Articles | Volume 15, issue 7
https://doi.org/10.5194/gmd-15-2917-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/gmd-15-2917-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Modeling of streamflow in a 30 km long reach spanning 5 years using OpenFOAM 5.x
Pacific Northwest National Laboratory, Richland, WA, USA
Jie Bao
Pacific Northwest National Laboratory, Richland, WA, USA
Yilin Fang
Pacific Northwest National Laboratory, Richland, WA, USA
William A. Perkins
Pacific Northwest National Laboratory, Richland, WA, USA
Huiying Ren
Pacific Northwest National Laboratory, Richland, WA, USA
Xuehang Song
Pacific Northwest National Laboratory, Richland, WA, USA
Zhuoran Duan
Pacific Northwest National Laboratory, Richland, WA, USA
Zhangshuan Hou
Pacific Northwest National Laboratory, Richland, WA, USA
Xiaoliang He
Pacific Northwest National Laboratory, Richland, WA, USA
Timothy D. Scheibe
Pacific Northwest National Laboratory, Richland, WA, USA
Related authors
No articles found.
Chang Liao, L. Ruby Leung, Yilin Fang, Teklu Tesfa, and Robinson Negron-Juarez
Geosci. Model Dev., 18, 4601–4624, https://doi.org/10.5194/gmd-18-4601-2025, https://doi.org/10.5194/gmd-18-4601-2025, 2025
Short summary
Short summary
Understanding horizontal groundwater flow is important for understanding how water moves through the ground. Current climate models often simplify this process because they do not have information about the land surface that is detailed enough. Our study developed a new model that divides the land surface into hillslopes to better represent how groundwater flows. This model can help improve predictions of water availability and how it affects ecosystems.
Michael Nole, Katherine Muller, Glenn Hammond, Xiaoliang He, and Peter Lichtner
EGUsphere, https://doi.org/10.5194/egusphere-2025-1343, https://doi.org/10.5194/egusphere-2025-1343, 2025
This preprint is open for discussion and under review for Geoscientific Model Development (GMD).
Short summary
Short summary
Subsurface injection of carbon dioxide (CO2) can be used for a variety of purposes including geologic carbon storage and enhanced oil recovery. Recently, CO2 injection into reactive host rocks has been explored as a way to transform CO2 into dense solid minerals. We present a simulation framework for modeling flow of CO2 due to injection and subsequent reactions that take place to mineralize CO2.
Chang Liao, Darren Engwirda, Matthew G. Cooper, Mingke Li, and Yilin Fang
Earth Syst. Sci. Data, 17, 2035–2062, https://doi.org/10.5194/essd-17-2035-2025, https://doi.org/10.5194/essd-17-2035-2025, 2025
Short summary
Short summary
Discrete global grid systems, or DGGS, are digital frameworks that help us organize information about our planet. Although scientists have used DGGS in areas like weather and nature, using them in the water cycle has been challenging because some core datasets are missing. We created a way to generate these datasets. We then developed the datasets in the Amazon and Yukon basins, which play important roles in our planet's climate. These datasets may help us improve our water cycle models.
Junyan Ding, Nate McDowell, Vanessa Bailey, Nate Conroy, Donnie J. Day, Yilin Fang, Kenneth M. Kemner, Matthew L. Kirwan, Charlie D. Koven, Matthew Kovach, Patrick Megonigal, Kendalynn A. Morris, Teri O’Meara, Stephanie C. Pennington, Roberta B. Peixoto, Peter Thornton, Mike Weintraub, Peter Regier, Leticia Sandoval, Fausto Machado-Silva, Alice Stearns, Nick Ward, and Stephanie J. Wilson
EGUsphere, https://doi.org/10.5194/egusphere-2025-1544, https://doi.org/10.5194/egusphere-2025-1544, 2025
Short summary
Short summary
We used a vegetation model to study why coastal forests are dying due to rising water levels and what happens to the ecosystem when marshes take over. We found that tree death is mainly caused by water-damaged roots, leading to major changes in the environment, such as reduced water use and carbon storage. Our study helps explain how coastal ecosystems are shifting and offers new ideas to explore in future field research.
Maggi M. Laan, Stephanie G. Fulton, Vanessa A. Garayburu-Caruso, Morgan E. Barnes, Mikayla A. Borton, Xingyuan Chen, Yuliya Farris, Brieanne Forbes, Amy E. Goldman, Samantha Grieger, Robert O. Hall Jr., Matthew H. Kaufman, Xinming Lin, Erin L. M. Zionce, Sophia A. McKever, Allison Myers-Pigg, Opal Otenburg, Aaron C. Pelly, Huiying Ren, Lupita Renteria, Timothy D. Scheibe, Kyongho Son, Jerry Tagestad, Joshua M. Torgeson, and James C. Stegen
EGUsphere, https://doi.org/10.5194/egusphere-2025-1109, https://doi.org/10.5194/egusphere-2025-1109, 2025
Short summary
Short summary
Respiration is a process that combines carbon and oxygen to generate energy for living organisms. Within a river, respiration in sediments and water have variable contributions to respiration of the whole river system. Contrary to conventional wisdom, we found that water column respiration did not increase systematically moving from small streams to big rivers. Instead, it was locally influenced by temperature, nutrients and suspended solids.
James Stegen, Amy J. Burgin, Michelle H. Busch, Joshua B. Fisher, Joshua Ladau, Jenna Abrahamson, Lauren Kinsman-Costello, Li Li, Xingyuan Chen, Thibault Datry, Nate McDowell, Corianne Tatariw, Anna Braswell, Jillian M. Deines, Julia A. Guimond, Peter Regier, Kenton Rod, Edward K. P. Bam, Etienne Fluet-Chouinard, Inke Forbrich, Kristin L. Jaeger, Teri O'Meara, Tim Scheibe, Erin Seybold, Jon N. Sweetman, Jianqiu Zheng, Daniel C. Allen, Elizabeth Herndon, Beth A. Middleton, Scott Painter, Kevin Roche, Julianne Scamardo, Ross Vander Vorste, Kristin Boye, Ellen Wohl, Margaret Zimmer, Kelly Hondula, Maggi Laan, Anna Marshall, and Kaizad F. Patel
Biogeosciences, 22, 995–1034, https://doi.org/10.5194/bg-22-995-2025, https://doi.org/10.5194/bg-22-995-2025, 2025
Short summary
Short summary
The loss and gain of surface water (variable inundation) are common processes across Earth. Global change shifts variable inundation dynamics, highlighting a need for unified understanding that transcends individual variably inundated ecosystems (VIEs). We review the literature, highlight challenges, and emphasize opportunities to generate transferable knowledge by viewing VIEs through a common lens. We aim to inspire the emergence of a cross-VIE community based on a proposed continuum approach.
