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Abstract. Developing accurate and efficient modeling tech-
niques for streamflow at the tens-of-kilometers spatial scale
and multi-year temporal scale is critical for evaluating and
predicting the impact of climate- and human-induced dis-
charge variations on river hydrodynamics. However, achiev-
ing such a goal is challenging because of limited surveys of
streambed hydraulic roughness, uncertain boundary condi-
tion specifications, and high computational costs. We demon-
strate that accurate and efficient three-dimensional (3-D) hy-
drodynamic modeling of natural rivers at 30 km and 5-year
scales is feasible using the following three techniques within
OpenFOAM, an open-source computational fluid dynamics
platform: (1) generating a distributed hydraulic roughness
field for the streambed by integrating water-stage observation
data, a rough wall theory, and a local roughness optimiza-
tion and adjustment strategy; (2) prescribing the boundary
condition for the inflow and outflow by integrating precom-
puted results of a one-dimensional (1-D) hydraulic model
with the 3-D model; and (3) reducing computational time us-
ing multiple parallel runs constrained by 1-D inflow and out-
flow boundary conditions. Streamflow modeling for a 30 km
long reach in the Columbia River (CR) over 58 months can
be achieved in less than 6d using 1.1 million CPU hours.
The mean error between the modeled and the observed wa-
ter stages for our simulated CR reach ranges from —16 to
9 cm (equivalent to approximately 7 % relative to the aver-
age water depth) at seven locations during most of the years
between 2011 and 2019. We can reproduce the velocity dis-
tribution measured by the acoustic Doppler current profiler
(ADCP). The correlation coefficients of the depth-averaged
velocity between the model and ADCP measurements are in
the range between 0.71 and 0.83 at 75 % of the survey cross

sections. With the validated model, we further show that the
relative importance of dynamic pressure versus hydrostatic
pressure varies with discharge variations and topography het-
erogeneity. Given the model’s high accuracy and computa-
tional efficiency, the model framework provides a generic
approach to evaluate and predict the impacts of climate- and
human-induced discharge variations on river hydrodynamics
at tens-of-kilometers and decadal scales.

1 Introduction

As amajor element of the water cycle, streamflow varies with
upstream discharge, interacts with ambient physical and bi-
ological environments, and thus creates a variety of social,
economic, and environmental functions (Wampler, 2012;
Wohl et al., 2015; Harvey, 2016; Biddanda, 2017; Hiem-
stra et al., 2020). For instance, the flood control function
is largely determined by accurate predictions of the water
depth and flow speed that are further controlled by upstream
discharge variations and the hydraulic roughness generated
by flow—streambed interactions (USACE, 1994; Ferguson,
2019). The water quality management and biodiversity pro-
tection functions are strongly affected by the hydrological
exchange flows (Harvey, 2016) that are driven by hydrostatic
pressure and flow-sediment-induced dynamic pressure (Ton-
ina and Buffington, 2007; Cardenas and Wilson, 2007). As
the magnitude, frequency, and peak time of discharge are
projected to vary with future climate and anthropogenic con-
ditions (Potter et al., 2004; Veldkamp et al., 2018; Wei et al.,
2020; Xu et al., 2021), it is essential to establish a numerical
modeling framework that enables evaluating and predicting
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the impact of climate- or human-induced discharge variations
on streamflow and river functions.

Over the past three decades, computational fluid dynamics
(CFD) models at various dimensions have been developed
and applied to model streamflow (Bates et al., 2005). By
solving the one-dimensional (1-D) Saint-Venant equations,
1-D numerical models have been widely used to predict flood
routing (Richards, 1978; Keller and Florsheim, 1993; Carling
and Wood, 1994; Hicks and Peacock, 2005), sediment trans-
port (van Niekerk et al., 1992; Correia et al., 1992; Hoey
and Ferguson, 1994; Ferguson et al., 2001; Talbot and La-
pointe, 2002; Cui et al., 2003), water quality (Richmond
et al., 2002), and aquatic habitats (Bovee, 1978; Milhous
et al., 1984). A lot of software based on the 1-D models,
e.g., HEC-RAS, MIKE-11, ISIS, and InfoWorks, has also
been developed and commercialized for practical applica-
tions. As the 1-D models provide only cross-sectional av-
eraged velocity and water depth, these models are usually
problematic if flow manifests large variations in either the
vertical or the cross-sectional direction (Lane and Fergu-
son, 2005). Due to these reasons, the two-dimensional (2-D)
numerical models, which solve the depth-averaged Navier—
Stokes equations, have been developed to better capture the
cross-sectional variations in flow (Miller, 1994; Bates et al.,
1995; Lane and Richards, 1998; Thompson et al., 1998; Cao
et al., 2003) and resulted influences on sediment transport
(Howard, 1992; Sun et al., 1996; Nagata et al., 2000; Duan
et al., 2001; Darby et al., 2002), water quality (Perkins and
Richmond, 2007), and aquatic habitats (Leclerc et al., 1995;
Crowder and Diplas, 2000). Armed with increasingly pow-
erful personal and high-performance computers, commercial
2-D models such as HEC-RAS and SRH-2D are frequently
deployed for flood management in urban and mountain ar-
eas. Despite the wide applications of 2-D models, quasi-3-
D models are also gaining popularity because of increasing
computer capacity and the capability to predict the vertical
velocity component. Though quasi-3-D models, e.g., Prince-
ton Ocean Model (Blumberg and Mellor, 1983), Environ-
mental Fluid Dynamics Code-3D (Hamrick, 1992), Delft3D
(Lesser et al., 2004), and CH3D (Johnson et al., 1993), have
been commonly used for ocean, coastal, and river applica-
tions, they are not adequate to model the dynamic pressure.

As the dynamic pressure is a key driver of the flow, mo-
mentum, and nutrient exchange between stream water and
ambient environments, e.g., meander river planform, com-
plex instream structures, and groundwater, non-hydrostatic
or fully 3-D Navier-Stokes models are required in order to
reliably predict rivers’ environmental and ecological func-
tions under dynamic discharge conditions (Lorke and Mac-
Intyre, 2009; Harvey, 2016; Hester et al., 2017; Chen et al.,
2019). The full 3-D simulations were firstly restricted to
rivers with rectangular cross sections (Leschziner and Rodi,
1979; Demuren and Rodi, 1986) and then were gradually
extended for small-scale natural rivers with meander and
roughness (Demuren, 1993; Olsen and Stokseth, 1995; Hod-
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skinson, 1996; Hodskinson and Ferguson, 1998). A more re-
alistic application is given by Sinha et al. (1998), whose work
resolved the effects of large-scale roughness and multiple is-
lands on streamflow in a 4 km stretch of the Columbia River.
Later, more 3-D models were applied to study hydrodynam-
ics in natural streams (Nicholas and Sambrook Smith, 1999;
Lane et al., 1999; Booker et al., 2001; Ma et al., 2002; Ro-
driguez et al., 2004; Huang et al., 2004; Lane and Fergu-
son, 2005; Lai, 2016), and its interactions with water quality
(Hamrick, 1992; Ji et al., 2007; Sinha et al., 2013), vege-
tation flow (Wilson et al., 2006; Marjoribanks et al., 2017),
fish habitat (Kolden et al., 2016), and hydrological exchange
fluxes (Zhou et al., 2018; Bao et al., 2018, 2022). All 3-
D models mentioned above adopted the Reynolds-averaged
Navier—Stokes (RANS) concept. More advanced models
such as large-eddy simulation (LES) have also been applied
for natural streams by using high-performance computers
and airborne light detection and ranging (lidar)-measured
high-resolution topography (Khosronejad et al., 2016; Le
et al., 2019; Khosronejad et al., 2020). The differences be-
tween RANS and LES in predicting stream velocities, tur-
bulence, and secondary flows were also carefully examined
using a field-scale experimental facility as a test bed (Kang
et al., 2011; Kang and Sotiropoulos, 2011, 2012).

Though significant progress has been made in modeling
streamflow, new challenges emerge as we apply existing
CFD techniques to mitigate the impacts of climate change
and human activities on streamflow and river functions.
Firstly, the modeling framework necessitates to efficiently
model streamflow over large spatiotemporal scales because
changes in hydrodynamics due to discharge variations often
take months to decades to alter river bank structure, microbial
community growth, fish life cycles, and eventually reshape
river functions at grain to watershed scale (Wohl et al., 2005;
Palmer et al., 2014; Wohl et al., 2015). Secondly, as apply-
ing the model at larger spatiotemporal scales usually means
larger uncertainty from roughness calibration and inflow/out-
flow boundary condition specifications, it is necessary to de-
velop an effective model data integration strategy such that
the computational model can be better constrained by river
bathymetry survey and water-stage observation data. Addi-
tionally, applying the model to large spatiotemporal scales
also requires a strategy to balance computational efficiency
and model accuracy.

