Articles | Volume 15, issue 8
https://doi.org/10.5194/gmd-15-3405-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/gmd-15-3405-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Improved runoff simulations for a highly varying soil depth and complex terrain watershed in the Loess Plateau with the Community Land Model version 5
Jiming Jin
CORRESPONDING AUTHOR
Hubei Key Laboratory of Petroleum Geochemistry and Environment,
Yangtze University, Wuhan 430100, Hubei, China
College of Resources and Environment, Yangtze University, Wuhan
430100, Hubei, China
Lei Wang
College of Water Resources and Architectural Engineering, Northwest A & F University, Yangling 712100, Shaanxi, China
Key Laboratory of Agricultural Soil and Water Engineering in Arid and Semiarid Areas, Ministry of Education, Northwest A & F University,
Yangling 712100, Shaanxi, China
Jie Yang
College of Water Resources and Architectural Engineering, Northwest A & F University, Yangling 712100, Shaanxi, China
Key Laboratory of Agricultural Soil and Water Engineering in Arid and Semiarid Areas, Ministry of Education, Northwest A & F University,
Yangling 712100, Shaanxi, China
Bingcheng Si
Department of Soil Science, University of Saskatchewan, Saskatoon, SK S7N 5A8, Canada
Guo-Yue Niu
Biosphere 2, the University of Arizona, Tucson, AZ 85623, USA
Department of Hydrology and Water Resources, University of Arizona,
Tucson, AZ 85721, USA
Related authors
Qunhui Zhang, Jiming Jin, Xiaochun Wang, Phaedra Budy, Nick Barrett, and Sarah E. Null
Hydrol. Earth Syst. Sci., 23, 4969–4982, https://doi.org/10.5194/hess-23-4969-2019, https://doi.org/10.5194/hess-23-4969-2019, 2019
Short summary
Short summary
We improved lake mixing process simulations by applying a vertical mixing scheme, K profile parameterization (KPP), in the Community Land Model (CLM) version 4.5, developed by the National Center for Atmospheric Research. The current vertical mixing scheme in CLM requires an arbitrarily enlarged eddy diffusivity to enhance water mixing. The coupled CLM-KPP considers a boundary layer for eddy development. The improved lake model provides an important tool for lake hydrology and ecosystem studies.
Zhi Li and Jiming Jin
Hydrol. Earth Syst. Sci., 21, 5531–5546, https://doi.org/10.5194/hess-21-5531-2017, https://doi.org/10.5194/hess-21-5531-2017, 2017
Short summary
Short summary
We developed an efficient multisite and multivariate GCM downscaling method and generated climate change scenarios for SWAT to evaluate the streamflow variability within a watershed in China. The application of the ensemble techniques enables us to better quantify the model uncertainties. The peak values of precipitation and streamflow have a tendency to shift from the summer to spring season over the next 30 years. The number of extreme flooding and drought events will increase.
Cenlin He, Prasanth Valayamkunnath, Michael Barlage, Fei Chen, David Gochis, Ryan Cabell, Tim Schneider, Roy Rasmussen, Guo-Yue Niu, Zong-Liang Yang, Dev Niyogi, and Michael Ek
Geosci. Model Dev., 16, 5131–5151, https://doi.org/10.5194/gmd-16-5131-2023, https://doi.org/10.5194/gmd-16-5131-2023, 2023
Short summary
Short summary
Noah-MP is one of the most widely used open-source community land surface models in the world, designed for applications ranging from uncoupled land surface and ecohydrological process studies to coupled numerical weather prediction and decadal climate simulations. To facilitate model developments and applications, we modernize Noah-MP by adopting modern Fortran code and data structures and standards, which substantially enhance model modularity, interoperability, and applicability.
Han Fu, Eric J. Neil, Huijie Li, and Bingcheng Si
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2022-422, https://doi.org/10.5194/hess-2022-422, 2023
Manuscript not accepted for further review
Short summary
Short summary
Current hydrological models segregate water and isotope transport within soil. Thus, MOIST, a MATLAB-based one-dimensional isotope and soil water transport model, was developed. Results indicated that MOIST had good performances on simulating transport of isotope and water within soil under theoretical and realistic conditions, even outperformed than HYDRUS-1D. Suggesting a great potential of MOIST in promoting understandings of ecohydrological processes in terrestrial ecosystems.
Hongxiu Wang, Jingjing Jin, Buli Cui, Bingcheng Si, Xiaojun Ma, and Mingyi Wen
Hydrol. Earth Syst. Sci., 25, 5399–5413, https://doi.org/10.5194/hess-25-5399-2021, https://doi.org/10.5194/hess-25-5399-2021, 2021
Short summary
Short summary
Evaporation led to progressively more heavy-isotope-enriched bulk soil water (BW) following the precipitation/irrigation of heavy-isotope-depleted new water but causes progressively more heavy-isotope-depleted BW following irrigation of heavy-isotope-enriched new water. The results indicated that δ2H and δ18O in evaporating water (EW) were similar to new water and differed from BW. However, the evaporative water loss calculated from BW did not differ significantly from that of EW.
Wei Hu and Bing Si
Hydrol. Earth Syst. Sci., 25, 321–331, https://doi.org/10.5194/hess-25-321-2021, https://doi.org/10.5194/hess-25-321-2021, 2021
Short summary
Short summary
Partial wavelet coherency method is improved to explore the bivariate relationships at different scales and locations after excluding the effects of other variables. The method was tested with artificial datasets and applied to a measured dataset. Compared with others, this method has the advantages of capturing phase information, dealing with multiple excluding variables, and producing more accurate results. This method can be used in different areas with spatial or temporal datasets.
Nicholas J. Kinar, John W. Pomeroy, and Bing Si
Geosci. Instrum. Method. Data Syst., 9, 293–315, https://doi.org/10.5194/gi-9-293-2020, https://doi.org/10.5194/gi-9-293-2020, 2020
Short summary
Short summary
Heat pulse probes are widely used to monitor soil thermal and physical properties for agricultural and hydrological monitoring related to crop productivity, drought, snowmelt, and evapotranspiration. Changes in the effective probe spacing distance can cause measurement inaccuracy. This paper uses a novel heat pulse probe and theory to compensate for changes in effective distance, thereby enabling more accurate sensor outputs useful for forecasts and predictions of drought and flooding.
Wei Xiang, Bingcheng Si, Min Li, and Han Li
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2019-679, https://doi.org/10.5194/hess-2019-679, 2020
Revised manuscript not accepted
Short summary
Short summary
Soil evaporation is an essential component of the terrestrial water cycle, but it is often difficult to assess over a long period. We, for the first time, combined deep soil water isotopes and line-conditioned excess to estimate evaporation to precipitation ratio. Our work underlines that deep soil water stable isotopes have the potential to estimate long-term average evaporation rates against the back of the increasing interest of evaporation estimation in eco-hydrological studies.
Qunhui Zhang, Jiming Jin, Xiaochun Wang, Phaedra Budy, Nick Barrett, and Sarah E. Null
Hydrol. Earth Syst. Sci., 23, 4969–4982, https://doi.org/10.5194/hess-23-4969-2019, https://doi.org/10.5194/hess-23-4969-2019, 2019
Short summary
Short summary
We improved lake mixing process simulations by applying a vertical mixing scheme, K profile parameterization (KPP), in the Community Land Model (CLM) version 4.5, developed by the National Center for Atmospheric Research. The current vertical mixing scheme in CLM requires an arbitrarily enlarged eddy diffusivity to enhance water mixing. The coupled CLM-KPP considers a boundary layer for eddy development. The improved lake model provides an important tool for lake hydrology and ecosystem studies.
Zhi Li and Jiming Jin
Hydrol. Earth Syst. Sci., 21, 5531–5546, https://doi.org/10.5194/hess-21-5531-2017, https://doi.org/10.5194/hess-21-5531-2017, 2017
Short summary
Short summary
We developed an efficient multisite and multivariate GCM downscaling method and generated climate change scenarios for SWAT to evaluate the streamflow variability within a watershed in China. The application of the ensemble techniques enables us to better quantify the model uncertainties. The peak values of precipitation and streamflow have a tendency to shift from the summer to spring season over the next 30 years. The number of extreme flooding and drought events will increase.