Morgan E. Barnes, Jesse Alan Roebuck Jr., Samantha Grieger, Paul J. Aronstein, Vanessa A. Garayburu-Caruso, Kathleen Munson, Robert P. Young, Kevin D. Bladon, John D. Bailey, Emily B. Graham, Lupita Renteria, Peggy A. O'Day, Timothy D. Scheibe, and Allison N. Myers-Pigg
EGUsphere, https://doi.org/10.5194/egusphere-2025-21, https://doi.org/10.5194/egusphere-2025-21, 2025
Short summary
Short summary
Wildfires impact nutrient cycles on land and in water. We used burning experiments to understand the types of phosphorous (P), an essential nutrient, that might be released to the environment after different types of fires. We found that the amount of P moving through the environment post-fire is dependent on the type of vegetation and degree of burning which may influence when and where this material is processed or stored.
Yilin Fang, Hoang Viet Tran, and L. Ruby Leung
Geosci. Model Dev., 18, 19–32, https://doi.org/10.5194/gmd-18-19-2025, https://doi.org/10.5194/gmd-18-19-2025, 2025
Short summary
Short summary
Hurricanes may worsen water quality in the lower Mississippi River basin (LMRB) by increasing nutrient runoff. We found that runoff parameterizations greatly affect nitrate–nitrogen runoff simulated using an Earth system land model. Our simulations predicted increased nitrogen runoff in the LMRB during Hurricane Ida in 2021, albeit less pronounced than the observations, indicating areas for model improvement to better understand and manage nutrient runoff loss during hurricanes in the region.
Stephanie G. Fulton, Morgan Barnes, Mikayla A. Borton, Xingyuan Chen, Yuliya Farris, Brieanne Forbes, Vanessa A. Garayburu-Caruso, Amy E. Goldman, Samantha Grieger, Robert Hall Jr., Matthew H. Kaufman, Xinming Lin, Erin McCann, Sophia A. McKever, Allison Myers-Pigg, Opal C. Otenburg, Aaron C. Pelly, Huiying Ren, Lupita Renteria, Timothy D. Scheibe, Kyongho Son, Jerry Tagestad, Joshua M. Torgeson, and James C. Stegen
EGUsphere, https://doi.org/10.5194/egusphere-2023-3038, https://doi.org/10.5194/egusphere-2023-3038, 2024
Preprint archived
Short summary
Short summary
This research examines oxygen use in rivers, which is central to the carbon cycle and water quality. The study focused on an environmentally diverse river basin in the western United States and found that oxygen use in river water was very slow and influenced by factors like water temperature and concentrations of nutrients and carbon in the water. Results suggest that in the study system, most of the oxygen use occurs via mechanisms directly or indirectly associated with riverbed sediments.
Lingcheng Li, Yilin Fang, Zhonghua Zheng, Mingjie Shi, Marcos Longo, Charles D. Koven, Jennifer A. Holm, Rosie A. Fisher, Nate G. McDowell, Jeffrey Chambers, and L. Ruby Leung
Geosci. Model Dev., 16, 4017–4040, https://doi.org/10.5194/gmd-16-4017-2023, https://doi.org/10.5194/gmd-16-4017-2023, 2023
Short summary
Short summary
Accurately modeling plant coexistence in vegetation demographic models like ELM-FATES is challenging. This study proposes a repeatable method that uses machine-learning-based surrogate models to optimize plant trait parameters in ELM-FATES. Our approach significantly improves plant coexistence modeling, thus reducing errors. It has important implications for modeling ecosystem dynamics in response to climate change.
Marius S. A. Lambert, Hui Tang, Kjetil S. Aas, Frode Stordal, Rosie A. Fisher, Yilin Fang, Junyan Ding, and Frans-Jan W. Parmentier
Geosci. Model Dev., 15, 8809–8829, https://doi.org/10.5194/gmd-15-8809-2022, https://doi.org/10.5194/gmd-15-8809-2022, 2022
Short summary
Short summary
In this study, we implement a hardening mortality scheme into CTSM5.0-FATES-Hydro and evaluate how it impacts plant hydraulics and vegetation growth. Our work shows that the hydraulic modifications prescribed by the hardening scheme are necessary to model realistic vegetation growth in cold climates, in contrast to the default model that simulates almost nonexistent and declining vegetation due to abnormally large water loss through the roots.
Yilin Fang, L. Ruby Leung, Charles D. Koven, Gautam Bisht, Matteo Detto, Yanyan Cheng, Nate McDowell, Helene Muller-Landau, S. Joseph Wright, and Jeffrey Q. Chambers
Geosci. Model Dev., 15, 7879–7901, https://doi.org/10.5194/gmd-15-7879-2022, https://doi.org/10.5194/gmd-15-7879-2022, 2022
Short summary
Short summary
We develop a model that integrates an Earth system model with a three-dimensional hydrology model to explicitly resolve hillslope topography and water flow underneath the land surface to understand how local-scale hydrologic processes modulate vegetation along water availability gradients. Our coupled model can be used to improve the understanding of the diverse impact of local heterogeneity and water flux on nutrient availability and plant communities.
Yilin Fang, L. Ruby Leung, Ryan Knox, Charlie Koven, and Ben Bond-Lamberty
Geosci. Model Dev., 15, 6385–6398, https://doi.org/10.5194/gmd-15-6385-2022, https://doi.org/10.5194/gmd-15-6385-2022, 2022
Short summary
Short summary
Accounting for water movement in the soil and water transport within the plant is important for plant growth in Earth system modeling. We implemented different numerical approaches for a plant hydrodynamic model and compared their impacts on the simulated aboveground biomass (AGB) at single points and globally. We found care should be taken when discretizing the number of soil layers for numerical simulations as it can significantly affect AGB if accuracy and computational costs are of concern.