To address the above challenges, this work demonstrates a
semi-automated workflow that enables accurate and efficient
3-D CFD modeling of the streamflow in a 30 km long reach
of the Columbia River spanning 9 years (Sect. 2). Specifi-
cally, a distributed hydraulic roughness calibration strategy
is proposed to reduce the roughness calibration uncertainty
by integrating water-stage observations, a rough wall theory,
and a local roughness optimization and adjustment proce-
dure. An integrated 1-D-3-D model approach is also adopted
to reduce the uncertainty from inflow/outflow boundary con-
dition specifications and to provide boundary conditions for
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the temporal decomposition which targets computational ef-
ficiency improvement. The efficacy of the proposed work-
flow in calibrating roughness and predicting water stage and
flow velocity during 2011-2019 is extensively demonstrated
by comparing results from the present model and those from
field observations in Sect. 3. Using the validated model, the
relative importance of dynamic pressure to hydrostatic pres-
sure and its dependency on discharge variations and topogra-
phy heterogeneity are further investigated. The discussion on
distributed roughness estimation, the model’s medium- and
long-term prediction performance, the relative importance of
dynamic pressure, and the model’s computational efficiency
are given in Sect. 4.

2 Methods
2.1 River bathymetry, stage, and velocity surveys

The 30 km long reach is near the Hanford site (https://www.
hanford.gov, last access: 30 January 2022) as shown (black
box) in Fig. la. The riverbed bathymetry was measured us-
ing a lidar technique with less than 1 m resolution in vertical
and 20 m resolution in horizontal directions. The measured
bathymetry is then used as a geometric boundary in the CFD
model. Water stage was measured in three periods at seven
locations (red and yellow dots in Fig. 1b) every 10 min. For
convenience, observation 1 represents the measurements at
100B, 100N, 100D, Locke Island (LI), 100H, and 100F dur-
ing 2011. Observation 2 denotes the measurement at 100B
during 2013 and 2014. Those measured at 100HD during
2018 and 2019 are named observation 3. These observations
are then used for model calibration and validation. Specifi-
cally, water stages measured from 20 January to 16 Febru-
ary 2011 are used for model calibration. Measurements dur-
ing the other dates in 2011 are used for short-term (less than
1 year after the calibration period) validation. Measurements
during 2013 and 2014 are used for medium-term (2 to 3 years
after the calibration period) validation. Those measured dur-
ing 2018 and 2019 are used for long-term (7 to 8 years af-
ter the calibration period) validation. The survey at location
100HD is used to test the long-term model performance in
predicting water surface elevation (WSE) outside the cali-
bration locations. Velocity distributions were also measured
at 12 cross sections (Fig. 1¢) along the river on 4 March (red
lines) and 1 April 2011 (blue lines) using boat-towed acoustic
Doppler current profiler (ADCP) for short-term velocity val-
idation (Niehus et al., 2014). Horizontal coordinates and bed
elevation of these locations are listed in Table Al. For con-
venience, the horizontal coordinate at the lower-left corner
of the computational domain (Fig. 1b, blue box) is converted
from (564, 303.5598, 143, 735.6771 m) in the geographic in-
formation system map to (0,0) in the model domain. All ver-
tical coordinates are referenced to the North American Verti-
cal Datum of 1988.
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2.2 Free-surface tracking and turbulence model

Quantifying water surface elevation, velocity, and bed pres-
sure requires an accurate solution to the water—air interface
and turbulent flow. In this work, OpenFOAM 5.x (CFDDi-
rect, 2017) is used to track the water—air interface using
the volume of fluid method (Hirt and Nichols, 1981; Desh-
pande et al., 2012) and simulate the turbulent flow using the
time-averaged Navier—Stokes equations. The volume of fluid
method marks a cell filled with liquid as « = 1, filled with
air with o« = 0, and partially filled liquid as 0 < @ < 1. De-
noting densities and viscosities of the liquid and gas by py,
Pg» M1, and g, then the density and viscosity of each cell
isp=ap+(—a)og and u =au + (1 —a)ug. Following
these definitions, the time-averaged Navier—Stokes equations
can be written as Egs. (1) and (2). The governing equation for
volume fraction « can be written as Eq. (3).

V=0 M
apu
W—}-V-(puu):aKaVot—g-pr—Vpd

+V~[(M+Mt)Vu]—V

r 2

[t v =2V -up)] @)
oy v |ea =0 3
AV @a) + V- [l ] =0, 3

where ¢ is time, V = %ex + %ey + a%ez represents a spa-
tial operator with ey, ey, and e; denoting unit vectors along
x, vy, and z directions. Also denoted are time-average flow
velocity (u), surface tension coefficient (o), interface curva-
ture (k, ), gravity acceleration (g), spatial coordinate (x), dy-
namic pressure (pq), and dynamic turbulent viscosity (u).
Specifically, the interface curvature is calculated by x, =
—-V. (|§_3|)’ the dynamic pressure pq is defined as pg =
p—pg-x with p denoting the total pressure, u, is the relative
velocity of the liquid phase to the gas phase whose imple-
mentation in OpenFOAM can be found in Deshpande et al.
(2012). The dynamic turbulent viscosity is determined by the
k — w shear stress transport (SST) model (Menter et al., 2003;

Wilcox, 2006; CFDDirect, 2017).
2.3 Mesh generation and quality control

A good mesh quality is a crucial factor controlling compu-
tational stability and efficiency, especially for free-surface
tracking in large-scale river modeling over a long period
(Deshpande et al., 2012). In this work, the mesh is gener-
ated using a two-step generation strategy, which first gener-
ates a structured background mesh and then removes all cells
totally outside a given geometry (a river bathymetry in our
case). Specifically, the background mesh is generated with
a horizontal mesh resolution of 20 m along x and y. Such a
resolution is identical to the horizontal resolution of the lidar-
measured digital elevation model (DEM). The vertical mesh
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Figure 1. The location of the study site within Washington State and the Columbia River (a), the computational domain with the river
bathymetry and water-stage survey locations (b), and the exact locations of velocity and stage measurements (c). Yellow lines in panel (b)
represent the inlet and outlet locations of the computational domain. Red and yellow dots in panel (b) denote water-stage survey locations.
Red and blues lines in (¢) denote boat paths measured on two dates. Red stars and horizontal black lines in panel (c¢) represent the zoom-
in of the stage survey locations in (b) and the locations (L1 and L2) selected to evaluate the sensitivity of stage and velocity variations
to roughness heights, respectively. Panel (a) is a reused image of the Oregon Department of Energy (https://www.oregon.gov/energy, last
access: 30 January 2022); panel (b) is modified from Fig. 1 in Niehus et al. (2014) produced by Sara Kallio at Pacific Northwest National

Laboratory (PNNL).

resolution is set as Az = 1 m by balancing modeling accu-
racy and computational costs. One extra mesh resolution,
20m x 20m x 0.5m, is also created to investigate the sen-
sitivity of modeled riverbed pressure to mesh resolution (see
uncertainty analyses in Appendix Al and Fig. Al). Figure 2
shows the horizontal and vertical mesh in the computational
domain. It is observed that the aspect ratio for horizontal (x
and y) grid sizes is 1, but in the vertical direction, it is 20.
Figure 2c also shows that the zig-zag grid does not overlap
with the riverbed, whose effect on flow is further discussed
in the roughness calibration (see Sect. 2.4).

Though different from the traditional body-fitted mesh,
such a zig-zag mesh strategy is both physically reasonable
and technically necessary. Physically, the lidar-measured
bathymetry cannot capture most geometric features that are
smaller than 1 m, which means computational cells with a
size less than 1 m are not necessary. In addition, the effect
of geometric features on flow dynamics, either from missing
features less than 1 m or the differences attributed to mesh
generation, has to be calibrated using the observed water
stage through a distributed rough wall model (see Sect. 2.4).
The efficacy of such a meshing and calibration approach in
predicting water stage and velocity is demonstrated by com-
paring modeled water stage and velocity with field observa-
tions (see Sect. 3.2-3.5). Technically, using grids with a high
aspect ratio is usually necessary for river modeling. This is
because the ratio of horizontal scales to the depth of rivers
(around 1000-20 000 in this work) is usually large and a zig-
zag mesh can maintain good mesh orthogonality at a large
aspect ratio. By contrast, a body-fitted mesh with a large as-
pect ratio usually has bad mesh orthogonality, which causes
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code instability for free-surface tracking and longer compu-
tational time.

2.4 Riverbed turbulence eddy viscosity and roughness
parameterization

Rough elements are ubiquitous in natural rivers and have
long been recognized as the major source of uncertainty in
predicting river discharge, flow speed, water surface profile,
and sediment transport (USACE, 1994; Smith, 2014; Powell,
2014). In this work, the effect of rough elements on turbulent
flow is quantified by linking riverbed turbulence eddy vis-
cosity to bed roughness and flow conditions through a rough
wall model (Versteeg and Malalasekera, 2007).