Wei Hu and Bing Cheng Si
Hydrol. Earth Syst. Sci., 20, 3183–3191, https://doi.org/10.5194/hess-20-3183-2016, https://doi.org/10.5194/hess-20-3183-2016, 2016
Short summary
Short summary
Bivariate wavelet coherence has been used to explore scale- and location-specific relationships between two variables. In reality, a process occurring on land surface is usually affected by more than two factors. Therefore, this manuscript is to develop a multiple wavelet coherence method. Results showed that new method outperforms other multivariate methods. Matlab codes for a new method are provided. This method can be widely applied in geosciences where a variable is controlled by many factors.
Mark J. P. Sigouin and Bing C. Si
The Cryosphere, 10, 1181–1190, https://doi.org/10.5194/tc-10-1181-2016, https://doi.org/10.5194/tc-10-1181-2016, 2016
Short summary
Short summary
The cosmic-ray soil moisture probe (CRP) uses the natural above ground neutron intensity to measure soil water content at a landscape scale. The goal of our research was to use the CRP to monitor how much water is in snowpacks, since snow and soil water affect neutron intensity similarly. We developed a relationship between neutron intensity and snow water. We used the relationship to estimate snow water non-invasively in an area of ~ 300 m radius using neutron intensity readings from the CRP.
Related subject area
Hydrology
NEOPRENE v1.0.1: a Python library for generating spatial rainfall based on the Neyman–Scott process
Uncertainty estimation for a new exponential-filter-based long-term root-zone soil moisture dataset from Copernicus Climate Change Service (C3S) surface observations
Validating the Nernst–Planck transport model under reaction-driven flow conditions using RetroPy v1.0
DynQual v1.0: a high-resolution global surface water quality model
Data space inversion for efficient uncertainty quantification using an integrated surface and sub-surface hydrologic model
Simulation of crop yield using the global hydrological model H08 (crp.v1)
How is a global sensitivity analysis of a catchment-scale, distributed pesticide transfer model performed? Application to the PESHMELBA model
iHydroSlide3D v1.0: an advanced hydrological–geotechnical model for hydrological simulation and three-dimensional landslide prediction
GEB v0.1: a large-scale agent-based socio-hydrological model – simulating 10 million individual farming households in a fully distributed hydrological model
Tracing and visualisation of contributing water sources in the LISFLOOD-FP model of flood inundation (within CAESAR-Lisflood version 1.9j-WS)
Continental-scale evaluation of a fully distributed coupled land surface and groundwater model, ParFlow-CLM (v3.6.0), over Europe
Evaluating a global soil moisture dataset from a multitask model (GSM3 v1.0) with potential applications for crop threats
SERGHEI (SERGHEI-SWE) v1.0: a performance-portable high-performance parallel-computing shallow-water solver for hydrology and environmental hydraulics
Enhancing the representation of water management in global hydrological models
A simple, efficient, mass-conservative approach to solving Richards' equation (openRE, v1.0)
Customized deep learning for precipitation bias correction and downscaling
Implementation and sensitivity analysis of the Dam-Reservoir OPeration model (DROP v1.0) over Spain
Regional coupled surface–subsurface hydrological model fitting based on a spatially distributed minimalist reduction of frequency domain discharge data
Operational water forecast ability of the HRRR-iSnobal combination: an evaluation to adapt into production environments
Dynamic weighted ensemble of geoscientific models via automated machine learning-based classification
Prediction of algal blooms via data-driven machine learning models: an evaluation using data from a well-monitored mesotrophic lake
UniFHy v0.1.1: a community modelling framework for the terrestrial water cycle in Python
mesas.py v1.0: A flexible Python package for modeling solute transport and transit times using StorAge Selection functions
Basin-scale gyres and mesoscale eddies in large lakes: a novel procedure for their detection and characterization, assessed in Lake Geneva
SIMO v1.0: simplified model of the vertical temperature profile in a small, warm, monomictic lake
Thermal modeling of three lakes within the continuous permafrost zone in Alaska using the LAKE 2.0 model
Water balance model (WBM) v.1.0.0: a scalable gridded global hydrologic model with water-tracking functionality
Coupling a large-scale hydrological model (CWatM v1.1) with a high-resolution groundwater flow model (MODFLOW 6) to assess the impact of irrigation at regional scale
RavenR v2.1.4: an open-source R package to support flexible hydrologic modelling
Developing a parsimonious canopy model (PCM v1.0) to predict forest gross primary productivity and leaf area index of deciduous broad-leaved forest
Synergy between satellite observations of soil moisture and water storage anomalies for runoff estimation
A physically based distributed karst hydrological model (QMG model-V1.0) for flood simulations
Modular Assessment of Rainfall–Runoff Models Toolbox (MARRMoT) v2.1: an object-oriented implementation of 47 established hydrological models for improved speed and readability
CREST-VEC: a framework towards more accurate and realistic flood simulation across scales
Rad-cGAN v1.0: Radar-based precipitation nowcasting model with conditional generative adversarial networks for multiple dam domains
The eWaterCycle platform for open and FAIR hydrological collaboration
Evaluating the Atibaia River hydrology using JULES6.1
A framework for ensemble modelling of climate change impacts on lakes worldwide: the ISIMIP Lake Sector
CLIMFILL v0.9: a framework for intelligently gap filling Earth observations
Modeling subgrid lake energy balance in ORCHIDEE terrestrial scheme using the FLake lake model
Evaluating a reservoir parametrization in the vector-based global routing model mizuRoute (v2.0.1) for Earth system model coupling
GSTools v1.3: a toolbox for geostatistical modelling in Python
AI4Water v1.0: an open-source python package for modeling hydrological time series using data-driven methods
Modeling of streamflow in a 30 km long reach spanning 5 years using OpenFOAM 5.x
Tree hydrodynamic modelling of the soil–plant–atmosphere continuum using FETCH3
Effects of dimensionality on the performance of hydrodynamic models for stratified lakes and reservoirs
Computation of backwater effects in surface waters of lowland catchments including control structures – an efficient and re-usable method implemented in the hydrological open-source model Kalypso-NA (4.0)
Inishell 2.0: semantically driven automatic GUI generation for scientific models
Irrigation quality and management determine salinization in Israeli olive orchards
Implementing the Water, HEat and Transport model in GEOframe (WHETGEO-1D v.1.0): algorithms, informatics, design patterns, open science features, and 1D deployment
Javier Diez-Sierra, Salvador Navas, and Manuel del Jesus
Geosci. Model Dev., 16, 5035–5048, https://doi.org/10.5194/gmd-16-5035-2023, https://doi.org/10.5194/gmd-16-5035-2023, 2023
Short summary
Short summary
NEOPRENE is an open-source, freely available library allowing scientists and practitioners to generate synthetic time series and maps of rainfall. These outputs will help to explore plausible events that were never observed in the past but may occur in the near future and to generate possible future events under climate change conditions. The paper shows how to use the library to downscale daily precipitation and how to use synthetic generation to improve our characterization of extreme events.
Adam Pasik, Alexander Gruber, Wolfgang Preimesberger, Domenico De Santis, and Wouter Dorigo
Geosci. Model Dev., 16, 4957–4976, https://doi.org/10.5194/gmd-16-4957-2023, https://doi.org/10.5194/gmd-16-4957-2023, 2023
Short summary
Short summary
We apply the exponential filter (EF) method to satellite soil moisture retrievals to estimate the water content in the unobserved root zone globally from 2002–2020. Quality assessment against an independent dataset shows satisfactory results. Error characterization is carried out using the standard uncertainty propagation law and empirically estimated values of EF model structural uncertainty and parameter uncertainty. This is followed by analysis of temporal uncertainty variations.
Po-Wei Huang, Bernd Flemisch, Chao-Zhong Qin, Martin O. Saar, and Anozie Ebigbo
Geosci. Model Dev., 16, 4767–4791, https://doi.org/10.5194/gmd-16-4767-2023, https://doi.org/10.5194/gmd-16-4767-2023, 2023
Short summary
Short summary
Water in natural environments consists of many ions. Ions are electrically charged and exert electric forces on each other. We discuss whether the electric forces are relevant in describing mixing and reaction processes in natural environments. By comparing our computer simulations to lab experiments in literature, we show that the electric interactions between ions can play an essential role in mixing and reaction processes, in which case they should not be neglected in numerical modeling.