Huiying Ren, Erol Cromwell, Ben Kravitz, and Xingyuan Chen
Hydrol. Earth Syst. Sci., 26, 1727–1743, https://doi.org/10.5194/hess-26-1727-2022, https://doi.org/10.5194/hess-26-1727-2022, 2022
Short summary
Short summary
We used a deep learning method called long short-term memory (LSTM) to fill gaps in data collected by hydrologic monitoring networks. LSTM accounted for correlations in space and time and nonlinear trends in data. Compared to a traditional regression-based time-series method, LSTM performed comparably when filling gaps in data with smooth patterns, while it better captured highly dynamic patterns in data. Capturing such dynamics is critical for understanding dynamic complex system behaviors.
Cited articles
Alfieri, L., Lorini, V., Hirpa, F. A., Harrigan, S., Zsoter, E., Prudhomme, C.,
and Salamon, P.: A global streamflow reanalysis for 1980–2018, J.
Hydrol. X, 6, 100049, https://doi.org/10.1016/j.hydroa.2019.100049, 2020. a
Bao, J., Zhou, T., Huang, M., Hou, Z., Perkins, W., Harding, S., Titzler, S.,
Hammond, G., Ren, H., Thorne, P., Suffield, S., Murray, C., and Zachara, J.:
Modulating factors of hydrologic exchanges in a large‐scale river reach:
Insights from three‐dimensional computational fluid dynamics simulations,
Hydrol. Process., 32, 3446–3463, https://doi.org/10.1002/hyp.13266, 2018. a, b
Bao, J., Chen, Y., Fang, Y., Song, X., Perkins, W., Duan, Z., Shuai, P., Ren,
H., Hou, Z., Richmond, M., He, X., and Scheibe, T.: Modeling framework for
evaluating the impacts of hydrodynamic pressure on hydrologic exchange fluxes
and residence time for a large-scale river section over a long-term period,
Environ. Modell. Softw., 148, 105277,
https://doi.org/10.1016/j.envsoft.2021.105277, 2022. a, b
Bates, P. D., Anderson, M. G., and Hervouet, J. M.: Initial comparison of two
two-dimensional finite element codes for river flood simulation, P. I. Civil Eng.-Water, 112,
238–248, https://doi.org/10.1680/iwtme.1995.27886, 1995. a
Bates, P. D., Lane, S. N., and Ferguson, R. I.: Computational fluid dynamics:
applications in environmental hydraulics, edited by: Bates, P. D., Lane, S. N., and Ferguson, R. I., John Wiley & Sons, Ltd,
Chichester, UK, https://doi.org/10.1002/0470015195, 2005. a
Berenbrock, C. and Tranmer, A. W.: Simulation of flow, sediment transport, and
sediment mobility of the Lower Coeur d'Alene River, Idaho, USGS Scientific
Investigations Report, p. 164, https://doi.org/10.3133/sir20085093, 2008. a
Biddanda, B. A.: Global significance of the changing freshwater
carbon cycle, EOS, 98, 6, 15–17, https://doi.org/10.1029/2017EO069751,
2017 a
Bierkens, M. F. P., Bell, V. A., Burek, P., Chaney, N., Condon, L. E., David,
C. H., de Roo, A., Döll, P., Drost, N., Famiglietti, J. S.,
Flörke, M., Gochis, D. J., Houser, P., Hut, R., Keune, J., Kollet, S.,
Maxwell, R. M., Reager, J. T., Samaniego, L., Sudicky, E., Sutanudjaja,
E. H., van de Giesen, N., Winsemius, H., and Wood, E. F.: Hyper-resolution
global hydrological modelling: what is next?, Hydrol. Process., 29,
310–320, https://doi.org/10.1002/hyp.10391, 2015. a
Blocken, B., Stathopoulos, T., and Carmeliet, J.: CFD simulation of the
atmospheric boundary layer: wall function problems, Atmos. Environ.,
41, 238–252, https://doi.org/10.1016/j.atmosenv.2006.08.019, 2007. a, b
Blumberg, A. F. and Mellor, G. L.: Diagnostic and prognostic numerical
circulation studies of the South Atlantic Bight, J. Geophys.
Res.-Oceans, 88, 4579–4592, https://doi.org/10.1029/JC088iC08p04579, 1983. a
Booker, D. J., Sear, D. A., and Payne, A. J.: Modelling three-dimensional flow
structures and patterns of boundary shear stress in a natural pool-riffle
sequence, Earth Surf. Proc. Land., 26, 553–576,
https://doi.org/10.1002/esp.210, 2001. a
Bovee, K. D.: The incremental method of assessing habitat potential for
coolwater species, with management implications, in: American Fisheries
Society Special Publication, 1st edn., vol. 11, edited by: Kendall, R. L., Amer Fisheries Society, pp. 340–346, ISBN-10 0913235083, ISBN-13 978-0913235089,
1978. a
Broecker, T., Teuber, K., Sobhi Gollo, V., Nützmann, G., Lewandowski,
J., and Hinkelmann, R.: Integral flow modelling
approach for surface water-groundwater interactions
along a rippled streambed, Water, 11, 1517,
https://doi.org/10.3390/w11071517, 2019. a
Cao, Z., Carling, P., and Oakey, R.: Flow reversal over a natural pool-riffle
sequence: a computational study, Earth Surf. Proc. Land., 28,
689–705, https://doi.org/10.1002/esp.466, 2003. a
Cardenas, M. B. and Wilson, J. L.: Dunes, turbulent eddies, and interfacial
exchange with permeable sediments, Water Resour. Res., 43, W08412,
https://doi.org/10.1029/2006WR005787, 2007. a, b
Carling, P. A. and Wood, N.: Simulation of flow over pool-riffle topography: a
consideration of the velocity reversal hypothesis, Earth Surf. Proc.