N S
_”[lnwyut) 1] @

Symbols in Eq. (4) denote turbulent kinematic viscosity vy =
Ut/ p, kinematic viscosity v = u/p, von Karman’s constant
k =0.41, a non-dimensional wall distance y;, = %, and
an integration constant E. Here, yy and u, denote a wall
distance and riverbed shear velocity. The specific value of E
depends on the flow regime and the roughness parameter at
the wall.

For natural rivers, the flow is usually in the fully rough
turbulent flow regime. The integration value thus can be esti-
mated by E = Eo/(1 + Csk) with Ep, Cs, and kJ” denoting
a constant (with a value 9.8), a roughness distribution pa-
rameter, and a non-dimensional roughness height (Schlicht-
ing, 1979; Versteeg and Malalasekera, 2007; Blocken et al.,
2007; CFDDirect, 2017). As classic theories on roughness
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Figure 2. Horizontal and vertical computational meshes. (a) Top view showing the horizontal mesh over the whole domain. (b) Top view
showing the details of horizontal mesh near LI. (¢) 3-D view showing details of the vertical mesh structure.

are usually based on experiments of grain size roughness
(Nikuradse, 1933), we choose Cs = 0.5 with the assumption
that natural roughness distribution is similar to uniformly
roughed channels as in Nikuradse’s experiments (Blocken
et al., 2007). Therefore, the integration value mainly depends
on k&, which is defined as k" = ksu,/v. Here, kg is the
roughness height that needs to be calibrated with water-stage
observations.

As the bed shear velocity u, appears in both the non-
dimensional wall distance y; and the non-dimensional
roughness height k", estimation of the bed eddy viscosity
shown in Eq. (4) is equivalent to estimating bed shear veloc-
ity and roughness height. In this work, the bed shear velocity
is estimated using the turbulent boundary layer theory that
links a non-dimensional velocity (u™ =u/u;) to the non-
dimensional wall distance (y;") through a wall function G,
i, ut =G(y}). In the fully rough regime, the wall func-
tion follows a logarithmic law which has the form as u™ =
1inyf+B—ABwithB=52and AB=B—8.5+LInk]
(Schlichting, 1979). Substituting the velocity (1°) and wall
distance (yg,) at the cell center closest to the wall, the wall
function is converted to a non-linear function depending on
shear velocity, roughness parameter, near-bed velocity, and
wall distance, as shown in Eq. (5). By solving such an equa-
tion under a given roughness kg, we can obtain the value for
bed shear velocity u, and wall turbulent eddy viscosity v;.

G, y0, ur,ks) =0 ®)

The above procedure means solving for shear velocity re-
quires an estimation of bed roughness height k5. For straight
or short rivers, a uniform roughness height may be sufficient.
However, for rivers with large curvature and complex cross-
sectional shapes, e.g., islands, a distributed roughness height
is necessary to capture the heterogeneous distribution of bed
shear velocity. This work proposes a generic approach to esti-
mate a distributed roughness field using an error diagram and
local roughness adjustment approach. The error diagram pro-
vides a rough estimation of the roughness parameters and the
local adjustment further improves calibration accuracy per
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the error diagram. The error diagram is based on the fact that
the water surface elevation increases with increasing rough-
ness height, and thus an optimal roughness height should fall
in arange 0 < ks < k" in order for the model to match the
observed water stage (Figs. 3a and A2).

In this work, the effect of rough elements larger than 1 m
in the vertical direction is directly resolved by mesh and thus
an upper limit of roughness can be set as k"™ = 1 m. With
such an upper limit, we run our models at eight roughness
values (0, 0.025, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5 m) and then cal-
culate the mean error (ME) and mean absolute error (MAE)
between modeled water stage and observed ones at six loca-
tions (Fig. 1b, red dots) from 20 January to 16 February 2011.
With the error diagram as shown in Figs. 3b and A3, we cal-
culate an optimal roughness height ks for each observation
location by making ME = 0 and MAE to be the minimum.

The optimal kg obtained in this way is then uniformly dis-
tributed in eight regions shown in Fig. 3c. Here, ks in R1
and R8 are identical to those in R2 and R7, respectively
(Fig. 3d). Due to the interactions of flow under different
roughness parameters, the locally optimized roughness field
does not guarantee low modeling errors at all locations (see
case OFO in Table 1). As higher deviations occur at 100B,
100N, and 100D, their roughness parameters are systemati-
cally adjusted to achieve better accuracy for all six locations
(cases OF1-OFS5 in Table 1). The final calibrated roughness
values at the six calibration locations are listed in case OF in
Table 1. These calibrated roughness parameters are then used
to simulate the flow from May to December 2011, 2013-
2015, and 2018-2019 to evaluate the modeling capability for
short-term, medium-term, and long-term streamflow. A more
comprehensive discussion of roughness estimation and local
adjustment is included in Sect. 4.1.

2.5 Boundary conditions
Temporal variations in discharge at the inlet control the dy-

namic changes in streamflow and riverbed conditions. Fig-
ure 4 shows the temporal variations of discharge at the in-
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At =095s

Figure 3. The effect of roughness height on WSE at a single location (a), the ME between modeled and observed WSE at six locations (b),
the procedure of generating eight roughness regions (c), and the 3-D view of each region represented in mesh (d).

let during the years 2011 to 2019. A two-step approach is
adopted to consider the discharge effects. Firstly, MASSI,
a one-dimensional hydraulic model (Richmond and Perkins,
2009), is used to obtain the cross-sectional averaged veloc-
ity (u') and water stage (z") at 360 cross sections along a
81 km long river section (Fig. 1b, green region) during 2011—
2019. Then the velocity and stage are interpolated at the
inlet and outlet locations (Fig. 1b, yellow lines) as uiln, ziln
and ul,, z ., respectively. With these data, the inlet veloc-

ity and volume fraction are calculated as u = (u,, 0,0) with

erf[2(zL —2)/Az]+1 erf[2(z1 —2)/Az)]+1
Uy =ui1n—[ iy 2)/ ] and o = erfl2(z;, =)/ AL 2)/ J . Here,

“erf” is an error function used to generate a sharp air-water
interface. Other boundary conditions at the inlet are set as
follows: uniform turbulence kinetic energy k = 0.1 m?s~2,
uniform specific dissipation rate @ = 0.003s™!, zero gradi-
ent for dynamic pressure and turbulence eddy viscosity. It is
worth mentioning that the given values of turbulent kinetic
energy and specific dissipation rate have little effect on the
results. At the outlet, velocity boundary condition is set as
u = (0, —u! ,0) and all other boundaries are zero gradient.
At the top boundary (maximum elevation of the domain),
pressure is set as 0 and the other variables are set as zero gra-
dient. At the riverbed, the turbulence eddy viscosity is deter-
mined through a rough wall model as discussed in Sect. 2.4.
A no-slip boundary condition is set for velocity and zero-
gradient boundary conditions are set for dynamic pressure,
volume fraction, and turbulence kinetic energy. The specific
dissipation rate is calculated through wy, = (a)%,is + wﬁog)l/ 2

with wvis = % and wpog =
w

C,, in Table A2).

12
54— (see values of By and
C)l ' kyw
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2.6 Spatiotemporal decomposition and initial
conditions

Two spatiotemporal decomposition techniques are used in
this work to improve computational efficiency. The first one
is domain decomposition which decomposes the domain into
512 sub-domains and runs on 512 processors (see discus-
sion on speedup in Sect. 4.4). Another one is time decom-
position, which first divides the total simulation time, i.e.,
January 2013 to December 2015 and January 2018 to Octo-
ber 2019, into 58 months and then carries out parallel sim-
ulations for all 58 months simultaneously. The initial and
boundary conditions for each month are set up at the time
4 d prior to the target simulation month. For example, to sim-
ulate the flow between 1 and 28 February, the simulation is
extended to a period between 28 January and 28 February,
and initial and boundary conditions are set up at the start
time on 28 January. With such an approach, initial conditions
for velocity, dynamic pressure, and eddy viscosity are set as
zero, while for turbulence kinetic energy and specific dissi-
pation rate are 1 x 1072 m?s=2 and 0.003 s~! for all simu-
lation months. The water stage and cross-sectional averaged
velocity at the inlet and outlet boundaries at any time dur-
ing the extended period are obtained from a one-dimensional
hydraulic model as described in Sect. 2.5. It is important
to note that such a spin-up approach works because (a) the
flow reaches a quasi-steady state in two to three flow-through
times (about 7' = L /Uy = 30000/0.8 s =0.43 d); and (b) the
time-varying boundary conditions at any time are available
from existing data. Further discussion on the effect of tem-
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Figure 4. The time series of inlet flow rate during the years 2011-2019. S, M, and L denote short, medium, and long term. SM, SH, and SL
denote the medium, high, and low flow in the short-term period; MM and LM denote mixed flow in the medium-term and long-term periods.

poral decomposition on computational efficiency is included
in Sect. 4.4.