Edward R. Jones, Marc F. P. Bierkens, Niko Wanders, Edwin H. Sutanudjaja, Ludovicus P. H. van Beek, and Michelle T. H. van Vliet
Geosci. Model Dev., 16, 4481–4500, https://doi.org/10.5194/gmd-16-4481-2023, https://doi.org/10.5194/gmd-16-4481-2023, 2023
Short summary
Short summary
DynQual is a new high-resolution global water quality model for simulating total dissolved solids, biological oxygen demand and fecal coliform as indicators of salinity, organic pollution and pathogen pollution, respectively. Output data from DynQual can supplement the observational record of water quality data, which is highly fragmented across space and time, and has the potential to inform assessments in a broad range of fields including ecological, human health and water scarcity studies.
Hugo Delottier, John Doherty, and Philip Brunner
Geosci. Model Dev., 16, 4213–4231, https://doi.org/10.5194/gmd-16-4213-2023, https://doi.org/10.5194/gmd-16-4213-2023, 2023
Short summary
Short summary
Long run times are usually a barrier to the quantification and reduction of predictive uncertainty with complex hydrological models. Data space inversion (DSI) provides an alternative and highly model-run-efficient method for uncertainty quantification. This paper demonstrates DSI's ability to robustly quantify predictive uncertainty and extend the methodology to provide practical metrics that can guide data acquisition and analysis to achieve goals of decision-support modelling.
Zhipin Ai and Naota Hanasaki
Geosci. Model Dev., 16, 3275–3290, https://doi.org/10.5194/gmd-16-3275-2023, https://doi.org/10.5194/gmd-16-3275-2023, 2023
Short summary
Short summary
Simultaneously simulating food production and the requirements and availability of water resources in a spatially explicit manner within a single framework remains challenging on a global scale. Here, we successfully enhanced the global hydrological model H08 that considers human water use and management to simulate the yields of four major staple crops: maize, wheat, rice, and soybean. Our improved model will be beneficial for advancing global food–water nexus studies in the future.
Emilie Rouzies, Claire Lauvernet, Bruno Sudret, and Arthur Vidard
Geosci. Model Dev., 16, 3137–3163, https://doi.org/10.5194/gmd-16-3137-2023, https://doi.org/10.5194/gmd-16-3137-2023, 2023
Short summary
Short summary
Water and pesticide transfer models are complex and should be simplified to be used in decision support. Indeed, these models simulate many spatial processes in interaction, involving a large number of parameters. Sensitivity analysis allows us to select the most influential input parameters, but it has to be adapted to spatial modelling. This study will identify relevant methods that can be transposed to any hydrological and water quality model and improve the fate of pesticide knowledge.
Guoding Chen, Ke Zhang, Sheng Wang, Yi Xia, and Lijun Chao
Geosci. Model Dev., 16, 2915–2937, https://doi.org/10.5194/gmd-16-2915-2023, https://doi.org/10.5194/gmd-16-2915-2023, 2023
Short summary
Short summary
In this study, we developed a novel modeling system called iHydroSlide3D v1.0 by coupling a modified a 3D landslide model with a distributed hydrology model. The model is able to apply flexibly different simulating resolutions for hydrological and slope stability submodules and gain a high computational efficiency through parallel computation. The test results in the Yuehe River basin, China, show a good predicative capability for cascading flood–landslide events.
Jens A. de Bruijn, Mikhail Smilovic, Peter Burek, Luca Guillaumot, Yoshihide Wada, and Jeroen C. J. H. Aerts
Geosci. Model Dev., 16, 2437–2454, https://doi.org/10.5194/gmd-16-2437-2023, https://doi.org/10.5194/gmd-16-2437-2023, 2023
Short summary
Short summary
We present a computer simulation model of the hydrological system and human system, which can simulate the behaviour of individual farmers and their interactions with the water system at basin scale to assess how the systems have evolved and are projected to evolve in the future. For example, we can simulate the effect of subsidies provided on investment in adaptation measures and subsequent effects in the hydrological system, such as a lowering of the groundwater table or reservoir level.
Matthew D. Wilson and Thomas J. Coulthard
Geosci. Model Dev., 16, 2415–2436, https://doi.org/10.5194/gmd-16-2415-2023, https://doi.org/10.5194/gmd-16-2415-2023, 2023
Short summary
Short summary
During flooding, the sources of water that inundate a location can influence impacts such as pollution. However, methods to trace water sources in flood events are currently only available in complex, computationally expensive hydraulic models. We propose a simplified method which can be added to efficient, reduced-complexity model codes, enabling an improved understanding of flood dynamics and its impacts. We demonstrate its application for three sites at a range of spatial and temporal scales.
Bibi S. Naz, Wendy Sharples, Yueling Ma, Klaus Goergen, and Stefan Kollet
Geosci. Model Dev., 16, 1617–1639, https://doi.org/10.5194/gmd-16-1617-2023, https://doi.org/10.5194/gmd-16-1617-2023, 2023
Short summary
Short summary
It is challenging to apply a high-resolution integrated land surface and groundwater model over large spatial scales. In this paper, we demonstrate the application of such a model over a pan-European domain at 3 km resolution and perform an extensive evaluation of simulated water states and fluxes by comparing with in situ and satellite data. This study can serve as a benchmark and baseline for future studies of climate change impact projections and for hydrological forecasting.
Jiangtao Liu, David Hughes, Farshid Rahmani, Kathryn Lawson, and Chaopeng Shen
Geosci. Model Dev., 16, 1553–1567, https://doi.org/10.5194/gmd-16-1553-2023, https://doi.org/10.5194/gmd-16-1553-2023, 2023
Short summary
Short summary
Under-monitored regions like Africa need high-quality soil moisture predictions to help with food production, but it is not clear if soil moisture processes are similar enough around the world for data-driven models to maintain accuracy. We present a deep-learning-based soil moisture model that learns from both in situ data and satellite data and performs better than satellite products at the global scale. These results help us apply our model globally while better understanding its limitations.
Daniel Caviedes-Voullième, Mario Morales-Hernández, Matthew R. Norman, and Ilhan Özgen-Xian
Geosci. Model Dev., 16, 977–1008, https://doi.org/10.5194/gmd-16-977-2023, https://doi.org/10.5194/gmd-16-977-2023, 2023
Short summary
Short summary
This paper introduces the SERGHEI framework and a solver for shallow-water problems. Such models, often used for surface flow and flood modelling, are computationally intense. In recent years the trends to increase computational power have changed, requiring models to adapt to new hardware and new software paradigms. SERGHEI addresses these challenges, allowing surface flow simulation to be enabled on the newest and upcoming consumer hardware and supercomputers very efficiently.
Guta Wakbulcho Abeshu, Fuqiang Tian, Thomas Wild, Mengqi Zhao, Sean Turner, A F M Kamal Chowdhury, Chris R. Vernon, Hongchang Hu, Yuan Zhuang, Mohamad Hejazi, and Hong-Yi Li
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2023-12, https://doi.org/10.5194/gmd-2023-12, 2023
Revised manuscript accepted for GMD
Short summary
Short summary
Most existing global hydrologic models do not explicitly represent hydropower reservoirs. We are introducing a new water management module to Xanthos that distinguishes between the operational characteristics of irrigation, hydropower, and flood control reservoirs. We show that this explicit representation of hydropower reservoirs can lead to a significantly more realistic simulation of reservoir storage and releases in over 44 % of the hydropower reservoirs included in this study.
Andrew M. Ireson, Raymond J. Spiteri, Martyn P. Clark, and Simon A. Mathias
Geosci. Model Dev., 16, 659–677, https://doi.org/10.5194/gmd-16-659-2023, https://doi.org/10.5194/gmd-16-659-2023, 2023
Short summary
Short summary
Richards' equation (RE) is used to describe the movement and storage of water in a soil profile and is a component of many hydrological and earth-system models. Solving RE numerically is challenging due to the non-linearities in the properties. Here, we present a simple but effective and mass-conservative solution to solving RE, which is ideal for teaching/learning purposes but also useful in prototype models that are used to explore alternative process representations.