Land., 19, 319–332, https://doi.org/10.1002/esp.3290190404, 1994. a
Carr, J. C., DiBiase, R. A., and Yeh, E. C.: Geomorphic and structural mapping
for remote bedrock river corridors in the Taiwan Central Range using paired
outcrop and kilometer scale UAV surveys, in: GSA Annual Meeting, Phoenix,
Arizona, USA, 22–25 September 2019,https://doi.org/10.1130/abs/2019AM-335826, 2019. a
Chaudhry, M. H. H. (Ed.): Open-channel flow, Springer US, New York, NY, USA, 2nd
edn., https://doi.org/10.1007/978-0-387-68648-6, 2008. a
Chen, Y., Dibiase, R. A. R. A., McCarroll, N., and Liu, X.: Quantifying flow
resistance in mountain streams using computational fluid dynamics modeling
over structure-from-motion photogrammetry-derived microtopography, Earth
Surf. Proc. Land., 44, 1973–1987, https://doi.org/10.1002/esp.4624,
2019. a, b
Chen, Y., Bao J., Fang, Y., Perkings, W. A., Ren, H., Song, X., Duan, Z., Hou, Z., He, X., Scheibe, T. D.: (2021): Model, data, and code for paper “Modeling of streamflow in a 30-kilometer-long reach spanning 5 years using OpenFOAM 5.x”, River Corridor and Watershed Biogeochemistry SFA, ESS-DIVE repository [data set, code], https://doi.org/10.15485/1819956, 2021. a
Condon, L. E., Kollet, S., Bierkens, M. F. P., Fogg, G. E., Maxwell, R. M.,
Hill, M. C., Fransen, H. H., Verhoef, A., Van Loon, A. F., Sulis, M., and
Abesser, C.: Global Groundwater Modeling and Monitoring: Opportunities and
Challenges, Water Resour. Res., 57, e2020WR029500,
https://doi.org/10.1029/2020WR029500, 2021. a
Correia, L. P., Krishnappan, B. G., and Graf, W. H.: Fully coupled unsteady
mobile boundary flow model, J. Hydraul. Eng., 118, 476–494,
https://doi.org/10.1061/(ASCE)0733-9429(1992)118:3(476), 1992. a
Crowder, D. W. and Diplas, P.: Evaluating spatially explicit metrics of stream
energy gradients using hydrodynamic model simulations, Can. J.
Fish. Aquat. Sci., 57, 1497–1507, https://doi.org/10.1139/f00-074, 2000. a
Cui, Y., Parker, G., Pizzuto, J., and Lisle, T. E.: Sediment pulses in
mountain rivers: 2. comparison between experiments and numerical
predictions, Water Resour. Res., 39, 1240, https://doi.org/10.1029/2002WR001805,
2003. a
Danhoff, B. M. and Huckins, C. J.: Modelling submerged fluvial substrates with
structure‐from‐motion photogrammetry, River Res. Appl.,
36, 128–137, https://doi.org/10.1002/rra.3532, 2020. a
Darby, S. E., Alabyan, A. M., and Van de Wiel, M. J.: Numerical simulation
of bank erosion and channel migration in meandering rivers, Water Resour.
Res., 38, 1163, https://doi.org/10.1029/2001WR000602, 2002. a
Demuren, A. O.: A numerical model for flow in meandering channels with natural
bed topography, Water Resour. Res., 29, 1269–1277,
https://doi.org/10.1029/92WR02907, 1993. a
Demuren, A. O. and Rodi, W.: Calculation of flow and pollutant dispersion in
meandering channels, J. Fluid Mech., 172, 63–92,
https://doi.org/10.1017/S0022112086001659, 1986. a
Deshpande, S. S., Anumolu, L., and Trujillo, M. F.: Evaluating the performance
of the two-phase flow solver interFoam, Computational Science &
Discovery, 5, 14016, https://doi.org/10.1088/1749-4699/5/1/014016, 2012. a, b, c
Duan, J. G., Wang, S. S. Y., and Jia, Y.: The applications of the enhanced
CCHE2D model to study the alluvial channel migration processes, J.
Hydraul. Res., 39, 469–480, https://doi.org/10.1080/00221686.2001.9628272, 2001. a
Ferguson, R. I.: Reach-Scale Flow Resistance, in: Treatise
on Geomorphology, second edn., vol. 6, edited by:
Shroder, J. F., Academic Press, 110–132, ISBN 978-0-12-818235-2, https://doi.org/10.1016/B978-0-12-409548-9.09386-6, 2022. a, b
Ferguson, R. I., Church, M., and Weatherly, H.: Fluvial aggradation in Vedder
River: testing a one-dimensional sedimentation model, Water Resour.
Res., 37, 3331–3347, https://doi.org/10.1029/2001WR000225, 2001. a
Hamrick, J. M.: A three-dimensional environmental fluid dynamics computer
code: theoretical and computational aspects, in: Special report in applied
marine science and ocean engineering, 317, p. 64, Virginia Institute of
Marine Science, College of William and Mary, https://doi.org/10.21220/V5TT6C, 1992. a, b
Hardy, R. J. J., Lane, S. N. N., Lawless, M. R. R., Best, J. L. L., Elliott,
L., and Ingham, D. B. B.: Development and testing of a numerical code for
treatment of complex river channel topography in three-dimensional CFD models
with structured grids, J. Hydraul. Res., 43, 468–480,
https://doi.org/10.1080/00221680509500145, 2005. a
Harrigan, S., Zsoter, E., Alfieri, L., Prudhomme, C., Salamon, P., Wetterhall, F., Barnard, C., Cloke, H., and Pappenberger, F.: GloFAS-ERA5 operational global river discharge reanalysis 1979–present, Earth Syst. Sci. Data, 12, 2043–2060, https://doi.org/10.5194/essd-12-2043-2020, 2020. a
Harvey, J. W.: Hydrologic Exchange Flows and Their Ecological Consequences in River Corridors, in: Stream Ecosystems in a Changing Environment, edited by: Jones, J. B. and Stanley, E. H., Academic Press, 1–83, ISBN 978-0-12-405890-3, https://doi.org/10.1016/B978-0-12-405890-3.00001-4,
2016. a, b, c
Hester, E. T., Cardenas, M. B., Haggerty, R., and Apte, S. V.: The importance
and challenge of hyporheic mixing, Water Resour. Res., 53, 3565–3575,
https://doi.org/10.1002/2016WR020005, 2017. a
Hicks, F. E. and Peacock, T.: Suitability of HEC-RAS for flood forecasting,
Can. Water Resour. J., 30, 159–174, https://doi.org/10.4296/cwrj3002159,
2005. a
Hiemstra, K. S., van Vuren, S., Vinke, F. S. R., Jorissen, R. E., and Kok, M.:
Assessment of the functional performance of lowland river systems subjected
to climate change and large-scale morphological trends, International
Journal of River Basin Management, 20, 45–56,
https://doi.org/10.1080/15715124.2020.1790580, 2020. a
Hirt, C. W. and Nichols, B. D.: Volume of fluid (VOF) method for the dynamics
of free boundaries, J. Computat. Phys., 39, 201–225,
https://doi.org/10.1016/0021-9991(81)90145-5, 1981. a, b
Hodskinson, A.: Computational fluid dynamics as a tool for investigating
separated flow in river bends, Earth Surf. Proc. Land., 21,
993–1000,
https://doi.org/10.1002/(SICI)1096-9837(199611)21:11<993::AID-ESP698>3.0.CO;2-R, 1996. a
Hodskinson, A. and Ferguson, R. I.: Numerical modelling of separated flow in
river bends: model testing and experimental investigation of geometric
controls on the extent of flow separation at the concave bank, Hydrol.