2.7 Numerical schemes and solutions

The governing equations for flow (#, pq), volume fraction
(), and turbulence (k, ) were solved with an open-source
CFD platform, OpenFOAM (version 5.x), using a finite vol-
ume method (CFDDirect, 2017). The unsteady terms are dis-
cretized with a first-order Euler scheme, the advection term
of flow is discretized with a second-order Gauss linear up-
wind scheme, and the advection terms of turbulent kinetic
energy and specific dissipation rate are discretized with a
second-order Gauss linear scheme. The advection term and
the compression term of volume fraction are discretized with
Gauss—vanLeer and Gauss linear schemes, respectively. All
diffusion terms are discretized with a corrected central dif-
ferencing scheme and all gradient terms are discretized with
a second-order central differencing method. With these dis-
cretization schemes, initial, and boundary conditions, Open-
FOAM first updates the volume fraction at the interface using
a multidimensional universal limiter with explicit solution
(MULES) algorithm (Zalesak, 1979; Kuzmin et al., 2003;
Liu et al., 2016) and then solves the velocity-pressure cou-
pling using a pressure implicit with splitting of operators
(PISO) algorithm (Issa, 1985), followed by solving w and
k equations. At each iteration, the discretized linear equa-
tion group for pressure is solved using a diagonal-based in-
complete Cholesky preconditioned conjugate gradient (DIC-
PCG) method with a relative convergence tolerance of 10~ 10,
and the discretized linear equation groups for velocity, vol-
ume fraction, turbulent kinetic energy, and specific dissipa-
tion rate are solved with a symmetric Gauss—Seidel smooth
solver at a relative tolerance 10~ !°. The initial time step is
set as 10705 but allowed to adjust during runtime to not
exceed 3s. The maximum and average Courant number for
all cases are less than 1.1 and 0.019, respectively. Here, the
Courant number is calculated as Co = A¢) ¢|¢i|/V with A,
> ¢l#il, and V denoting the variable time step, the total fluxes
of all faces, and cell volume, respectively. With the solution
of volume fraction, the water surface elevation is calculated
by setting o« = 0.5 (Hirt and Nichols, 1981). It is necessary to
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note that the modeled water surface elevation changes little
at time steps 0.1, 0.5, 0.95, 2, and 3 s (see Fig. A4); therefore,
the maximum time step is chosen as 3 s to reduce computa-
tional costs.

3 Results
3.1 Short-term roughness calibration

The error diagram approach gives a rough estimation of the
hydraulic roughness at each location. The modeling accuracy
using these roughness parameters are —16.5-6.4 cm and 7.6—
19.6 cm at six locations (case OFO0 in Table 1) in terms of
ME and MAE, respectively. By systematically adjusting the
roughness parameters at 100B, 100N, and 100D, the over-
all modeling accuracy is improved. Figure 5a compares the
water surface elevation using the locally adjusted roughness
field (case OF in Table 1) and those from observation 1. The
comparison of the hourly recorded water-stage data shows
the modeled WSE accurately predicts the magnitude and fre-
quency in the WSE. The 1:1 plot (Fig. 5b) shows there
is no systematic bias in the model, which can be further
demonstrated by an R? and linear regression slope very close

2 _ 1 _ Y(WSEy—WSE,)?
to 1 (Table 2 SM cases). Here, R- =1 S WSEm—WSE) "
3" WSE,

TN

WSE, = with WSE,, WSE,, and N, denoting mod-
eled WSE, observed WSE, and the number of time series, re-
spectively. Quantitatively, the ME at the six locations falls in
the range —7.5-6.4 cm, which is equivalent to —2.7 %-2.1 %
relative to the average water depth at each location (Table 2
SM cases RME). The MAE at all locations is 7.5-12.7 cm,
which is equivalent to 2.1 %-5.3 % relative to water depth
(Table 2 SM cases RMAE). The root mean square, defined

as rms = M , for all locations is 9.2-16.4 cm,

which is equlvalent to 2.8 %—6 3 % relative to the average
water depth at each location (Table 2 SM cases RRMS). The
comparisons of the simulated water depth with observed ones
are shown in Fig. 5c, d, which demonstrate similar visual and
quantitative accuracies to those observed in Fig. 5a, b.

Geosci. Model Dev., 15, 2917-2947, 2022



2924

Y. Chen et al.: Large spatiotemporal-scale river modeling

T T

(a)123
122
121
120

EREL
@118
w0
=117
116 1 VA8
15 -,
114 1 %

[—T 1doB 100N —— J00D" —— Locke Istand —— foom’

100F et

= 100B
100N
o 100D
#  Locke Island
s 100H
100F

Obslervat%on 1[ 3

/

&

Modeled WSE (m)

3

(b)

Medium flow
Jan/20/2011 - Feb/16/2011

7
’
7

— 201;~ Medum flow |

113 ! | | | 1

2 P 5 9 gl 9® ® O N N o P

0 N3 ©
s?»“%@“msa&sa“msa“lsa“%sa“ oo Ty Py Fyge 3?>° <@ ¢ ¢ w“ R A R w" ?6" RO

134
113 114 115 116 117 118 119 120 121 122 123
Observed WSE (m)

Sl .®.®. A0 A\ AN AD AD

—T 1doB "100k Locke Island "00H 10oF Lol

0 | | | | | 1 1 1 1 1 | | | | | |

|

I Oblervation 1

5
T T T T 1 1008

100N
= Locke Island
= 100H
100F

Modeled depth (m)

(d)

Medium flow
Jan/20/2011 - Feb/16/2011

2011: Medium ﬂow

1 1 1 1

2 9® ok b 9® gl 9® 4® A h )

©

U o ® A *\\ AL ND AN \‘3 o 0 " Observed depih (m) s

s@“%@“%’a\“%@“mw“iw“ wo e T P P s@“ ¢e® ¢e® @" ?*0\?6‘) R T M R R

Figure 5. The comparisons of water surface elevation and depth between the model and observations using the calibrated roughness field
(case OF in Table 1) during a medium flow in 2011. Panels (a) and (c) represent the hourly recorded WSE and depth, respectively. Panels (b)

and (d) denote their 1 : 1 plots.

3.2 Short-term water-stage validation

Though this work calibrates the distributed roughness field
using the observed WSE at a medium-flow (discharge
4227 m3 s’l) scenario, we show that the calibrated rough-
ness works well for predicting the WSE at high flow
(6335m3s™!) and low flow (2613 m3s~1) scenarios. Fig-
ure 6 compares the hourly recorded WSE with observations
during high flow (Fig. 6a) and low flow (Fig. 6¢). Figure 6b,
d shows the 1:1 comparison between these data. The re-
sults show a good match in terms of the magnitude and fre-
quency of the WSE at the six locations. The 1 : 1 plot shows
there is no obvious bias in modeled WSE. In statistics, the
ME during high flow is —2.5-9.1 cm, which is equivalent
to —0.6 %—1.9 % relative to mean water depth at each loca-
tion. Similarly, these values at low flow are —15.6-5.5cm
and —7.1 %—6.6 %, respectively. In terms of the MAE, it is
7.2-13.5cm (1.5 %-3.1 % relative to average water depth) at
high flow and 13.1-26.6 cm (5.1 %—-15.8 % relative to water
depth) at low flow. The rms is 9.7-15.9 cm (2.0 %-3.8 % rel-
ative to water depth) at high flow and 17.7-40.3 cm (6.9 %—
22.2 % relative to water depth) at low flow. The calculated
R? between the modeled and observed WSE is larger than
0.98 for six locations at high flow and is in the range 0.88—
0.93 at low flow, except for at 100D where the value is 0.603.
The slope of the linear regression has a similar trend to R>
in that it falls in the range 1.05-1.1 during high and low flow
at most locations; however, it has a value of 0.859 at 100D
during low flow. These results suggest that the modeled WSE
agrees with observation very well at all locations during the
high flow event. The model WSE is less accurate at low flow
and has obvious deviation at locations where the water depth

Geosci. Model Dev., 15, 2917-2947, 2022

is less than 1 m (case SL at 100H) or not available due to
being too close to the wet—dry boundary (100D).

3.3 Short-term velocity validation

To further examine the model’s predictive capability for flow
velocity, Fig. 7 shows a qualitative comparison of the veloc-
ity magnitude (U) distribution at 12 cross sections between
ADCP measurements and the CFD model. For instance, at
cross section EI, ADCP data are placed at the left-hand
side (a) and the corresponding CFD data are placed at the
right-hand side (b). The distributions of velocity magnitude
at other locations are arranged similarly. By comparing each
pair of figures, it is found that the pattern of the distribu-
tion, e.g., locations of maximum and minimum velocity, is
very similar. This means the CFD model can qualitatively
reproduce the velocity distribution at each cross section. In
addition, it is observed that the distribution is “cleaner” in
CFD data (e.g., Fig. 7x) but shows more noise in ADCP mea-
surements (e.g., Fig. 7w). Such a noise feature is likely in-
duced by small-scale turbulence, measurement uncertainty
from boat movement (Khosronejad et al., 2016; Le et al.,
2019), and other factors such as wind shear, riparian vegeta-
tion, and inaccuracy of topography survey (Lane et al., 1999).
The ADCP measurement uncertainty can also be manifested
by the white space on each figure where data are lost.