Fang Wang, Di Tian, and Mark Carroll
Geosci. Model Dev., 16, 535–556, https://doi.org/10.5194/gmd-16-535-2023, https://doi.org/10.5194/gmd-16-535-2023, 2023
Short summary
Short summary
Gridded precipitation datasets suffer from biases and coarse resolutions. We developed a customized deep learning (DL) model to bias-correct and downscale gridded precipitation data using radar observations. The results showed that the customized DL model can generate improved precipitation at fine resolutions where regular DL and statistical methods experience challenges. The new model can be used to improve precipitation estimates, especially for capturing extremes at smaller scales.
Malak Sadki, Simon Munier, Aaron Boone, and Sophie Ricci
Geosci. Model Dev., 16, 427–448, https://doi.org/10.5194/gmd-16-427-2023, https://doi.org/10.5194/gmd-16-427-2023, 2023
Short summary
Short summary
Predicting water resource evolution is a key challenge for the coming century.
Anthropogenic impacts on water resources, and particularly the effects of dams and reservoirs on river flows, are still poorly known and generally neglected in global hydrological studies. A parameterized reservoir model is reproduced to compute monthly releases in Spanish anthropized river basins. For global application, an exhaustive sensitivity analysis of the model parameters is performed on flows and volumes.
Nicolas Flipo, Nicolas Gallois, and Jonathan Schuite
Geosci. Model Dev., 16, 353–381, https://doi.org/10.5194/gmd-16-353-2023, https://doi.org/10.5194/gmd-16-353-2023, 2023
Short summary
Short summary
A new approach is proposed to fit hydrological or land surface models, which suffer from large uncertainties in terms of water partitioning between fast runoff and slow infiltration from small watersheds to regional or continental river basins. It is based on the analysis of hydrosystem behavior in the frequency domain, which serves as a basis for estimating water flows in the time domain with a physically based model. It opens the way to significant breakthroughs in hydrological modeling.
Joachim Meyer, John Horel, Patrick Kormos, Andrew Hedrick, Ernesto Trujillo, and S. McKenzie Skiles
Geosci. Model Dev., 16, 233–250, https://doi.org/10.5194/gmd-16-233-2023, https://doi.org/10.5194/gmd-16-233-2023, 2023
Short summary
Short summary
Freshwater resupply from seasonal snow in the mountains is changing. Current water prediction methods from snow rely on historical data excluding the change and can lead to errors. This work presented and evaluated an alternative snow-physics-based approach. The results in a test watershed were promising, and future improvements were identified. Adaptation to current forecast environments would improve resilience to the seasonal snow changes and helps ensure the accuracy of resupply forecasts.
Hao Chen, Tiejun Wang, Yonggen Zhang, Yun Bai, and Xi Chen
EGUsphere, https://doi.org/10.5194/egusphere-2022-1326, https://doi.org/10.5194/egusphere-2022-1326, 2023
Short summary
Short summary
Effectively assembling multiple models for approaching a benchmark solution remains a long-standing issue for various geoscience domains. We here proposed an automated machine learning-assisted ensemble framework (AutoML-Ens) that attempts to resolve this challenge. Results demonstrated the great potential of AutoML-Ens for improving estimations due to its two unique features, i.e., assigning dynamic weights for candidate models and taking full advantage of AutoML-assisted workflow.
Shuqi Lin, Donald C. Pierson, and Jorrit P. Mesman
Geosci. Model Dev., 16, 35–46, https://doi.org/10.5194/gmd-16-35-2023, https://doi.org/10.5194/gmd-16-35-2023, 2023
Short summary
Short summary
The risks brought by the proliferation of algal blooms motivate the improvement of bloom forecasting tools, but algal blooms are complexly controlled and difficult to predict. Given rapid growth of monitoring data and advances in computation, machine learning offers an alternative prediction methodology. This study tested various machine learning workflows in a dimictic mesotrophic lake and gave promising predictions of the seasonal variations and the timing of algal blooms.
Thibault Hallouin, Richard J. Ellis, Douglas B. Clark, Simon J. Dadson, Andrew G. Hughes, Bryan N. Lawrence, Grenville M. S. Lister, and Jan Polcher
Geosci. Model Dev., 15, 9177–9196, https://doi.org/10.5194/gmd-15-9177-2022, https://doi.org/10.5194/gmd-15-9177-2022, 2022
Short summary
Short summary
A new framework for modelling the water cycle in the land system has been implemented. It considers the hydrological cycle as three interconnected components, bringing flexibility in the choice of the physical processes and their spatio-temporal resolutions. It is designed to foster collaborations between land surface, hydrological, and groundwater modelling communities to develop the next-generation of land system models for integration in Earth system models.
Ciaran Harman and Esther Xu Fei
EGUsphere, https://doi.org/10.5194/egusphere-2022-1262, https://doi.org/10.5194/egusphere-2022-1262, 2022
Short summary
Short summary
Over the last 10 years scientists have developed a new way of modeling how material is transported through complex systems, called StorAge Selection. Here we present some new code implementing this method that is easy to use, but also flexible and very accurate. We show that for cases where we know exactly what the answer should be, our code gets the right answer. We also show that our code is closer than some other people's code to the right answer in an important way: it conserves mass.
Seyed Mahmood Hamze-Ziabari, Ulrich Lemmin, Frédéric Soulignac, Mehrshad Foroughan, and David Andrew Barry
Geosci. Model Dev., 15, 8785–8807, https://doi.org/10.5194/gmd-15-8785-2022, https://doi.org/10.5194/gmd-15-8785-2022, 2022
Short summary
Short summary
A procedure combining numerical simulations, remote sensing, and statistical analyses is developed to detect large-scale current systems in large lakes. By applying this novel procedure in Lake Geneva, strategies for detailed transect field studies of the gyres and eddies were developed. Unambiguous field evidence of 3D gyre/eddy structures in full agreement with predictions confirmed the robustness of the proposed procedure.
Kristina Šarović, Melita Burić, and Zvjezdana B. Klaić
Geosci. Model Dev., 15, 8349–8375, https://doi.org/10.5194/gmd-15-8349-2022, https://doi.org/10.5194/gmd-15-8349-2022, 2022
Short summary
Short summary
We develop a simple 1-D model for the prediction of the vertical temperature profiles in small, warm lakes. The model uses routinely measured meteorological variables as well as UVB radiation and yearly mean temperature data. It can be used for the assessment of the onset and duration of lake stratification periods when water temperature data are unavailable, which can be useful for various lake studies performed in other scientific fields, such as biology, geochemistry, and sedimentology.
Jason A. Clark, Elchin E. Jafarov, Ken D. Tape, Benjamin M. Jones, and Victor Stepanenko
Geosci. Model Dev., 15, 7421–7448, https://doi.org/10.5194/gmd-15-7421-2022, https://doi.org/10.5194/gmd-15-7421-2022, 2022
Short summary
Short summary
Lakes in the Arctic are important reservoirs of heat. Under climate warming scenarios, we expect Arctic lakes to warm the surrounding frozen ground. We simulate water temperatures in three Arctic lakes in northern Alaska over several years. Our results show that snow depth and lake ice strongly affect water temperatures during the frozen season and that more heat storage by lakes would enhance thawing of frozen ground.
Danielle S. Grogan, Shan Zuidema, Alex Prusevich, Wilfred M. Wollheim, Stanley Glidden, and Richard B. Lammers
Geosci. Model Dev., 15, 7287–7323, https://doi.org/10.5194/gmd-15-7287-2022, https://doi.org/10.5194/gmd-15-7287-2022, 2022
Short summary
Short summary
This paper describes the University of New Hampshire's water balance model (WBM). This model simulates the land surface components of the global water cycle and includes water extractions for use by humans for agricultural, domestic, and industrial purposes. A new feature is described that permits water source tracking through the water cycle, which has implications for water resource management. This paper was written to describe a long-used model and presents its first open-source version.