Process., 12, 1323–1338,
https://doi.org/10.1002/(SICI)1099-1085(19980630)12:8<1323::AID-HYP617>3.0.CO;2-S,
1998. a
Hoey, T. B. and Ferguson, R.: Numerical simulation of downstream fining by
selective transport in gravel bed rivers: model development and
illustration, Water Resour. Res., 30, 2251–2260,
https://doi.org/10.1029/94WR00556, 1994. a
Horritt, M. S.: Parameterisation, validation and uncertainty analysis of CFD
models of fluvial and flood hydraulics in the natural environment, in:
Computational Fluid Dynamics, edited by: Bates, P. D.,
Lane, S. N., and Ferguson, R. I., pp. 193–213, John Wiley & Sons, Ltd,
Chichester, UK, https://doi.org/10.1002/0470015195.ch9, 2005. a
Howard, A. D.: Modeling channel migration and floodplain sedimentation in
meandering streams, in: Lowland floodplain rivers : geomorphological
perspectives, edited by: Carling, P. A. and Petts, G. E., p. 302, John Wiley,
Chichester, UK, ISBN-10 0471931195,
ISBN-13 978-0471931195, 1992. a
Huang, J., Patel, V. C., Lai, Y. G., and Weber, L. J.: Simulation study of
flow through a reach of the Chattachoochee River, J. Hydraul.
Res., 42, 487–492, https://doi.org/10.1080/00221686.2004.9641218, 2004. a
Issa, R. I.: Solution of the implicitly discretised fluid flow equations by
operator-splitting, J. Comput. Phys., 62, 40–65,
https://doi.org/10.1016/0021-9991(86)90099-9, 1985. a
Ji, Z., Hu, G., Shen, J., and Wan, Y.: Three-dimensional modeling of
hydrodynamic processes in the St. Lucie Estuary, Estuarine, Coastal and
Shelf Science, 73, 188–200, https://doi.org/10.1016/j.ecss.2006.12.016, 2007. a
Johnson, B. H., Kim, K. W., Heath, R. E., Hsieh, B. B., and Butler, H. L.:
Validation of three‐dimensional hydrodynamic model of Chesapeake Bay,
J. Hydraul. Eng., 119, 2–20, https://doi.org/10.1061/(ASCE)0733-9429(1993)119:1(2), 1993. a
Kang, S. and Sotiropoulos, F.: Flow phenomena and mechanisms in a field-scale
experimental meandering channel with a pool-riffle sequence: Insights gained
via numerical simulation, J. Geophys. Res., 116, F03011,
https://doi.org/10.1029/2010JF001814, 2011. a
Kang, S. and Sotiropoulos, F.: Assessing the predictive capabilities of
isotropic, eddy viscosity Reynolds-averaged turbulence models in a
natural-like meandering channel, Water Resour. Res., 48, W06505,
https://doi.org/10.1029/2011WR011375, 2012. a
Kang, S., Lightbody, A., Hill, C., and Sotiropoulos, F.: High-resolution
numerical simulation of turbulence in natural waterways, Adv. Water
Resour., 34, 98–113, https://doi.org/10.1016/j.advwatres.2010.09.018, 2011. a
Keller, E. A. and Florsheim, J. L.: Velocity-reversal hypothesis: a model
approach, Earth Surf. Proc. Land., 18, 733–740,
https://doi.org/10.1002/esp.3290180807, 1993. a
Khosronejad, A., Le, T., DeWall, P., Bartelt, N., Woldeamlak, S., Yang, X., and
Sotiropoulos, F.: High-fidelity numerical modeling of the Upper Mississippi
River under extreme flood condition, Adv. Water Resour., 98,
97–113, https://doi.org/10.1016/j.advwatres.2016.10.018, 2016. a, b
Khosronejad, A., Flora, K., and Kang, S.: Effect of inlet turbulent boundary
conditions on scour predictions of coupled LES and morphodynamics in a
field-scale river: bankfull flow conditions, J. Hydraul.
Eng., 146, 04020020, https://doi.org/10.1061/(ASCE)HY.1943-7900.0001719, 2020. a
Kolden, E., Fox, B. D., Bledsoe, B. P., and Kondratieff, M. C.: Modelling
whitewater park hydraulics and fish habitat in Colorado, River Res.
Appl., 32, 1116–1127, https://doi.org/10.1002/rra.2931, 2016. a
Kuzmin, D., Möller, M., and Turek, S.: Multidimensional FEM-FCT schemes
for arbitrary time stepping, Int. J. Numer. Meth.