Due to these problems, a more commonly used way is to
compare the depth average flow velocity from ADCP and
CFD models as shown in Fig. 8. The result shows that the
agreement between ADCP and the simulation is very good at
locations in the upstream (E1-E3) and the relatively straight
downstream main channel (E9—E10) but not good at the side

https://doi.org/10.5194/gmd-15-2917-2022
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Figure 6. The comparison of water surface elevation from model and observations during high flow and low flow in 2011. (a—b) Hourly
recorded time series of WSE and the 1 : 1 plot during high flow. (c—d) Hourly recorded time series of WSE and the 1 : 1 plot during low flow.

channel with large curvature (E4 and E11). The agreement
is reasonably good at main channels with big curvature (E5—
ES8) and the outlet (E12). The corresponding correlation coef-
ficients (R?) between the CFD modeled and ADCP measured
ones are 0.77-0.79, 0.75, 0.44-0.61, and 0.71-0.83, and 0.61
for E1-E3, E9-E10, E4/E11, E5-E8, and E12, respectively.
As R? of around 0.8 is usually recognized as an “acceptable”
or “good” result in previous work (Nicholas and Sambrook
Smith, 1999; Lane et al., 1999; Horritt, 2005; Lane et al.,
2005); this means that the flow velocity predicted by the CFD
model at most of the locations (9 out of 12) is reliable for
practical applications. It is worth mentioning that the model-
ing accuracy for flow velocity may not be further improved
by using more advanced CFD modeling or more refined mesh
without improving the accuracy of ADCP and topography
survey. For instance, Le et al. (2019) conducted a large-eddy
simulation for a 3.2 km long reach of the Mississippi River
with a given discharge, the prediction accuracy of velocity
was not improved when compared to ADCP measurements
even though 109 million grid and 38400 CPU hours were
used to reach a steady state. Furthermore, as the two dates
chosen for velocity validation are randomly selected, it may
be reasonable to expect that flow velocity modeling at other
dates likely has similar accuracy, at least for short-term sce-
narios. This claim may be indirectly backed by the fact that
WSE calibrated during 2011 still has a similar accuracy to
that in 2018 and 2019 (see Sect. 3.5).

3.4 Medium-term water-stage validation

The short-term water-stage validation shows the roughness
calibrated using the WSE observed at a medium flow can
well predict WSE at medium-, high-, and low-flow scenar-
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ios. To further test if the calibrated roughness can be ap-
plied for medium-term (2 to 3 years after the calibration pe-
riod) surface flow simulations, Fig. 9 compares the modeled
WSE with the observed WSE at 100B during 2013-2014.
Figure 9a shows a comparison of the hourly recorded WSE
from the model with those from two different observations.
Such a comparison shows that the modeled WSE agrees well
with the observations from 1 January 2013 to 1 August 2014.
In addition, it shows that observed WSE has uncertainties.
A further comparison between the two observations shows
that WSE from observation 2 is about 3.2 cm higher than
that from observation 1 and that a small shift in time re-
sults in a large error in standard deviation between the two
observations (see uncertainty analyses in Appendix A2 and
Fig. A7). However, as observation 1 lacks the record during
2013-2014, observation 2 is used for validation during this
time period.

As WSE observation is missing at some dates, three time
periods with continual observations (see MH? and ML? in
Table 2) were chosen to illustrate the modeling performance
in predicting WSE as shown in Fig. 9b, ¢, d. The compar-
ison shows that the modeled WSE agrees very well with
observations at the high flow scenarios during March—June
2013 (Fig. 9b) and April-July 2014 (Fig. 9d). The ME,
MAE, and rms during these periods are —10.1 to —9.2cm,
10.5-11.9cm, and 13.3-15.1cm, respectively. The corre-
sponding relative error to average water depth is —2.8 %
to —2.2%, 2.5 %-3.3 %, 3.1 %—4.1 %, respectively. At the
low flow during September 2013—-January 2014 (Fig. 9c),
the model shows a larger error especially when the WSE is
low (close to 119 m). However, the relative errors to water
depth, with values of —9.9 %, 10.7 %, and 12.6 % for ME,

Geosci. Model Dev., 15, 2917-2947, 2022



Y. Chen et al.: Large spatiotemporal-scale river modeling

(b)e:

01 Apr 2011
16:54:42

(@)m
01 Apr 2011}
16:54:42

(O

04 Mar 2011
12:28:27

g | ADCP: - il
- ADCP: locations
o [——DEA: Riverbed

04 Mar 2011
12:28:27

= ADCP: locations
——DEM: Riverbed,

o
0 50 100 150 200 250 300 350 400 450 300 350 400

50 100 150 200 250 300 350 50 100 150 200 250 300 350 400 450

- . - Uunzls)
ARpLE

04 Mar 2011
13:14:53
300 350 400 450

g | I ADCP: U
- ADCP: locations

1o L= DEM: Biverbed
100 150 200

| IEOR: U
- ADCP: locations
——DENE: Riverbed

50 100 150

04 Mar 2011
13:14:53
400 450

250 250 300 350

01 Apr 2011

01 Apr 2011
16:02:25

o[ mmmoOF:U
= ADCP: locatio
—— DEM: Riverbed

01 Apr 2011
16:28:14

400 450
UG

(9)es

04 Mar 2011
13:49:09

3
U /s)
25
2
- s
. :
I OF: U (h) B4
- ADCP: locations 04 Mar 2011 {8l
13:49:09
0
125
U(m/s)
25

50 100

(r) =
01 Apr 2011
15:08:38

w0 a0 a0

- ADCP: locations
——DEM: Riverbed,
0 50 100 150

200 250 300

E1l
01 Apr 2011
14:29:59
250

b 0 50 100 150 200

s (m)

4 —=DEM: Riverbed

421 . ADCP: locations
—— DEM: Riw
M EM: Riverbed

g I ADCP: U
- ADCP: locations

- ADCP: locations
—— DEM: Riverbed
3 50 10 150

01 Apr 2011
14:53:00

o 50 100 150 200 200

o1 Apr 2011
13:27:00

©
01 Apr 2011
-8 113:27:00

N ADCP: U [ OF: U

+ ADCP: locations
—— DEM: Riverbed
0o s 100 150

(w)

200 250
s (mf!

x)

200, (uf

o 50 100 150

Figure 7. The velocity magnitude distributions on cross sections E1-E12 from ADCP surveys (columns 1 and 3) and CFD modeling (columns
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and s denote depth away from the water surface and distance from the right bank (see Fig. 1c), respectively.

MAE, and rms (see ML? in Table 2), are still low. Figure e,
f, g further shows a 1 : 1 comparison between modeled and
observed WSE. The R? and the linear regression slope are
0.88-0.98 and 1.06—1.1, respectively. These results suggest
the predicted WSE has no obvious bias and the prediction
has good accuracy for a medium-term prediction.

3.5 Long-term water-stage validation

The long-term (7 to 8 years after the calibration period) per-
formance of WSE prediction is important for predicting river
corridor function under a long-term climate change scenario.
To test the modeling performance for long-term WSE pre-
diction, Fig. 10 compares the WSE from the model and the
observation at one location (yellow dot in Fig. 1b), different
from the locations used for calibration. Fig. 10a shows that
the model well captures the trend of the fluctuation in WSE at
100HD during August 2018—November 2019. The ME and
MAE are 7.2 and 14.9 cm, respectively. This is equivalent
to 5.4 % and 11.3 % relative to the mean water depth. The
rms is 22.5 cm and about 17.0 % relative to the average water
depth at 100HD during August 2018—November 2019. Fig-
ure 10b further shows the 1 : 1 plot between the modeled and

Geosci. Model Dev., 15, 2917-2947, 2022

observed WSE at 100HD. The R? and linear regression slope
are 0.89 and 0.980, respectively. These statistics show there
is no obvious bias in our model as the slope is very close to 1.
As the flow during August 2018-November 2019 is always
low (2580 m3 s™1), the R? during this time period is similar
to those calculated at low flow scenario (see SL at 100B—
100F in Table 2) in 2011-2015. Similarly, a lower R? is also
related to a small time shift in the observation as shown in
Fig. A7. Considering that a small time shift in the observa-
tion results in a significant error in MAE and rms, the ME is
a more reliable index for evaluating the modeling accuracy.
Therefore, it is reasonable to claim that our model can predict
WSE in 2018 and 2019 with an accuracy of 5.4 % relative to
mean water depth using the roughness calibrated in 2011.
This suggests that in the next 9 years the WSE may be reli-
ably predicted using the calibrated roughness at the present
time. The water depth is another commonly used metric for
the hydrodynamics model evaluation. Figure 10c, d show the
comparisons of water depth from the model and observation
at 100HD. It is observed that these results demonstrate iden-
tical visual and quantitative accuracy to those quantified by
WSE.
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Figure 8. The comparison of depth-averaged velocity magnitude determined from ADCP surveys and CFD modeling. Black circles denote
measured velocity outliers visually determined through velocity components (Figs. A5 or A6).

