Articles | Volume 15, issue 9
https://doi.org/10.5194/gmd-15-3641-2022
https://doi.org/10.5194/gmd-15-3641-2022
Model description paper
 | 
09 May 2022
Model description paper |  | 09 May 2022

Blockworlds 0.1.0: a demonstration of anti-aliased geophysics for probabilistic inversions of implicit and kinematic geological models

Richard Scalzo, Mark Lindsay, Mark Jessell, Guillaume Pirot, Jeremie Giraud, Edward Cripps, and Sally Cripps

Related authors

Into the Noddyverse: a massive data store of 3D geological models for machine learning and inversion applications
Mark Jessell, Jiateng Guo, Yunqiang Li, Mark Lindsay, Richard Scalzo, Jérémie Giraud, Guillaume Pirot, Ed Cripps, and Vitaliy Ogarko
Earth Syst. Sci. Data, 14, 381–392, https://doi.org/10.5194/essd-14-381-2022,https://doi.org/10.5194/essd-14-381-2022, 2022
Short summary
Efficiency and robustness in Monte Carlo sampling for 3-D geophysical inversions with Obsidian v0.1.2: setting up for success
Richard Scalzo, David Kohn, Hugo Olierook, Gregory Houseman, Rohitash Chandra, Mark Girolami, and Sally Cripps
Geosci. Model Dev., 12, 2941–2960, https://doi.org/10.5194/gmd-12-2941-2019,https://doi.org/10.5194/gmd-12-2941-2019, 2019
Short summary
Bayesian geological and geophysical data fusion for the construction and uncertainty quantification of 3D geological models
Hugo K. H. Olierook, Richard Scalzo, David Kohn, Rohitash Chandra, Ehsan Farahbakhsh, Gregory Houseman, Chris Clark, Steven M. Reddy, and R. Dietmar Müller
Solid Earth Discuss., https://doi.org/10.5194/se-2019-4,https://doi.org/10.5194/se-2019-4, 2019
Revised manuscript not accepted

Related subject area

Numerical methods
Positive matrix factorization of large real-time atmospheric mass spectrometry datasets using error-weighted randomized hierarchical alternating least squares
Benjamin C. Sapper, Sean Youn, Daven K. Henze, Manjula Canagaratna, Harald Stark, and Jose L. Jimenez
Geosci. Model Dev., 18, 2891–2919, https://doi.org/10.5194/gmd-18-2891-2025,https://doi.org/10.5194/gmd-18-2891-2025, 2025
Short summary
CLAQC v1.0 – Country Level Air Quality Calculator: an empirical modeling approach
Stefania Renna, Francesco Granella, Lara Aleluia Reis, and Paulina Schulz-Antipa
Geosci. Model Dev., 18, 2373–2408, https://doi.org/10.5194/gmd-18-2373-2025,https://doi.org/10.5194/gmd-18-2373-2025, 2025
Short summary
Hydro-geomorphological modelling of leaky wooden dam efficacy from reach to catchment scale with CAESAR-Lisflood 1.9j
Joshua M. Wolstenholme, Christopher J. Skinner, David Milan, Robert E. Thomas, and Daniel R. Parsons
Geosci. Model Dev., 18, 1395–1411, https://doi.org/10.5194/gmd-18-1395-2025,https://doi.org/10.5194/gmd-18-1395-2025, 2025
Short summary
Stabilized two-phase material point method for hydromechanical coupling problems in solid-fluid porous media
Xiong Tang, Wei Liu, Siming He, Lei Zhu, Michel Jaboyedoff, Huanhuan Zhang, Yuqing Sun, and Zenan Huo
EGUsphere, https://doi.org/10.5194/egusphere-2025-707,https://doi.org/10.5194/egusphere-2025-707, 2025
Short summary
Enhancing single precision with quasi-double precision: achieving double-precision accuracy in the Model for Prediction Across Scales – Atmosphere (MPAS-A) version 8.2.1
Jiayi Lai, Lanning Wang, Qizhong Wu, Yizhou Yang, and Fang Wang
Geosci. Model Dev., 18, 1089–1102, https://doi.org/10.5194/gmd-18-1089-2025,https://doi.org/10.5194/gmd-18-1089-2025, 2025
Short summary

Cited articles

Backus, G. and Gilbert, F.: The Resolving Power of Gross Earth Data, Geophys. J. Royal Astron. Soc., 16, 169–205, https://doi.org/10.1111/j.1365-246X.1968.tb00216.x, 1968. a
Backus, G. and Gilbert, F.: Uniqueness in the inversion of inaccurate gross Earth data, Philos. T. Roy. Soc. Lond A, 266, 123–192, https://doi.org/10.1111/j.1365-246X.1968.tb00216.x, 1970. a
Backus, G. E.: Long-wave elastic anisotropy produced by horizontal layering, J. Geophys. Res., 67, 4427–4440, 1962. a
Backus, G. E. and Gilbert, J. F.: Numerical Applications of a Formalism for Geophysical Inverse Problems, Geophys. J. Roy. Astron. Soc., 13, 247–276, https://doi.org/10.1111/j.1365-246X.1967.tb02159.x, 1967. a
Beardsmore, G., Durrant-Whyte, H., and Callaghan, S. O.: A Bayesian inference tool for geophysical joint inversions, ASEG Extended Abstracts 2016.1 (2016), 1–10, https://doi.org/10.1071/ASEG2016ab131, 2016. a, b, c
Download
Short summary
This paper addresses numerical challenges in reasoning about geological models constrained by sensor data, especially models that describe the history of an area in terms of a sequence of events. Our method ensures that small changes in simulated geological features, such as the position of a boundary between two rock layers, do not result in unrealistically large changes to resulting sensor measurements, as occur presently using several popular modeling packages.
Share