Fl., 42, 265–295, https://doi.org/10.1002/fld.493, 2003. a
Lai, Y. G.: Quantitative modeling tools for large wood debris and other
in-stream structures, Tech. Rep. ST-2016-4495-01, U.S. Department of the
Interior, Bureau of Reclamation, Denver, CO, https://www.usbr.gov/research/projects/download_product.cfm?id=938 (last access: 4 April 2022), 2016. a
Lane, S. N. and Ferguson, R. I.: Modelling reach-scale fluvial flows, in:
Computational Fluid Dynamics, edited by: Bates, P. D., Lane, S. N., and
Ferguson, R. I., pp. 215–269, John Wiley & Sons, Ltd,
Chichester, UK, https://doi.org/10.1002/0470015195.ch10, 2005. a, b, c
Lane, S. N. and Richards, K. S.: High resolution, two-dimensional spatial
modelling of flow processes in a multi-thread channel, Hydrol.
Process., 12, 1279–1298,
https://doi.org/10.1002/(SICI)1099-1085(19980630)12:8<1279::AID-HYP615>3.0.CO;2-E,
1998. a
Lane, S. N., Bradbrook, K. F., Richards, K. S., Biron, P. A., and Roy, A. G.:
The application of computational fluid dynamics to natural river channels:
three-dimensional versus two-dimensional approaches, Geomorphology, 29,
1–20, https://doi.org/10.1016/S0169-555X(99)00003-3, 1999. a, b, c
Lane, S. N., Hardy, R. J., Elliot, L., Ingham, D. B., Elliott, L., Ingham,
D. B., Elliot, L., and Ingham, D. B.: Numerical modeling of flow processes
over gravelly surfaces using structured grids and a numerical porosity
treatment, Water Resour. Res., 40, W01302,
https://doi.org/10.1029/2002WR001934, 2004. a
Lane, S. N., Hardy, R. J., Ferguson, R. I., and Parsons, D. R.: A framework
for model verification and validation of CFD schemes in natural open channel
flows, in: Computational Fluid Dynamics, edited by: Bates, P. D.,
Lane, S. N., and Ferguson, R. I., pp. 169–192, John Wiley & Sons,
Ltd, Chichester, UK, https://doi.org/10.1002/0470015195.ch8, 2005. a, b
Le, T. B., Khosronejad, A., Sotiropoulos, F., Bartelt, N., Woldeamlak, S., and
Dewall, P.: Large-eddy simulation of the Mississippi River under base-flow
condition: hydrodynamics of a natural diffluence-confluence region, J. Hydraul. Res., 57, 836–851, https://doi.org/10.1080/00221686.2018.1534282,
2019. a, b, c
Leclerc, M., Boudreault, A., Bechara, T. A., and Corfa, G.: Two-dimensional
hydrodynamic modeling: a neglected tool in the instream flow incremental
methodology, T. Am. Fish. Soc., 124, 645–662,
https://doi.org/10.1577/1548-8659(1995)124<0645:TDHMAN>2.3.CO;2, 1995. a
Leschziner, M. A. and Rodi, W.: Calculation of strongly curved open channel
flow, J. Hydraul. Eng. Div., 105, 1297–1314,
https://doi.org/10.1061/JYCEAJ.0005286, 1979. a
Lesser, G. R., Roelvink, J. A., van Kester, J. A. T. M., and Stelling, G. S.: Development and validation of a three-dimensional morphological model, Coast.
Eng., 51, 883–915, https://doi.org/10.1016/j.coastaleng.2004.07.014, 2004. a
Li, B., Liu, X., Kaufman, M. H., Turetcaia, A., Chen, X., and Cardenas, M. B.:
Flexible and modular simultaneous modeling of flow and reactive transport in
rivers and hyporheic zones, Water Resour. Res., 56, e2019WR02652,
https://doi.org/10.1029/2019WR026528, 2020. a
Lin, P., Pan, M., Beck, H. E., Yang, Y., Yamazaki, D., Frasson, R., David,
C. H., Durand, M., Pavelsky, T. M., Allen, G. H., Gleason, C. J., and Wood,
E. F.: Global Reconstruction of Naturalized River Flows at 2.94 Million
Reaches, Water Resour. Res., 55, 6499–6516,
https://doi.org/10.1029/2019WR025287, 2019. a
Liu, X., Chen, Y., and Shen, C.: Coupled two-dimensional surface flow and
three-dimensional sub-surface flow modeling for the drainage of permeable
road pavement, J. Hydrol. Eng., 21, 4016051,
https://doi.org/10.1061/(ASCE)HE.1943-5584.0001462, 2016. a
Lorke, A. and MacIntyre, S.: The benthic boundary layer (in rivers, lakes, and
reservoirs), in: Encyclopedia of Inland Waters, edited by: Likens, G. E., pp. 505–514, Elsevier,
https://doi.org/10.1016/B978-012370626-3.00079-X, 2009. a
Ma, L., Ashworth, P. J., Best, J. L., Elliott, L., Ingham, D. B., and
Whitcombe, L. J.: Computational fluid dynamics and the physical modelling of
an upland urban river, Geomorphology, 44, 375–391,
https://doi.org/10.1016/S0169-555X(01)00184-2, 2002. a
Marjoribanks, T. I., Hardy, R. J., Lane, S. N., and Tancock, M. J.:
Patch-scale representation of vegetation within hydraulic models, Earth
Surf. Proc. Land., 42, 699–710, https://doi.org/10.1002/esp.4015, 2017. a
Maxwell, R. M., Putti, M., Meyerhoff, S., Delfs, J.-O., Ferguson, I. M.,
Ivanov, V., Kim, J., Kolditz, O., Kollet, S. J., Kumar, M., Lopez, S., Niu,
J., Paniconi, C., Park, Y.-J., Phanikumar, M. S., Shen, C., Sudicky, E. A.,
and Sulis, M.: Surface-subsurface model intercomparison: A first set of
benchmark results to diagnose integrated hydrology and feedbacks, Water
Resour. Res., 50, 1531–1549, https://doi.org/10.1002/2013WR013725, 2014. a
Menter, F. R., Kuntz, M., and Langtry, R.: Ten years of industrial experience
with the SST turbulence model turbulence heat and mass transfer, in:
Proceedings of the 4th International Symposium on Turbulence, Heat and Mass
Transfer, edited by: Hanjalic, K., Nagano, Y., and Tummers, M. J., pp.