Luca Guillaumot, Mikhail Smilovic, Peter Burek, Jens de Bruijn, Peter Greve, Taher Kahil, and Yoshihide Wada
Geosci. Model Dev., 15, 7099–7120, https://doi.org/10.5194/gmd-15-7099-2022, https://doi.org/10.5194/gmd-15-7099-2022, 2022
Short summary
Short summary
We develop and test the first large-scale hydrological model at regional scale with a very high spatial resolution that includes a water management and groundwater flow model. This study infers the impact of surface and groundwater-based irrigation on groundwater recharge and on evapotranspiration in both irrigated and non-irrigated areas. We argue that water table recorded in boreholes can be used as validation data if water management is well implemented and spatial resolution is ≤ 100 m.
Robert Chlumsky, James R. Craig, Simon G. M. Lin, Sarah Grass, Leland Scantlebury, Genevieve Brown, and Rezgar Arabzadeh
Geosci. Model Dev., 15, 7017–7030, https://doi.org/10.5194/gmd-15-7017-2022, https://doi.org/10.5194/gmd-15-7017-2022, 2022
Short summary
Short summary
We introduce the open-source RavenR package, which has been built to support the use of the hydrologic modelling framework Raven. The R package contains many functions that may be useful in each step of the model-building process, including preparing model input files, running the model, and analyzing the outputs. We present six reproducible use cases of the RavenR package for the Liard River basin in Canada to demonstrate how it may be deployed.
Bahar Bahrami, Anke Hildebrandt, Stephan Thober, Corinna Rebmann, Rico Fischer, Luis Samaniego, Oldrich Rakovec, and Rohini Kumar
Geosci. Model Dev., 15, 6957–6984, https://doi.org/10.5194/gmd-15-6957-2022, https://doi.org/10.5194/gmd-15-6957-2022, 2022
Short summary
Short summary
Leaf area index (LAI) and gross primary productivity (GPP) are crucial components to carbon cycle, and are closely linked to water cycle in many ways. We develop a Parsimonious Canopy Model (PCM) to simulate GPP and LAI at stand scale, and show its applicability over a diverse range of deciduous broad-leaved forest biomes. With its modular structure, the PCM is able to adapt with existing data requirements, and run in either a stand-alone mode or as an interface linked to hydrologic models.
Stefania Camici, Gabriele Giuliani, Luca Brocca, Christian Massari, Angelica Tarpanelli, Hassan Hashemi Farahani, Nico Sneeuw, Marco Restano, and Jérôme Benveniste
Geosci. Model Dev., 15, 6935–6956, https://doi.org/10.5194/gmd-15-6935-2022, https://doi.org/10.5194/gmd-15-6935-2022, 2022
Short summary
Short summary
This paper presents an innovative approach, STREAM (SaTellite-based Runoff Evaluation And Mapping), to derive daily river discharge and runoff estimates from satellite observations of soil moisture, precipitation, and terrestrial total water storage anomalies. Potentially useful for multiple operational and scientific applications, the added value of the STREAM approach is the ability to increase knowledge on the natural processes, human activities, and their interactions on the land.
Ji Li, Daoxian Yuan, Fuxi Zhang, Jiao Liu, and Mingguo Ma
Geosci. Model Dev., 15, 6581–6600, https://doi.org/10.5194/gmd-15-6581-2022, https://doi.org/10.5194/gmd-15-6581-2022, 2022
Short summary
Short summary
A new karst hydrological model (the QMG model) is developed to simulate and predict the floods in karst trough valley basins. Unlike the complex structure and parameters of current karst groundwater models, this model has a simple double-layered structure with few parameters and decreases the demand for modeling data in karst areas. The flood simulation results based on the QMG model of the Qingmuguan karst trough valley basin are satisfactory, indicating the suitability of the model simulation.
Luca Trotter, Wouter J. M. Knoben, Keirnan J. A. Fowler, Margarita Saft, and Murray C. Peel
Geosci. Model Dev., 15, 6359–6369, https://doi.org/10.5194/gmd-15-6359-2022, https://doi.org/10.5194/gmd-15-6359-2022, 2022
Short summary
Short summary
MARRMoT is a piece of software that emulates 47 common models for hydrological simulations. It can be used to run and calibrate these models within a common environment as well as to easily modify them. We restructured and recoded MARRMoT in order to make the models run faster and to simplify their use, while also providing some new features. This new MARRMoT version runs models on average 3.6 times faster while maintaining very strong consistency in their outputs to the previous version.
Zhi Li, Shang Gao, Mengye Chen, Jonathan Gourley, Naoki Mizukami, and Yang Hong
Geosci. Model Dev., 15, 6181–6196, https://doi.org/10.5194/gmd-15-6181-2022, https://doi.org/10.5194/gmd-15-6181-2022, 2022
Short summary
Short summary
Operational streamflow prediction at a continental scale is critical for national water resources management. However, limited computational resources often impede such processes, with streamflow routing being one of the most time-consuming parts. This study presents a recent development of a hydrologic system that incorporates a vector-based routing scheme with a lake module that markedly speeds up streamflow prediction. Moreover, accuracy is improved and flood false alarms are mitigated.
Suyeon Choi and Yeonjoo Kim
Geosci. Model Dev., 15, 5967–5985, https://doi.org/10.5194/gmd-15-5967-2022, https://doi.org/10.5194/gmd-15-5967-2022, 2022
Short summary
Short summary
Here we present the cGAN-based precipitation nowcasting model, named Rad-cGAN, trained to predict a radar reflectivity map with a lead time of 10 min. Rad-cGAN showed superior performance at a lead time of up to 90 min compared with the reference models. Furthermore, we demonstrate the successful implementation of the transfer learning strategies using pre-trained Rad-cGAN to develop the models for different dam domains.
Rolf Hut, Niels Drost, Nick van de Giesen, Ben van Werkhoven, Banafsheh Abdollahi, Jerom Aerts, Thomas Albers, Fakhereh Alidoost, Bouwe Andela, Jaro Camphuijsen, Yifat Dzigan, Ronald van Haren, Eric Hutton, Peter Kalverla, Maarten van Meersbergen, Gijs van den Oord, Inti Pelupessy, Stef Smeets, Stefan Verhoeven, Martine de Vos, and Berend Weel
Geosci. Model Dev., 15, 5371–5390, https://doi.org/10.5194/gmd-15-5371-2022, https://doi.org/10.5194/gmd-15-5371-2022, 2022
Short summary
Short summary
With the eWaterCycle platform, we are providing the hydrological community with a platform to conduct their research that is fully compatible with the principles of both open science and FAIR science. The eWatercyle platform gives easy access to well-known hydrological models, big datasets and example experiments. Using eWaterCycle hydrologists can easily compare the results from different models, couple models and do more complex hydrological computational research.
Hsi-Kai Chou, Ana Maria Heuminski de Avila, and Michaela Bray
Geosci. Model Dev., 15, 5233–5240, https://doi.org/10.5194/gmd-15-5233-2022, https://doi.org/10.5194/gmd-15-5233-2022, 2022
Short summary
Short summary
Land surface models allow us to understand and investigate the cause and effect of environmental process changes. Therefore, this type of model is increasingly used for hydrological assessments. Here we explore the possibility of this approach using a case study in the Atibaia River basin, which serves as a major water supply for the metropolitan regions of Campinas and São Paulo, Brazil. We evaluated the model performance and use the model to simulate the basin hydrology.
