to decision-makers: earth science case studies, Environ. Syst. Decis., 39, 307–348, https://doi.org/10.1007/s10669-019-09728-0, 2019. a
Rawlinson, N., Fichtner, A., Sambridge, M., and Young, M. K.: Seismic
Tomography and the Assessment of Uncertainty, in: Advances in Geophysics, vol. 55, Elsevier, 1–76, https://doi.org/10.1016/bs.agph.2014.08.001, 2014. a, b, c
Scalzo, R. A.: rscalzo/blockworlds: (v0.1.0-beta.3), Zenodo [code], https://doi.org/10.5281/zenodo.5759225, 2021. a
Sambridge, M., Bodin, T., Gallagher, K., and Tkalcic, H.: Transdimensional
inference in the geosciences, Philos. T. Roy. Soc. A, 371, 20110547, https://doi.org/10.1098/rsta.2011.0547, 2012.
a, b
Santosa, F.: A level-set approach for inverse problems involving obstacles,
ESAIM: Control, Optimisation and Calculus of Variations, 1, 17–33,
https://doi.org/10.1051/cocv:1996101, 1996. a
Scalzo, R., Kohn, D., Olierook, H., Houseman, G., Chandra, R., Girolami, M.,
and Cripps, S.: Efficiency and robustness in Monte Carlo sampling for 3-D geophysical inversions with Obsidian v0.1.2: setting up for success,
Geosci. Model Dev., 12, 2941–2960, https://doi.org/10.5194/gmd-12-2941-2019, 2019. a, b, c, d
Schmidt, S., Anikiev, D., Götze, H.-J., Gomez Garcia, A., Gomez Dacal, M. L., Meessen, C., Plonka, C., Rodriguez Piceda, C., Spooner, C., and
Scheck-Wenderoth, M.: IGMAS+ – a tool for interdisciplinary 3D potential
field modelling of complex geological structures, in: EGU General Assembly 2020, EGU2020-8383, https://doi.org/10.5194/egusphere-egu2020-8383, 2020. a
Tarantola, A. and Valette, B.: Generalized nonlinear inverse problems solved
using the least squares criterion, Rev. Geophys., 20, 219–232,
https://doi.org/10.1029/RG020i002p00219, 1982. a
Varouchakis, E. A., Yetilmezsoy, K., and Karatzas, G. P.: A decision-making
framework for sustainable management of groundwater resources under
uncertainty: combination of Bayesian risk approach and statistical tools,
Water Policy, 21, 602–622, https://doi.org/10.2166/wp.2019.128, 2019. a
Wang, Z., Yin, Z., Caers, J., and Zuo, R.: A Monte Carlo-based framework for
risk-return analysis in mineral prospectivity mapping, Geosci. Front., 11, 2297–2308, https://doi.org/10.1016/j.gsf.2020.02.010, 2020. a
Wellmann, F. and Caumon, G.: 3-D Structural geological models: Concepts,
methods, and uncertainties, in: Advances in Geophysics, vol. 59, Elsevier, 1–121, https://doi.org/10.1016/bs.agph.2018.09.001, 2018. a, b, c, d
Wellmann, J. F. and Regenauer-Lieb, K.: Uncertainties have a meaning: Information entropy as a quality measure for 3-D geological models,
Tectonophysics, 526–529, 207–216, https://doi.org/10.1016/j.tecto.2011.05.001, 2012. a
Wellmann, J. F., Thiele, S. T., Lindsay, M. D., and Jessell, M. W.: pynoddy 1.0: an experimental platform for automated 3-D kinematic and potential field modelling, Geosci. Model Dev., 9, 1019–1035,
https://doi.org/10.5194/gmd-9-1019-2016, 2016. a
Wellmann, J. F., de la Varga, M., Murdie, R. E., Gessner, K., and Jessell, M.: Uncertainty estimation for a geological model of the Sandstone greenstone
belt, Western Australia – insights from integrated geological and geophysical inversion in a Bayesian inference framework, Geol. Soc. Lond. Spec. Publ., 453, 41–56, https://doi.org/10.1144/SP453.12, 2017. a, b, c, d
Witter, J. B., Trainor-Guitton, W. J., and Siler, D. L.: Uncertainty and risk
evaluation during the exploration stage of geothermal development: A review,
Geothermics, 78, 233–242, https://doi.org/10.1016/j.geothermics.2018.12.011, 2019. a
Zhdanov, M. S. and Liu, X.: 3-D Cauchy-type integrals for terrain correction of gravity and gravity gradiometry data, Geophys. J. Int., 194, 249–268, https://doi.org/10.1093/gji/ggt120, 2013. a
Zheglova, P., Lelievre, P. G., and Farquharson, C. G.: Multiple level-set joint inversion of traveltime and gravity data with application to ore delineation: A synthetic study, Geophysics, 83, R13–R30, https://doi.org/10.1190/GEO2016-0675.1, 2018. a
Short summary
This paper addresses numerical challenges in reasoning about geological models constrained by sensor data, especially models that describe the history of an area in terms of a sequence of events. Our method ensures that small changes in simulated geological features, such as the position of a boundary between two rock layers, do not result in unrealistically large changes to resulting sensor measurements, as occur presently using several popular modeling packages.
This paper addresses numerical challenges in reasoning about geological models constrained by...