625–632, Begell House, Antalya, Turkey, http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.460.2814&rep=rep1&type=pdf (last access: 4 April 2022), 2003. a
Milhous, R. T., Wegner, D. L., and Waddle, T.: User's guide to the physical
habitat simulation system (PHABISM), in: FWS/OBS, 81/43, p. FWS/OBS, U.S.
Fish and Wildlife Service, https://pubs.er.usgs.gov/publication/fwsobs81_43 (last access: 4 April 2022), 1984. a
Miller, A. J.: Debris‐fan constrictions and flood hydraulics in river
canyons: Some implications from two‐dimensional flow modelling, Earth
Surf. Proc. Land., 19, 681–697, https://doi.org/10.1002/esp.3290190803,
1994. a
Nagata, N., Hosoda, T., and Muramoto, Y.: Numerical analysis of river channel
processes with bank erosion, J. Hydraul. Eng., 126,
243–252, https://doi.org/10.1061/(ASCE)0733-9429(2000)126:4(243), 2000. a
Nicholas, A. P. and Sambrook Smith, G. H.: Numerical simulation of
three-dimensional flow hydraulics in a braided channel, Hydrol.
Process., 13, 913–929,
https://doi.org/10.1002/(SICI)1099-1085(19990430)13:6<913::AID-HYP764>3.0.CO;2-N, 1999. a, b
Nikuradse, J.: Laws of flow in rough pipes (English translation), Tech. Rep.,
National Advisory Commission for Aeronautics, Washington, DC, USA, https://ntrs.nasa.gov/citations/19930093938 (last access: 4 April 2022), 1933. a
Olsen, N. R. B. and Stokseth, S.: Three-dimensional numerical modelling of
water flow in a river with large bed roughness, J. Hydraul.
Res., 33, 571–581, https://doi.org/10.1080/00221689509498662, 1995. a
Palmer, M. A., Hondula, K. L., and Koch, B. J.: Ecological restoration of
streams and rivers: shifting strategies and shifting goals, Annu. Rev.
Ecol. Evol. S., 45, 247–269,
https://doi.org/10.1146/annurev-ecolsys-120213-091935, 2014. a
Perkins, W. A. and Richmond, M. C.: MASS2, modular aquatic simulation system
in two dimensions, theory and numerical methods, Tech. Rep., Pacific
Northwest National Laboratory (PNNL), Richland, WA (United States),
https://doi.org/10.2172/919712, 2007. a
Podhorányi, M., Unucka, J., Bobál', P., Říhová, V.,
Podhoranyi, M., Unucka, J., Bobal, P., and Rihova, V.: Effects of LIDAR DEM
resolution in hydrodynamic modelling: model sensitivity for cross-sections,
Int. J. Digit. Earth, 6, 3–27,
https://doi.org/10.1080/17538947.2011.596578, 2013. a
Potter, C., Zhang, P., Klooster, S., Genovese, V., Shekhar, S., and Kumar, V.:
Understanding controls on historical river discharge in the world's largest
drainage basins, Earth Interact., 8, 1–21,
https://doi.org/10.1175/1087-3562(2004)008<0001:UCOHRD>2.0.CO;2, 2004. a
Powell, D. M.: Flow resistance in gravel-bed rivers: progress in research,
Earth-Sci. Rev., 136, 301–338, https://doi.org/10.1016/j.earscirev.2014.06.001,
2014. a
Richards, K. S.: Simulation of flow geometry in a riffle-pool stream, Earth
Surface Processes, 3, 345–354, https://doi.org/10.1002/esp.3290030403, 1978. a
Richmond, M. C. and Perkins, W. A.: Efficient calculation of dewatered and
entrapped areas using hydrodynamic modeling and GIS, Environ. Modell.
Softw., 24, 1447–1456, https://doi.org/10.1016/j.envsoft.2009.06.001, 2009. a, b
Richmond, M. C., Perkins, W. A., and Chien, Y.: Regional scale simulation of
water temperature and dissolved gas variations in the Columbia River basin,
in: HydroVision 2002 Technical Papers, June, HCI Publications, Portland, OR,
USA, https://www.researchgate.net/publication/278848235 (last access: 4 April 2022), 2002. a
Rickenmann, D. and Recking, A.: Evaluation of flow resistance in gravel-bed
rivers through a large field data set, Water Resour. Res., 47,
W07538, https://doi.org/10.1029/2010WR009793, 2011. a
Rodriguez, J. F., Bombardelli, F. A., García, M. H., Frothingham, K. M.,
Rhoads, B. L., and Abad, J. D.: High-resolution numerical simulation of flow
through a highly sinuous river reach, Water Resour. Manag., 18,
177–199, https://doi.org/10.1023/B:WARM.0000043137.52125.a0, 2004. a
Sinha, S., Liu, X., and Garcia, M. H.: A three-dimensional water quality model
of Chicago Area Waterway System (CAWS), Environ. Model.
Assess., 18, 567–592, https://doi.org/10.1007/s10666-013-9367-1, 2013. a
Sinha, S. K., Sotiropoulos, F., and Odgaard, A. J.: Three-dimensional
numerical model for flow through natural rivers, J. Hydraul.
Eng., 124, 13–24, https://doi.org/10.1061/(ASCE)0733-9429(1998)124:1(13), 1998. a
Smith, M. W.: Roughness in the earth sciences, Earth-Sci. Rev., 136,
202–225, https://doi.org/10.1016/j.earscirev.2014.05.016, 2014. a
Sun, T., Meakin, P., Jøssang, T., and Schwarz, K.: A simulation model for
meandering rivers, Water Resour. Res., 32, 2937–2954,
https://doi.org/10.1029/96WR00998, 1996. a
Talbot, T. and Lapointe, M.: Numerical modeling of gravel bed river response
to meander straightening: The coupling between the evolution of bed pavement
and long profile, Water Resour. Res., 38, 1074,
https://doi.org/10.1029/2001WR000330, 2002. a
Thompson, D. M., Nelson, J. M., and Wohl, E. E.: Interactions between pool
geometry and hydraulics, Water Resour. Res., 34, 3673–3681,
https://doi.org/10.1029/1998WR900004, 1998. a
Tonina, D. and Buffington, J. M.: Hyporheic exchange in gravel bed rivers with
pool-riffle morphology: Laboratory experiments and three-dimensional
modeling, Water Resour. Res., 43, W01421,
https://doi.org/10.1029/2005WR004328, 2007. a
Tonina, D., McKean, J. A., Benjankar, R. M., Wright, C. W., Goode, J. R., Chen,
Q., Reeder, W. J., Carmichael, R. A., and Edmondson, M. R.: Mapping river
bathymetries: evaluating topobathymetric LiDAR survey, Earth Surf.