Malgorzata Golub, Wim Thiery, Rafael Marcé, Don Pierson, Inne Vanderkelen, Daniel Mercado-Bettin, R. Iestyn Woolway, Luke Grant, Eleanor Jennings, Benjamin M. Kraemer, Jacob Schewe, Fang Zhao, Katja Frieler, Matthias Mengel, Vasiliy Y. Bogomolov, Damien Bouffard, Marianne Côté, Raoul-Marie Couture, Andrey V. Debolskiy, Bram Droppers, Gideon Gal, Mingyang Guo, Annette B. G. Janssen, Georgiy Kirillin, Robert Ladwig, Madeline Magee, Tadhg Moore, Marjorie Perroud, Sebastiano Piccolroaz, Love Raaman Vinnaa, Martin Schmid, Tom Shatwell, Victor M. Stepanenko, Zeli Tan, Bronwyn Woodward, Huaxia Yao, Rita Adrian, Mathew Allan, Orlane Anneville, Lauri Arvola, Karen Atkins, Leon Boegman, Cayelan Carey, Kyle Christianson, Elvira de Eyto, Curtis DeGasperi, Maria Grechushnikova, Josef Hejzlar, Klaus Joehnk, Ian D. Jones, Alo Laas, Eleanor B. Mackay, Ivan Mammarella, Hampus Markensten, Chris McBride, Deniz Özkundakci, Miguel Potes, Karsten Rinke, Dale Robertson, James A. Rusak, Rui Salgado, Leon van der Linden, Piet Verburg, Danielle Wain, Nicole K. Ward, Sabine Wollrab, and Galina Zdorovennova
Geosci. Model Dev., 15, 4597–4623, https://doi.org/10.5194/gmd-15-4597-2022, https://doi.org/10.5194/gmd-15-4597-2022, 2022
Short summary
Short summary
Lakes and reservoirs are warming across the globe. To better understand how lakes are changing and to project their future behavior amidst various sources of uncertainty, simulations with a range of lake models are required. This in turn requires international coordination across different lake modelling teams worldwide. Here we present a protocol for and results from coordinated simulations of climate change impacts on lakes worldwide.
Verena Bessenbacher, Sonia Isabelle Seneviratne, and Lukas Gudmundsson
Geosci. Model Dev., 15, 4569–4596, https://doi.org/10.5194/gmd-15-4569-2022, https://doi.org/10.5194/gmd-15-4569-2022, 2022
Short summary
Short summary
Earth observations have many missing values. They are often filled using information from spatial and temporal contexts that mostly ignore information from related observed variables. We propose the gap-filling method CLIMFILL that additionally uses information from related variables. We test CLIMFILL using gap-free reanalysis data of variables related to soil–moisture climate interactions. CLIMFILL creates estimates for the missing values that recover the original dependence structure.
Anthony Bernus and Catherine Ottlé
Geosci. Model Dev., 15, 4275–4295, https://doi.org/10.5194/gmd-15-4275-2022, https://doi.org/10.5194/gmd-15-4275-2022, 2022
Short summary
Short summary
The lake model FLake was coupled to the ORCHIDEE land surface model to simulate lake energy balance at global scale with a multi-tile approach. Several simulations were performed with various atmospheric reanalyses and different lake depth parameterizations. The simulated lake surface temperature showed good agreement with observations (RMSEs of the order of 3 °C). We showed the large impact of the atmospheric forcing on lake temperature. We highlighted systematic errors on ice cover phenology.
Inne Vanderkelen, Shervan Gharari, Naoki Mizukami, Martyn P. Clark, David M. Lawrence, Sean Swenson, Yadu Pokhrel, Naota Hanasaki, Ann van Griensven, and Wim Thiery
Geosci. Model Dev., 15, 4163–4192, https://doi.org/10.5194/gmd-15-4163-2022, https://doi.org/10.5194/gmd-15-4163-2022, 2022
Short summary
Short summary
Human-controlled reservoirs have a large influence on the global water cycle. However, dam operations are rarely represented in Earth system models. We implement and evaluate a widely used reservoir parametrization in a global river-routing model. Using observations of individual reservoirs, the reservoir scheme outperforms the natural lake scheme. However, both schemes show a similar performance due to biases in runoff timing and magnitude when using simulated runoff.
Sebastian Müller, Lennart Schüler, Alraune Zech, and Falk Heße
Geosci. Model Dev., 15, 3161–3182, https://doi.org/10.5194/gmd-15-3161-2022, https://doi.org/10.5194/gmd-15-3161-2022, 2022
Short summary
Short summary
The GSTools package provides a Python-based platform for geoostatistical applications. Salient features of GSTools are its random field generation, its kriging capabilities and its versatile covariance model. It is furthermore integrated with other Python packages, like PyKrige, ogs5py or scikit-gstat, and provides interfaces to meshio and PyVista. Four presented workflows showcase the abilities of GSTools.
Ather Abbas, Laurie Boithias, Yakov Pachepsky, Kyunghyun Kim, Jong Ahn Chun, and Kyung Hwa Cho
Geosci. Model Dev., 15, 3021–3039, https://doi.org/10.5194/gmd-15-3021-2022, https://doi.org/10.5194/gmd-15-3021-2022, 2022
Short summary
Short summary
The field of artificial intelligence has shown promising results in a wide variety of fields including hydrological modeling. However, developing and testing hydrological models with artificial intelligence techniques require expertise from diverse fields. In this study, we developed an open-source framework based upon the python programming language to simplify the process of the development of hydrological models of time series data using machine learning.
Yunxiang Chen, Jie Bao, Yilin Fang, William A. Perkins, Huiying Ren, Xuehang Song, Zhuoran Duan, Zhangshuan Hou, Xiaoliang He, and Timothy D. Scheibe
Geosci. Model Dev., 15, 2917–2947, https://doi.org/10.5194/gmd-15-2917-2022, https://doi.org/10.5194/gmd-15-2917-2022, 2022
Short summary
Short summary
Climate change affects river discharge variations that alter streamflow. By integrating multi-type survey data with a computational fluid dynamics tool, OpenFOAM, we show a workflow that enables accurate and efficient streamflow modeling at 30 km and 5-year scales. The model accuracy for water stage and depth average velocity is −16–9 cm and 0.71–0.83 in terms of mean error and correlation coefficients. This accuracy indicates the model's reliability for evaluating climate impact on rivers.
Marcela Silva, Ashley M. Matheny, Valentijn R. N. Pauwels, Dimetre Triadis, Justine E. Missik, Gil Bohrer, and Edoardo Daly
Geosci. Model Dev., 15, 2619–2634, https://doi.org/10.5194/gmd-15-2619-2022, https://doi.org/10.5194/gmd-15-2619-2022, 2022
Short summary
Short summary
Our study introduces FETCH3, a ready-to-use, open-access model that simulates the water fluxes across the soil, roots, and stem. To test the model capabilities, we tested it against exact solutions and a case study. The model presented considerably small errors when compared to the exact solutions and was able to correctly represent transpiration patterns when compared to experimental data. The results show that FETCH3 can correctly simulate above- and below-ground water transport.
Mayra Ishikawa, Wendy Gonzalez, Orides Golyjeswski, Gabriela Sales, J. Andreza Rigotti, Tobias Bleninger, Michael Mannich, and Andreas Lorke
Geosci. Model Dev., 15, 2197–2220, https://doi.org/10.5194/gmd-15-2197-2022, https://doi.org/10.5194/gmd-15-2197-2022, 2022
Short summary
Short summary
Reservoir hydrodynamics is often described in numerical models differing in dimensionality. 1D and 2D models assume homogeneity along the unresolved dimension. We compare the performance of models with 1 to 3 dimensions. All models presented reasonable results for seasonal temperature dynamics. Neglecting longitudinal transport resulted in the largest deviations in temperature. Flow velocity could only be reproduced by the 3D model. Results support the selection of models and their assessment.
Sandra Hellmers and Peter Fröhle
Geosci. Model Dev., 15, 1061–1077, https://doi.org/10.5194/gmd-15-1061-2022, https://doi.org/10.5194/gmd-15-1061-2022, 2022
Short summary
Short summary
A hydrological method to compute backwater effects in surface water streams and on adjacent lowlands caused by mostly complex flow control systems is presented. It enables transfer of discharges to water levels and calculation of backwater volume routing along streams and lowland areas by balancing water level slopes. The developed, implemented and evaluated method extends the application range of hydrological models significantly for flood-routing simulation in backwater-affected catchments.
Mathias Bavay, Michael Reisecker, Thomas Egger, and Daniela Korhammer
Geosci. Model Dev., 15, 365–378, https://doi.org/10.5194/gmd-15-365-2022, https://doi.org/10.5194/gmd-15-365-2022, 2022
Short summary
Short summary
Most users struggle with the configuration of numerical models. This can be improved by relying on a GUI, but this requires a significant investment and a specific skill set and does not fit with the daily duties of model developers, leading to major maintenance burdens. Inishell generates a GUI on the fly based on an XML description of the required configuration elements, making maintenance very simple. This concept has been shown to work very well in our context.