3.6 The ratio of dynamic pressure to static pressure

The dynamic pressure is important streamflow quantify, es-
pecially for environmental and ecological functions. How-
ever, modeling results of dynamic pressure in large-scale nat-
ural rivers are rarely reported and the relative importance of
dynamic pressure to hydrostatic pressure is also not clear. To
quantitatively understand the relative importance of dynamic
pressure to the hydrostatic pressure, we define their ratio as
r = pa/[pg(WSE — z,)], with WSE and z;, denoting the wa-
ter surface elevation and riverbed elevation. As such a ratio
varies with location and discharge, we categorize the ratio
into five ranges, including —0.4 to —0.3, —0.3 to —0.2, —0.2
to —0.1, —0.1-0, and 0-0.1. We then calculate the area (A;)
of which the pressure ratio falls in each range and its relative
ratio to the total wetted area (AT). Figure 11 shows the vari-
ations of the relative pressure ratio area (A;/AT) with time
(a) and discharge (b), as well as the spatial distribution of
each pressure ratio range at low- (¢), medium- (d), and high-
flow (e) conditions. The results (Fig. 11a) show that 60 %—
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80 % of the riverbed is covered with dynamic pressure whose
value is —10 % to 0 of the hydrostatic pressure, while 10 %—
30 % of the total area is covered with dynamic pressure is of
—20 % to —10 % of the hydrostatic pressure. The region with
a dynamic pressure ratio higher than 0 or less than —20 % is
small. In addition, it was observed from Fig. 11b that the rel-
ative pressure ratio area (A;/At) behaves differently when
the discharge is less than 2000 m3s~! (low flow), between
2000 and 4000 m? s~! (medium flow), and larger than 4000
m3s~! (high flow), respectively. Specifically, the blue color
is observed at both the dry—wet boundary and main channel
at a low flow (Fig. 11c), while it is mainly observed at the
dry-wet boundary at a high flow (Fig. 11e). At a medium
flow, the blue area can be observed in both the main chan-
nel and the dry—wet boundary, though its area is obviously
smaller than that observed in the low flow scenario. Accord-
ing to Fig. 11a, b, the blue area could increase from around
10 % at a high flow to around 30 % at a low flow. This means
that dynamic pressure may be important at both the dry—wet
boundary and the main channel at low-flow conditions.

Geosci. Model Dev., 15, 2917-2947, 2022
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Figure 9. Medium-term model validation for water surface elevation. A comparison of hourly recorded WSE from model and observations
during 2011-2014 (a), medium flow (b), low flow (c), and high flow (d). Panels (e)—(g) denote the 1 : 1 plot during medium-, low-, and
high-flow scenarios.
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each pressure ratio range at low- (¢), medium- (d), and high-flow (e) conditions.

4 Discussion

4.1 Distributed hydraulic roughness estimation for
large-scale rivers

Hydraulic roughness is a metric used to estimate the re-
sistance applied to flow from complex sediment structures.
Such a value controls the flow speed and water surface eleva-
tion and has been long recognized as the primary control of
the accuracy of numerical modeling of natural rivers (US-
ACE, 1994). For small-scale rivers, assuming a uniformly
distributed roughness is usually acceptable. For large-scale
rivers, however, it is necessary to use a distributed roughness
height because the interactions between flow and local to-
pographic features vary with locations. To guide roughness
estimation in practical applications, we give an in-depth dis-
cussion on the roughness estimation approach used in the
present work (Sect. 4.1.1-4.1.2) and its connections to other
approaches such as Manning’s coefficient (Sect. 4.1.4) and
streambed microtopography (Sect. 4.1.5).

https://doi.org/10.5194/gmd-15-2917-2022

4.1.1 Calibration with observations: local optimal
roughness height

Roughness calibration with observed water stage is an effi-
cient approach for roughness estimation in 3-D free-surface
models. The physical basis of this approach is that the bulk
flow velocity in streams is monotonically related to bed
roughness and therefore an optimal roughness can be ob-
tained by monotonically adjusting a roughness parameter to
match modeled WSE with observed ones. Usually, a very
small roughness height, e.g., 0, results in an underestima-
tion of WSE. While a high roughness height, e.g., the size of
the biggest sediment, results in an overestimation of WSE.
With this in mind, a series of numerical experiments can be
designed by systemically adjusting the roughness parameter
from O to the biggest value. And the relative error between
modeled WSE and observed ones can be directly calculated
as shown in Fig. 3b. An optimal roughness parameter for
each observation location can then be obtained, which is here
referred to as a locally optimal roughness height.

Using such an approach, it is generally observed that the
modeled WSE is very sensitive to the given roughness height
when its value is much smaller than the optimal one (see

Geosci. Model Dev., 15, 2917-2947, 2022
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Fig. 3a, b, and Figs. A2 and A3). For example, the ME in-
creases by about 0.5-0.7m when the roughness height in-
creases from 0 to 0.025m (Fig. 3b). However, further in-
creasing the roughness height from 0.025 to 0.05 m results
in much smaller changes (0.1-0.18 m) in WSE compared to
that of changing from O to 0.025 m. These changes are even
smaller when the roughness height approaches the optimal
value. These behaviors can be explained as follows.

Firstly, setting a zero roughness height is equivalent to
using a smooth wall function (Versteeg and Malalasekera,
2007; CFDDirect, 2017). Such treatment is only valid when
the shape, size, and distribution of individual sediments on
the riverbed are explicitly represented by the riverbed to-
pography. For almost all CFD modeling of natural rivers,
however, the details of individual sediments cannot be mea-
sured as the commonly used survey technology, i.e., lidar,
cannot capture geometric details smaller than a half meter
(Podhoranyi et al., 2013; Tonina et al., 2019). Therefore,
setting a zero roughness height on top of a lidar-measured
topography results in large errors in predicting WSE when
compared to observed ones. By contrast, using a non-zero
roughness value considers the effects of the missing geo-
metric details on flow, which makes the model more ap-
proaching to the real situation. This can be demonstrated by
similar values of the optimal roughness heights, i.e., 2.83—
25.56 cm (Table 1, case OFO0), to typical sizes of gravel and
cobbles (2 mm-0.256 m) (Berenbrock and Tranmer, 2008).
Hence, it can be concluded that the roughness wall model and
non-zero roughness heights reduce the sensitivity of WSE to
roughness height; and they provide a reliable mechanism for
roughness calibration. It is worth mentioning that the sensi-
tivity of WSE to roughness height can be further reduced if
details (mm-scale) of individual sediments on riverbed can
be measured and explicitly represented by sufficiently small
(mm-scale) mesh in the CFD model (Lane et al., 2004; Hardy
et al., 2005). However, measuring a river topography and
generating a mesh with mm resolution is currently imprac-
tical for large-scale natural streams. Our approach discussed
here, therefore, is still of great practical importance.

4.1.2 Calibration with observations: local roughness
adjustment

As the roughness parameter calibrated in Sect. 4.1.1 usually
works well for a single location, this means that applying
such a parameter to other locations cannot guarantee over-
all modeling accuracy for all locations. Different strategies
can be applied to solve this problem. The simplest strat-
egy is to choose one roughness parameter and apply it uni-
formly to the whole domain. Such a parameter can be directly
identified from error diagrams (Fig. 3b or Fig. A3), which
has a value of k; = 12.2cm. Using this strategy, the over-
all modeling accuracy is about —30-30cm and 7.5-30cm
in terms of ME and MAE (see OFK1 in Table 1). The sec-
ond strategy is to decompose the riverbed into two regions

https://doi.org/10.5194/gmd-15-2917-2022
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Table 2. A summary of flow scenario, discharge, water depth, roughness height, and modeling accuracy for calibration, validation, and

prediction.
Survey  Time Month/ Flow Mean Mean WSE difference between OF and observed
station  period  Year day scenario  discharge  depth ks ME RME MAE RMAE rmms RRMS R? B
ms™hH ) em) em) (%) em) () (em) (%)

SM 2011 1/20-2/16 Medium 4227 3.57 —6.6 —1.8 7.7 2.1 10.1 28 0963 1.072
SH 2011 5/11-9/6 High 6335 4.88 -2.1 —-04 72 1.5 9.7 20 0994 1.062
SL 2011 9/20-12/31 Low 2613 2.19 —-15.6 7.1 19.7 9.0 254 11.6 0914 1.102

100B MH?2 2013 3/11-6/19 High 4449 3.65 30 —10.1 -2.8 11.9 33 151 4.1 0982 1.083
ML?2 2013-14  9/27-1/5 Low 2517 2.10 —20.7 —-9.9 22.4 10.7 264 126 0.879 1.108
MH2 2014 4/15-7/24  High 5217 4.27 -92 =22 10.5 25 133 3.1 0945 1.053
MM?  2013-14  1/1-8/1 Mixed 3755 3.12 —144 —46 16.1 52 221 7.1 0965 1.065
SM 2011 1/20-2/16 ~ Medium 4227 2.78 -75 =27 8.9 32 109 39 0943 1.031