Proc. Land., 44, 507–520, https://doi.org/10.1002/esp.4513, 2019. a
Tsai, W.-P., Feng, D., Pan, M., Beck, H., Lawson, K., Yang, Y., Liu, J., and
Shen, C.: From calibration to parameter learning: Harnessing the scaling
effects of big data in geoscientific modeling, Nat. Commun., 12,
5988, https://doi.org/10.1038/s41467-021-26107-z, 2021. a
van Niekerk, A., Vogel, K. R., Slingerland, R. L., and Bridge, J. S.: Routing
of heterogeneous sediments over movable bed: model development, J.
Hydraul. Eng., 118, 246–262,
https://doi.org/10.1061/(ASCE)0733-9429(1992)118:2(246), 1992. a
Veldkamp, T. I., Zhao, F., Ward, P. J., De Moel, H., Aerts, J. C., Schmied,
H. M., Portmann, F. T., Masaki, Y., Pokhrel, Y., Liu, X., Satoh, Y., Gerten,
D., Gosling, S. N., Zaherpour, J., and Wada, Y.: Human impact
parameterizations in global hydrological models improve estimates of monthly
discharges and hydrological extremes: A multi-model validation study,
Environ. Res. Lett., 13, 055008, https://doi.org/10.1088/1748-9326/aab96f, 2018.
a
Wampler, P. J.: Rivers and streams – water and sediment in motion, Nature
Education Knowledge, 3, 18, https://www.nature.com/scitable/knowledge/library/rivers-and-streams-water-and-26405398/ (last access: 4 April 2022), 2012. a
Wei, X., Cai, S., Ni, P., and Zhan, W.: Impacts of climate change and human
activities on the water discharge and sediment load of the Pearl River,
southern China, Scientific Reports, 10, 16743,
https://doi.org/10.1038/s41598-020-73939-8, 2020. a
Wilcox, D. C.: Turbulence modeling for CFD, 3rd edn., DCW Industries, La Canada, Calif, ISBN-10 1928729088,
ISBN-13 978-1928729082, 2006. a
Wilson, C., Yagci, O., Rauch, H. P., and Olsen, N.: 3D numerical modelling of
a willow vegetated river/floodplain system, J. Hydrol., 327,
13–21, https://doi.org/10.1016/j.jhydrol.2005.11.027, 2006. a
Wohl, E., Angermeier, P. L., Bledsoe, B., Kondolf, G. M., MacDonnell, L.,
Merritt, D. M., Palmer, M. A., Poff, N. L. R., and Tarboton, D.: River
restoration, Water Resour. Res., 41, W10301,
https://doi.org/10.1029/2005WR003985, 2005. a
Wohl, E., Lane, S. N., and Wilcox, A. C.: The science and practice of river
restoration, Water Resour. Res., 51, 5974–5997,
https://doi.org/10.1002/2014WR016874, 2015. a, b
Wood, E. F., Roundy, J. K., Troy, T. J., van Beek, L. P. H., Bierkens, M.
F. P., Blyth, E., de Roo, A., Döll, P., Ek, M., Famiglietti, J.,
Gochis, D., van de Giesen, N., Houser, P., Jaffé, P. R., Kollet, S.,
Lehner, B., Lettenmaier, D. P., Peters-Lidard, C., Sivapalan, M., Sheffield,
J., Wade, A., and Whitehead, P.: Hyperresolution global land surface
modeling: Meeting a grand challenge for monitoring Earth's terrestrial
water, Water Resour. Res., 47, W05301, https://doi.org/10.1029/2010WR010090,
2011. a
Xu, D., Ivanov, V. Y., Li, X., and Troy, T. J.: Peak runoff timing is linked
to global warming trajectories, Earth's Future, 9, e2021EF002083,
https://doi.org/10.1029/2021EF002083, 2021. a
Yang, Y., Pan, M., Lin, P., Beck, H. E., Zeng, Z., Yamazaki, D., David, C. H.,
Lu, H., Yang, K., Hong, Y., and Wood, E. F.: Global Reach-Level 3-Hourly
River Flood Reanalysis (1980–2019), B. Am.
Meteorol. Soc., 102, E2086–E2105, https://doi.org/10.1175/BAMS-D-20-0057.1,
2021. a
Zalesak, S. T.: Fully multidimensional flux-corrected transport algorithms for
fluids, J. Comput. Phys., 31, 335–362,
https://doi.org/10.1016/0021-9991(79)90051-2, 1979. a
Zhou, T., Bao, J., Huang, M., Hou, Z., Arntzen, E., Song, X., Harding, S. F.,
Titzler, P. S., Ren, H., Murray, C. J., Perkins, W. A., Chen, X., Stegen,
J. C., Hammond, G. E., Thorne, P. D., and Zachara, J. M.: Riverbed
hydrologic exchange dynamics in a large regulated river reach, Water
Resour. Res., 54, 2715–2730, https://doi.org/10.1002/2017WR020508, 2018. a, b
Short summary
Climate change affects river discharge variations that alter streamflow. By integrating multi-type survey data with a computational fluid dynamics tool, OpenFOAM, we show a workflow that enables accurate and efficient streamflow modeling at 30 km and 5-year scales. The model accuracy for water stage and depth average velocity is −16–9 cm and 0.71–0.83 in terms of mean error and correlation coefficients. This accuracy indicates the model's reliability for evaluating climate impact on rivers.
Climate change affects river discharge variations that alter streamflow. By integrating...