Vladimir Mirlas, Yaakov Anker, Asher Aizenkod, and Naftali Goldshleger
Geosci. Model Dev., 15, 129–143, https://doi.org/10.5194/gmd-15-129-2022, https://doi.org/10.5194/gmd-15-129-2022, 2022
Short summary
Short summary
Salinization owing to irrigation water quality causes soil degradation and soil fertility reduction that with poor drainage conditions impede plant development and manifest in economic damage. This study provided a soil salting process evaluation procedure through a combination of soil salinity monitoring, field experiments, remote sensing, and unsaturated soil profile saline water movement modeling. The modeling results validated the soil salinization danger from using brackish irrigation.
Niccolò Tubini and Riccardo Rigon
Geosci. Model Dev., 15, 75–104, https://doi.org/10.5194/gmd-15-75-2022, https://doi.org/10.5194/gmd-15-75-2022, 2022
Short summary
Short summary
This paper presents WHETGEO and its 1D deployment: a new physically based model simulating the water and energy budgets in a soil column. WHETGEO-1D is intended to be the first building block of a new customisable land-surface model that is integrated with process-based hydrology. WHETGEO is developed as an open-source code and is fully integrated into the GEOframe/OMS3 system, allowing the use of the many ancillary tools it provides.
Cited articles
Brunke, M. A., Broxton, P., Pelletier, J., Gochis, D., Hazenberg, P., Lawrence, D. M., Leung, L. R., Niu, G., Troch, P. A., and Zeng, X.: Implementing and Evaluating variable soil thickness in the Community Land Model Version 4.5 (CLM4.5), J. Climate, 29, 3441–3461, https://doi.org/10.1175/JCLI-D-15-0307.1, 2016.
Camacho Suarez, V. V., Saraiva Okello, A. M. L., Wenninger, J. W., and Uhlenbrook, S.: Understanding runoff processes in a semi-arid environment through isotope and hydrochemical hydrograph separations, Hydrol. Earth Syst. Sci., 19, 4183–4199, https://doi.org/10.5194/hess-19-4183-2015, 2015.
Chen, L., Sela, S., Svoray, T., and Assouline, S.: The role of soil-surface
sealing, microtopography, and vegetation patches in rainfall-runoff
processes in semiarid areas, Water Resour. Res., 49, 5585–5599, 2013.
Clapp, R. B. and Hornberger, G. M.: Empirical equations for some soil
hydraulic properties, Water Resour. Res., 14, 601–604, 1978.
Cosby, B. J., Hornberger, G. M., Clapp, R. B., and Ginn, T. R.: A
statistical exploration of the relationships of soil moisture
characteristics to the physical properties of soils, Water Resour. Res., 20,
682–690, 1984.
Cressman, G. P.: An operational objective analysis system, Mon. Weather
Rev., 87, 367–374, 1959.
Döll, P. and Fiedler, K.: Global-scale modeling of groundwater recharge, Hydrol. Earth Syst. Sci., 12, 863–885, https://doi.org/10.5194/hess-12-863-2008, 2008.
Ek, M. B., Mitchell, K. E., Lin, Y., Rogers, E., Grunmann, P., Koren, V.,
Gayno, G., and Tarpley, J. D.: Implementation of Noah land surface model
advances in the National Centers for Environmental Prediction operational
mesoscale Eta model, J. Geophys. Res., 108, 8851,
https://doi.org/10.1029/2002JD003296, 2003.
Flammini, A., Corradini, C., Morbidelli, R., Saltalippi, C., Picciafuoco,
T., and Giráldez, J. V.: Experimental analyses of the evaporation
dynamics in bare soils under natural conditions, Water Resour. Manag., 32,
1153–1166, https://doi.org/10.1007/s11269-017-1860-x, 2018.
Fu, B.: Soil erosion and its control in the Loess Plateau of China, Soil Use
Manage., 5, 76–82, 1989.
Fu, B., Wang, S., Liu, Y., Liu, J., Liang, W., and Miao, C.: Hydrogeomorphic
Ecosystem Responses to Natural and Anthropogenic Changes in the Loess
Plateau of China, Annu. Rev. Earth Planet. Sci., 45, 223–243,
https://doi.org/10.1146/annurev-earth-063016-020552, 2017.
Fu, Z., Li, Z., Cai, C., Shi, Z., Xu, Q., and Wang, X.: Soil thickness
effect on hydrological and erosion characteristics under sloping lands: A
hydropedological perspective, Geoderma, 167–168, 41–53,
https://doi.org/10.1016/j.geoderma.2011.08.013, 2011.
Han, S., Li, Y., Shi, Y., Yang, X., Zhang, X., and Shi, Z.: The
characteristic of soil moisture resources on the Loess Plateau, Bulletin of
Soil and Water Conservation, 10, 36–43, 1990.
Huang, T. and Pang, Z.: Estimating groundwater recharge following land-use
change using chloride mass balance of soil profiles: A case study at Guyuan
and Xifeng in the Loess Plateau of China, Hydrogeology J., 19, 177–186,
https://doi.org/10.1007/s10040-010-0643-8, 2011.
Huang, T., Pang, Z., and Edmunds, W. M.: Soil profile evolution following
land-use change: Implications for groundwater quantity and quality, Hydrol.
Process., 27, 1238–1252, https://doi.org/10.1002/hyp.9302, 2013.
Huang, T., Pang, Z., Liu, J., Yin, L., and Edmunds, W. M.: Groundwater
recharge in an arid grassland as indicated by soil chloride profile and
multiple tracers, Hydrol. Process., 31, 1047–1057,
https://doi.org/10.1002/hyp.11089, 2017.
Huang, Y., Evaristo, J., and Li, Z.: Multiple tracers reveal different
groundwater recharge mechanisms in deep loess deposits, Geoderma, 353,
204–212, https://doi.org/10.1016/j.geoderma.2019.06.041, 2019.
Jencso, K. G. and Mcglynn, B. L.: Hierarchical controls on runoff
generation: Topographically driven hydrologic connectivity, geology, and
vegetation, Water Resour. Res., 47, W11527, https://doi.org/10.1029/2011WR010666, 2011.
Jiao, Y., Lei, H., Yang, D., Huang, M., Liu, D., and Yuan, X.: Impact of
vegetation dynamics on hydrological processes in a semi-arid basin by using
a land surface-hydrology coupled model, J. Hydrol., 551, 116–131,
https://doi.org/10.1016/j.jhydrol.2017.05.060, 2017.
Jin, J., Wang, L., Yang, J., Si, B., and Niu, G.-Y.: Improved Runoff Simulations for a Highly Varying Soil Depth and Complex Terrain Watershed in the Loess Plateau with the Community Land Model Version 5, Zenodo [code and data set], https://doi.org/10.5281/zenodo.5044541, 2021.
Jing, K. and Cheng, Y.: Preliminary study of the erosion environment and
rates on the Loess Plateau, Geogr. Res., 2, 1–11, 1983.
Lawrence, D., Fisher, R., Koven, C., Oleson, K., Swenson, S., Vertenstein, M., Andre, B., Bonan, G., Ghimire, B., Kampenhout, L. V., Kennedy, D., Kluzek, E., Knox, R., Lawrence, P., Li, F., Li, H., Lombardozzi, D., Lu, Y., Perket, J., Riley, W., Sacks, W., Shi, M., Wieder, W., Xu, C., Ali, A., Badger, A., Bisht, G., Broxton, P., Brunke, M., Buzan, J., Clark, M., Craig, T., Dahlin, K., Drewniak, B., Emmons, L., Fisher, J., Flanner, M., Gentine, P., Lenaerts, J., Levis, S., Leung, L. R., Lipscomb, W., Pelletier, J., Ricciuto, D. M., Sanderson, B., Shuman, J., Slater, A., Subin, Z., Tang, J., Tawfik, A., Thomas, Q., Tilmes, S., Vitt, F., and Zeng, X.: The Community Land Model Version 5: Description of New Features, Benchmarking, and Impact of Forcing Uncertainty, J. Adv. Model. Earth Sy., 11, 4245–4287, https://doi.org/10.1029/2018MS001583, 2019.
Lawrence, D. M. and Slater, A. G.: Incorporating organic soil into a global
climate model, Clim. Dynam., 30, 145–160,
https://doi.org/10.1007/s00382-007-0278-1, 2008.