100N SH 2011 5/11-/9/6 High 6335 3.96 18.6 -25 -0.6 8.9 22 110 2.8 0991 1.058
SL 2011 9/20-12/31  Low 2613 1.58 : —-103  —6.5 19.9 126 26.1 16.4 0.881 1.061
MM 2013-15  1/1-12/31 Mixed 3424 2.17 NA NA NA NA NA NA NA NA
SM 2011 1/20-2/16  Medium 4227 NA —0.6 NA 12.7 NA 164 NA 0.874 1.149

100D SH 2011 5/11-/9/6 High 6335 NA 12 3.1 NA 10.6 NA 137 NA 0983 1.071
SL 2011 9/20-12/31  Low 2613 NA —1.8 NA 26.6 NA 403 NA 0.603 0.859
MM 2013-15  1/1-12/31 Mixed 3424 NA NA NA NA NA NA NA NA NA
SM 2011 1/20-2/16  Medium 4227 2.99 6.4 2.1 7.5 2.5 9.2 3.1 0948 1.023

LI SH 2011 5/11-/9/6 High 6335 4.02 283 NA NA NA NA NA NA NA NA
SL 2011 9/20-12/31  Low 2613 1.91 ’ NA NA NA NA NA NA NA NA
MM 2013-15  1/1-12/31 Mixed 3424 2.44 NA NA NA NA NA NA NA NA
SM 2011 1/20-2/16  Medium 4227 1.90 33 1.7 10.0 53 120 63 0923 1.073

100H SH 2011 5/11-/9/6 High 6335 3.00 374 5.7 1.9 9.2 3.1 113 38 0989 1.053
SL 2011 9/20-12/31  Low 2613 0.83 ’ 5.5 6.6 13.1 158 184 222 0922 1.062
MM 2013-15  1/1-12/31 Mixed 3424 1.36 NA NA NA NA NA NA NA NA
SM 2011 1/20-2/16  Medium 4227 3.66 03 008 9.2 25 115 3.1 0928 1.106

100F SH 2011 5/11-/9/6 High 6335 4.77 710 9.1 1.9 13.5 28 159 33 0978 1.103
SL 2011 9/20-12/31  Low 2613 2.59 ’ 2.6 1.0 13.3 51 177 6.9 0926 1.071
MM 2013-15  1/1-12/31 Mixed 3424 3.12 NA NA NA NA NA NA NA NA

100HD LL3 2018-19  8/16-10/31 Low 2580 1.33 NA 7.2 5.4 149 11.3 225 170 0.89 0.980
LM3 2018-19  1/1-10/31 Mixed 3310 1.78 7.2 4.0 14.9 84 225 12.6 NA NA

Observation stations are illustrated in Fig. 1b. The first character in “time period” represents short-term (S), medium-term (M), and long-term (L), and the second character in “time period” represents medium-
(M), high- (H), low- (L), or mixed-type-flow (M) scenarios. Superscripts 2 and 3 denote observation data used for comparison are from observation 2 and observation 3. R? and B is a coefficient quantifying the
degree of correlation between modeled and observed WSE and the slope of the linear regression of 1: 1 plots. NA is used when observed data are not available.

with different roughness parameters assigned to each region.
This strategy is based on the fact that the error diagrams
(Fig. 3b or Fig. A3) show two different behaviors at the re-
gion 100B and the other five locations. Following this con-
cept, kszb = 25.56 cm is assigned for the region at 100B and
k2* = 6.25 cm is assigned for all other regions. The overall
modeling accuracy for WSE using such a strategy is around
—17-15cm and 9-15cm in terms of ME and MAE (see
OFK2 in Table 1). Overall, we see that the modeling accuracy
of using one or two roughness values is £0.3 and +0.15m
in terms of ME, and 0.3 and 0.15 m in terms of MAE. It is
important to mention that such a modeling accuracy can be
roughly predicted using error diagrams without running ac-
tual simulations (cases OFK1 and OFK2 in Table 1). This
means that the error diagram is a good tool for designing a
calibration strategy. We also tested the strategy of interpolat-
ing the locally optimal roughness height to 50 uniformly dis-
tributed regions (see ks and regions in Fig. A8). The overall
accuracy for WSE is —19.4-8.5 cm and 9.3-19.4 cm in terms
of ME and MAE (case OFK50 in Table 1), respectively. This
result suggests that interpolating the locally optimal rough-

https://doi.org/10.5194/gmd-15-2917-2022

ness height to more regions does not improve modeling ac-
curacy because roughness interpolating itself may introduce
extra uncertainty to the roughness field. From the above dis-
cussion, we found that the best strategy is to decompose the
riverbed into N regions with N equal to the number of survey
locations. Without further adjustment of the local optimal
roughness parameters, such a strategy gives an overall mod-
eling accuracy of WSE as —16.5-6.4cm and 7.6-19.6 cm in
terms of ME and MAE, respectively.

To further improve the modeling accuracy, local adjust-
ment of the local optimal roughness parameters is necessary.
This is because the locally optimal roughness parameters ne-
glect the flow interactions due to locally variable flow re-
sistance, backwater effects from downstream to upstream,
and the effects of sinuosity. The local adjustment is used
to incorporate these effects into the calibration and achieve
a globally optimal roughness calibration. As higher uncer-
tainty (case OFQ in Table 1) occurs at the upstream locations
(100B, 100N, and 100D) using the locally optimal roughness
height, we systematically adjust the roughness parameters
at these locations. The final modeling accuracy for WSE is

Geosci. Model Dev., 15, 2917-2947, 2022



2932

—7.5-6.4cm and 7.5-12.7 cm in terms of ME and MAE, re-
spectively. Further improvement of the accuracy is possible
but not necessary as the relative errors to water depth have
been reduced to —2.7 %-2.1 % and 2.1 %-5.3 % in terms of
ME and MAE.

Nevertheless, it is worth summarizing how local adjust-
ment improves modeling accuracy. Firstly, increasing rough-
ness height at the most upstream location (100B) improves
the accuracy of WSE only at that location (see OF0, OF1,
and OF2 in Table 1). Secondly, changing roughness height
at 100N has little effect on WSE at 100N and neighbor-
ing upstream locations (see OF2 and OF3 in Table 1). And
thirdly, increasing roughness height at 100D significantly af-
fects WSE at all upstream locations and has a larger influence
on the locations closer to that location. These results suggest
that roughness heights at some critical locations (most up-
stream and close to pool) have a larger impact on the over-
all modeling accuracy. It is also worth noting that the cal-
ibration strategy discussed in Sect. 4.1.1-4.1.2 is designed
based on water-stage measurement data availability. Such a
strategy can provide unique roughness values in the local op-
timal roughness calibration step, however, may not provide
unique values in the local roughness adjustment step. Con-
sidering that the overall model performance is controlled by
both steps, future applications are recommended to pay more
attention to the first step due to its uniqueness. Specific ac-
tions include deploying stage survey devices at critical lo-
cations (upstream, pools, bends, islands, etc.) and in char-
acteristic sediment environments, e.g., gravel, sand, mixed
gravel and sand, and vegetation. With a better distribution of
the stage survey locations, the overall model accuracy solely
based on the first step is likely significantly improved, con-
sequently the local roughness adjustment step becomes less
important. If the adjustment step is a must, integrating the
present CFD framework with machine learning approaches,
e.g., parameter learning (Tsai et al., 2021) and reinforcement
learning, can potentially address the non-uniqueness issue.

4.1.3 Sensitivities of water surface elevation and
velocity magnitude variations to roughness
heights

Though the above roughness estimation strategy only targets
minimizing the water-stage differences between the model
and observations at six locations, it is worth noting that the
roughness values also affect the spatial variations of water
stage and velocity. By selecting case OF (see Table 1) as
a reference case, Fig. 12 compares the distributions of wa-
ter stage and free-surface velocity magnitude from the refer-
ence case with those cases using different uniform roughness
heights at two transects (L1 and L2) (see Fig. 1c). In par-
ticular, Fig. 12a shows that the average WSE at transect L1
increases from 118.4 to 120 m with the roughness height in-
creasing from O to 0.5 m. This contributes to only an 18 %
increase in the water depth at the channel thalweg (eleva-
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tion 109.4 m); however, it significantly affects the model ac-
curacy in predicting the water depth near the river banks
where the submerged bed elevation from the reference case
is around 119m. At transect L2 (Fig. 12d), increasing the
roughness height from 0 to 0.5 m causes an increase in WSE
from 113.9 to 115.7 m if selecting the yellow circles as the
average WSEs. This means the water depth at the channel
thalweg increases 28 % (bed elevation of 107.55 m) and also
causes significant changes in the water depth near the banks
whose elevation is around 115 m. Figure 12d also shows that
the spatial variation of WSE is affected by the selection of
roughness parameters, especially at a lower value. In sum-
mary, the water depth near the river banks is highly sensi-
tive to the roughness values, while the sensitivity is reduced
when approaching the river thalweg. Due to such a reason,
the model calibration should pay more attention to the com-
parison of water stage from model and observations at river
bank regions.

