Articles | Volume 15, issue 8
https://doi.org/10.5194/gmd-15-3405-2022
https://doi.org/10.5194/gmd-15-3405-2022
Model evaluation paper
 | 
28 Apr 2022
Model evaluation paper |  | 28 Apr 2022

Improved runoff simulations for a highly varying soil depth and complex terrain watershed in the Loess Plateau with the Community Land Model version 5

Jiming Jin, Lei Wang, Jie Yang, Bingcheng Si, and Guo-Yue Niu

Related authors

Improving lake mixing process simulations in the Community Land Model by using K profile parameterization
Qunhui Zhang, Jiming Jin, Xiaochun Wang, Phaedra Budy, Nick Barrett, and Sarah E. Null
Hydrol. Earth Syst. Sci., 23, 4969–4982, https://doi.org/10.5194/hess-23-4969-2019,https://doi.org/10.5194/hess-23-4969-2019, 2019
Short summary
Evaluating climate change impacts on streamflow variability based on a multisite multivariate GCM downscaling method in the Jing River of China
Zhi Li and Jiming Jin
Hydrol. Earth Syst. Sci., 21, 5531–5546, https://doi.org/10.5194/hess-21-5531-2017,https://doi.org/10.5194/hess-21-5531-2017, 2017
Short summary

Related subject area

Hydrology
NEOPRENE v1.0.1: a Python library for generating spatial rainfall based on the Neyman–Scott process
Javier Diez-Sierra, Salvador Navas, and Manuel del Jesus
Geosci. Model Dev., 16, 5035–5048, https://doi.org/10.5194/gmd-16-5035-2023,https://doi.org/10.5194/gmd-16-5035-2023, 2023
Short summary
Uncertainty estimation for a new exponential-filter-based long-term root-zone soil moisture dataset from Copernicus Climate Change Service (C3S) surface observations
Adam Pasik, Alexander Gruber, Wolfgang Preimesberger, Domenico De Santis, and Wouter Dorigo
Geosci. Model Dev., 16, 4957–4976, https://doi.org/10.5194/gmd-16-4957-2023,https://doi.org/10.5194/gmd-16-4957-2023, 2023
Short summary
Validating the Nernst–Planck transport model under reaction-driven flow conditions using RetroPy v1.0
Po-Wei Huang, Bernd Flemisch, Chao-Zhong Qin, Martin O. Saar, and Anozie Ebigbo
Geosci. Model Dev., 16, 4767–4791, https://doi.org/10.5194/gmd-16-4767-2023,https://doi.org/10.5194/gmd-16-4767-2023, 2023
Short summary
DynQual v1.0: a high-resolution global surface water quality model
Edward R. Jones, Marc F. P. Bierkens, Niko Wanders, Edwin H. Sutanudjaja, Ludovicus P. H. van Beek, and Michelle T. H. van Vliet
Geosci. Model Dev., 16, 4481–4500, https://doi.org/10.5194/gmd-16-4481-2023,https://doi.org/10.5194/gmd-16-4481-2023, 2023
Short summary
Data space inversion for efficient uncertainty quantification using an integrated surface and sub-surface hydrologic model
Hugo Delottier, John Doherty, and Philip Brunner
Geosci. Model Dev., 16, 4213–4231, https://doi.org/10.5194/gmd-16-4213-2023,https://doi.org/10.5194/gmd-16-4213-2023, 2023
Short summary

Cited articles

Brunke, M. A., Broxton, P., Pelletier, J., Gochis, D., Hazenberg, P., Lawrence, D. M., Leung, L. R., Niu, G., Troch, P. A., and Zeng, X.: Implementing and Evaluating variable soil thickness in the Community Land Model Version 4.5 (CLM4.5), J. Climate, 29, 3441–3461, https://doi.org/10.1175/JCLI-D-15-0307.1, 2016. 
Camacho Suarez, V. V., Saraiva Okello, A. M. L., Wenninger, J. W., and Uhlenbrook, S.: Understanding runoff processes in a semi-arid environment through isotope and hydrochemical hydrograph separations, Hydrol. Earth Syst. Sci., 19, 4183–4199, https://doi.org/10.5194/hess-19-4183-2015, 2015. 
Chen, L., Sela, S., Svoray, T., and Assouline, S.: The role of soil-surface sealing, microtopography, and vegetation patches in rainfall-runoff processes in semiarid areas, Water Resour. Res., 49, 5585–5599, 2013. 
Clapp, R. B. and Hornberger, G. M.: Empirical equations for some soil hydraulic properties, Water Resour. Res., 14, 601–604, 1978. 
Cosby, B. J., Hornberger, G. M., Clapp, R. B., and Ginn, T. R.: A statistical exploration of the relationships of soil moisture characteristics to the physical properties of soils, Water Resour. Res., 20, 682–690, 1984. 
Download
Short summary
This study aimed to improve runoff simulations and explore deep soil hydrological processes for a highly varying soil depth and complex terrain watershed in the Loess Plateau, China. The actual soil depths and river channels were incorporated into the model to better simulate the runoff in this watershed. The soil evaporation scheme was modified to better describe the evaporation processes. Our results showed that the model significantly improved the runoff simulations.