Lawrence, P. J. and Chase, T. N.: Representing a new MODIS consistent land
surface in the Community Land Model (CLM5 3.0), J. Geophys. Res., 112,
G01023, https://doi.org/10.1029/2006JG000168, 2007.
Lee, T. J. and Pielke, R. A.: Estimating the soil surface specific humidity,
J. Appl. Meteorol., 31, 480–484, 1992.
Lei, X.: Pore types and collapsibility of the loess in China, Science China
Press, 17, 1203–1208, https://doi.org/10.1360/zb1987-17-12-1309, 1987.
Li, Y., Han, S., and Wang, Z.: Soil water properties and its zonation in the
Loess Plateau. Res. Soil Water Conserv., 2, 1–17, 1985.
Li, Z., Chen, X., Liu, W., and Si, B.: Determination of groundwater recharge
mechanism in the deep loessial unsaturated zone by environmental tracers,
Sci. Total Environ., 586, 827–835,
https://doi.org/10.1016/j.scitotenv.2017.02.061, 2017.
Li, Z., Jasechko, S., and Si, B.: Uncertainties in tritium mass balance
models for groundwater recharge estimation, J. Hydrol., 571, 150–158,
https://doi.org/10.1016/j.jhydrol.2019.01.030, 2019.
Liu, D., Tian, F., Hu, H., and Hu, H.: The role of run-on for overland flow
and the characteristics of runoff generation in the Loess Plateau, China,
Hydrol. Sci. J., 57, 1107–1117, 2012.
Liu, Z.: The Study on the Classification of Loess Landscape and the
Characteristics of Loess Stratum, MS thesis, College of Geological
Engineering and Geomatics, Chang'an University, China, 97 pp., 2016 (in Chinese with English abstract).
Neitsch, S. L., Arnold, J. G., Kiniry, J. R., and Williams, J. R.: Soil and
Water Assessment Tool Theoretical Documentation Version 2009, Texas Water
Resources Institute Technicial Report No. 406, Texas, https://hdl.handle.net/1969.1/128050 (last access: 20 November 2021), 2011.
Niu, G., Yang, Z., Mitchell, K. E., Chen, F., Ek, M. B., Barlage, M., Kumar,
A., Manning, K., Niyogi, D., Rosero, E., Tewari, M., and Xia, Y.: The
community Noah land surface model with multiparameterization options
(Noah-MP): 1. Model description and evaluation with local-scale
measurements, J. Geophys. Res., 116, D12109,
https://doi.org/10.1029/2010JD015139, 2011.
Niu, G. Y., Yang, Z. L., Dickinson, R. E., and Gulden, L. E.: A simple
TOPMODEL-based runoff parameterization (SIMTOP) for use in global climate
models, J. Geophys. Res., 110, D21106, https://doi.org/10.1029/2005JD006111, 2005.
Qi, C., Gan, Z., Xi, Z., Wu, C., Sun, H., Chen, W., Liu, T., and Zhao, G.:
The research of the relations between erosion landforms and soil erosion of
the Loess Plateau, Shaanxi People's Education Publishing House, Shaanxi, China, 164–168, 1991 (in Chinese with English abstract).
Sakaguchi, K. and Zeng, X.: Effects of soil wetness, plant litter, and
under-canopy atmospheric stability on ground evaporation in the Community
Land Model (CLM53. 5), J. Geophys. Res., 114, D001107, https://doi.org/10.1029/2008JD010834, 2009.
Saraiva Okello, A. M. L., Uhlenbrook, S., Jewitt, G. P. W., Masih, I.,
Riddell, E. S., and Van der Zaag, P.: Hydrograph separation using tracers
and digital filters to quantify runoff components in a semi-arid mesoscale
catchment, Hydrol. Process., 32, 1334–1350,
https://doi.org/10.1002/hyp.11491, 2018.
Shangguan, W., Hengl, T., Mendes de Jesus, J., Yuan, H., and Dai, Y.:
Mapping the global depth to bedrock for land surface modeling, J. Adv.
Model. Earth Syst., 9, 65–88, https://doi.org/10.1002/2016MS000686, 2017.
Shao, J., Si, B., and Jin, J.: Extreme precipitation years and their
occurrence frequency regulate long-term groundwater recharge and transit
time, Vadose Zone J., 17, 1–9, https://doi.org/10.2136/vzj2018.04.0093,
2018.
Swenson, S. C. and Lawrence, D. M.: Assessing a dry surface layer-based soil
resistance parameterization for the Community Land Model using GRACE and
FLUXNET-MTE data, J. Geophys. Res.-Atmos., 119, 10299–10312, 2014.
Tesfa, T. K., Tarboton, D. G., Chandler, D. G., and McNamara, J. P.:
Modeling soil depth from topographic and land cover attributes, Water
Resour. Res., 45, W10438, https://doi.org/10.1029/2008WR007474, 2009.
Tian, L., Jin, J., Wu, P., and Niu, G.: Assessment of the effects of climate
change on evapotranspiration with an improved elasticity method in a
nonhumid area, Sustainability, 10, 4589, https://doi.org/10.3390/su10124589,
2018.
Tian, L., Jin, J., Wu, P., Niu, G.-Y., and Zhao, C.: High-resolution
simulations of mean and extreme precipitation with WRF for the soil-erosive
Loess Plateau, Clim. Dynam., 54, 3489–3506, https://doi.org/10.1007/s00382-020-05178-6, 2020.
Turkeltaub, T., Kurtzman, D., Bel, G., and Dahan, O.: Examination of
groundwater recharge with a calibrated/validated flow model of the deep
vadose zone, J. Hydrol., 522, 618–627,
https://doi.org/10.1016/j.jhydrol.2015.01.026, 2015.
Uhlenbrook, S., Frey, M., Leibundgut, C., and Maloszewski, P.: Hydrograph
separations in a mesoscale mountainous basin at event and seasonal
timescales, Water Resour. Res., 38, 1096, https://doi.org/10.1029/2001WR000938, 2002.
Wang, S.: Study on geological engineering of loess in North Shaanxi, MS
thesis, College of Geological Engineering and Geomatics, Chang'an
University, China, 57 pp., 2016 (in Chinese with English abstract).
Wang, Y. and Shao, M.: Spatial variability of soil physical properties in a
region of the Loess Plateau of pr China subject to wind and water erosion,
Land Degrad. Dev., 24, 296–304, https://doi.org/10.1002/ldr.1128, 2013.
Xiang, W., Si, B., Biswas, A., and Li, Z.: Quantifying dual recharge mechanisms in deep unsaturated zone of Chinese Loess Plateau using stable isotopes, Geoderma, 337, 773–781, https://doi.org/10.1016/j.geoderma.2018.10.006, 2019.
Xiao, J., Wang, L., Deng, L., and Jin, Z.: Characteristics, sources, water quality and health risk assessment of trace elements in river water and well water in the Chinese Loess Plateau, Sci. Total Environ., 650, 2004–2012, https://doi.org/10.1016/j.scitotenv.2018.09.322, 2019.
Yang, W., Shi, Y., and Fei, W.: Water evaporation from soils under unsaturated condition and evaluation for drought resistance of soils on Loessal Plateau, Acta Pedologica Sinica, 22, 13–23, 1985 (in Chinese with English abstract).
Zhang, F., Zhang, W., Qi, J., and Li, F.: A regional evaluation of plastic film mulching for improving crop yields on the Loess Plateau of China, Agr. Forest Meteorol., 248, 458–468, https://doi.org/10.1016/j.agrformet.2017.10.030, 2018.
Zhu, Y., Jia, X., and Shao, M.: Loess thickness variations across the Loess Plateau of China, Surv. Geophys., 39, 715–727, https://doi.org/10.1007/s10712-018-9462-6, 2018.
Short summary
This study aimed to improve runoff simulations and explore deep soil hydrological processes for a highly varying soil depth and complex terrain watershed in the Loess Plateau, China. The actual soil depths and river channels were incorporated into the model to better simulate the runoff in this watershed. The soil evaporation scheme was modified to better describe the evaporation processes. Our results showed that the model significantly improved the runoff simulations.
This study aimed to improve runoff simulations and explore deep soil hydrological processes for...