Because velocity at the water surface is a good indica-
tor of the velocity distribution below the surface, Fig. 12b
compares the distribution of surface velocity magnitude at
transect L1 under different roughness heights. The result
shows that the velocity distribution from the zero rough-
ness case differs significantly from the other cases with non-
zero roughness heights. For the cases with non-zero rough-
ness heights, increasing the roughness value (from 0.025 to
0.5 m) does not significantly affect the spatial distribution of
velocity, however, reduces its maximum value from 2.46 to
1.92ms~! (22 % decrease). The relative error (ry) of the
maximum velocity between these cases and the reference
case for L1 is shown in Fig. 12¢ from which the relative er-
ror is observed to decrease from 10 % to around —15 % with
increasing roughness heights. Similar behaviors can be ob-
served at L2 as shown in Fig. 12f. With the roughness height
increasing from 0.025 to 0.5 m, the maximum velocity is re-
duced from 2.68 to 1.88ms~!, while the relative error ry
decreases from around 10 % to —20 %. From these results,
we conclude that the distribution of surface velocity is not
sensitive to the non-zero roughness heights but its maximum
value could vary 25 %-30 % for the roughness range consid-
ered here.

Interestingly, it is observed that the velocity distribution of
the reference case (Fig. 12b, e, red lines) falls in between the
velocity distributions of cases with heights 0.05 m (Fig. 12b,
e, dashed blue line) and 0.1 m (Fig. 12b, e, dashed cyan line),
while the water stage of the reference case (Fig. 12a, d, red
line) is falling between the ranges of the same roughness
cases (Fig. 12a, d, dashed blue and cyan lines). This indi-
cates that the roughness height calibration with water stage
is equivalent to calibrating it against water surface velocity.
Noting that the water stage is highly sensitive to roughness at
river banks, while the water surface velocity is more sensitive
to roughness at the river thalweg, future model development
may consider calibrating distinct roughness values for river

https://doi.org/10.5194/gmd-15-2917-2022
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banks and thalwegs using a combined water-stage and sur-
face velocity calibration.

4.1.4 Converted from Manning’s coefficient

Though the above roughness calibration approach can be ap-
plied for any rivers where WSE observation is available, such
a process is usually time consuming. 1-D and 2-D models
have been widely used to predict WSE and Manning’s co-
efficients have been available in these models. For example,
for the river section studied in this work, the calibrated Man-
ning coefficients from a 2-D CFD model, MASS2, are 0.038,
0.035, 0.034, 0.027, 0.027, and 0.03 (with units of sm~1/3)
at 100B, 100N, 100D, LI, 100H, and 100F (Niehus et al.,
2014). In these situations, the roughness parameter required
in 3-D CFD models can be directly converted from the well-
calibrated Manning coefficients based on a force balance at
the riverbed. Specifically, the force balance can be described
as , = pgSR = 1/8f,oU2 with 7y, S, R, f, and U denot-
ing average bed shear stress, channel slope, hydraulic radius,
Darcy—Weisbach friction factor, and average streamwise ve-

locity. For gravel-bed rivers, it was shown that . /& = a(g)b

with b = 1/6 and a has a value of 6.7, 7.3, 8.2, 8.4, 9.39, etc.
when R/ks > 10 (Chaudhry, 2008; Rickenmann and Reck-
ing, 2011; Ferguson, 2019). Meanwhile, the Manning equa-
tion shows U = %Rz/ 3§1/2 with n denoting the Manning co-
efficient. Using these formulas, the relationship between n

and kg can be quantified asn = #gksl /8 if ks has units of feet
orn= %k; /6 if kg is in SI unit. The coefficient a charac-

terizes the type of sediment that requires further calibration;
however, it could use an average value of 8.0 for a rough es-
timation of kg. In this work, as the locally optimal roughness
height can be deterministically calculated and the modeled
WSE at 100F gives a very good accuracy (see 100F in OF0
in Table 1), we back-calculated the value of a = 8.4 using
ks =7.42cm=0.2434 ftand n = 0.03 s m™~'/3. With the cal-
ibrated value for a, hydraulic roughness kg can be converted
as shown in case MS in Table 1. The modeling accuracy of
WSE using these roughness parameters is —4.7-7.7 cm and
6.4-13.9 cm in terms of ME and MAE, respectively. This re-
sult suggests that the roughness height converted from the
well-calibrated Manning coefficients of 2-D models can give
similar modeling accuracy compared to using the globally
optimal roughness height. Further local adjustment of these
roughness parameters does not significantly improve model-
ing accuracy (see MS2 and MS3 in Table 1).

4.1.5 Estimated from microtopography

Both roughness calibration and conversion from the Man-
ning coefficients require observation of the water stage and
these calibrations may not guarantee the accuracy of other
flow quantities such as bed shear stress and velocity. A more
accurate and physics-based method for evaluating the effects
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of bed roughness is to directly resolve the influence of mi-
crotopography on flow dynamics. However, the success of
such a method depends on high-resolution measurements of
riverbed microtopography, computational techniques capable
of resolving complex geometry in CFD codes, and available
high-performance computing resources. Owing to the rapid
development of structure-from-motion (SfM) photogramme-
try and unnamed aerial vehicles, remote sensing of riverbed
sediment structure with 1-5 cm resolution over a 40 km river
reach has been possible for shallow streams (Carr et al.,
2019). SfM survey of a patch-scale (5 m?2) natural streambed
0.5 m beneath water surface has also been recently realized
with a 1 mm resolution (Danhoff and Huckins, 2020). These
data can be used either for quantifying locally distributed
grain size distribution or used as a geometric boundary for
3-D CFD models where the effects of sediment structure
on flow dynamics can be directly resolved. At the patch
scale (a few meters to tens meters), StM photogrammetry-
scanned high-resolution (mm- to cm-scale) natural riverbeds
have been used to directly resolve the effects of sediment
structure on the flow resistance (Chen et al., 2019). A quan-
titative relationship has been identified between hydraulic
roughness height, turbulence vortex structure, and character-
istic sediment size. Therefore, with available high-resolution
riverbed structures from SfM and existing theories on hy-
draulic roughness, the distributed hydraulic roughness height
in large rivers can be directly estimated and integrated with
the CFD code.

4.2 OpenFOAM medium- and long-term water-stage
prediction performance compared to 1-/2-D models

Though Sect. 4.1 discusses the roughness estimation proce-
dure for a short time, we want to emphasize that the proce-
dure and the usage of the roughness wall model are key to
maintaining the model’s accuracy over long time period and
large spatial extent. Their importance can be illustrated by
comparing the WSE from MASS1 (Richmond and Perkins,
2009), MASS2 (Niehus et al., 2014), OpenFOAM, and ob-
servations as shown in Fig. 13 and Table A3. Here, the three
models are calibrated with WSE during similar time periods
(October 2010-March 2011) using the same river topogra-
phy, discharge, and stage data. The calibration accuracies of
these three models are —0.2-0.2cm, —3.8 to —0.8 cm (Ta-
ble A3), and —7.5-6.4cm (Table 1, case OF) in terms of
ME, and 4.8-17.6 cm, 3.9-12.8 cm, and 7.5—-12.7 cm in terms
of MAE. These data demonstrate that the 1-D (MASSI)
and 2-D (MASS2) models were calibrated to better accu-
racy than the 3-D model during the calibration period. Us-
ing this calibrated roughness, Fig. 13a compares the WSE
from the three models and the observation at location 100B
during April to June in 2013 (in the medium term). The re-
sult suggests that the 1-D and 2-D models overestimate the
WSE of about 0.4 m, while the 3-D model is still very accu-
rate for most dates, even though the 1-D/2-D models have a
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Figure 12. The spatial variations of water surface elevation (a, d) and free-surface velocity magnitude (b, e) under different roughness heights
at transects L1 and L2 (see Fig. 1¢) as well as the relative error (c, f) of the maximum free-surface velocity at each roughness height. Dashed
circle lines and red dots in panels (a)-(b) and (d)—(e) denote the locations where the maximum velocity magnitude is reached. The ry; in
panels (c), (f) is defined as the relative velocity difference between the yellow circles and red dots in panels (b), (e).

better calibration accuracy. Further, to examine these mod-
els’ long-term predictive capability at locations outside cal-
ibration locations, Fig. 13b compares the WSE from these
models and another observation at location 100HD during
2018 and 2019 (long term). The result shows that the WSE
predicted by the 1-D model deviates from that by the 2-D/3-
D models and observations. Such a deviation can be more
clearly observed through the 1 : 1 plot between modeled and
observed WSE (Fig. 13c). Figure 13c also shows that the
WSE from the MASS2 and OpenFOAM has no obvious bias
relative to the observation data. Figure 13d further shows the
1: 1 plot between modeled WSE from MASS1/MASS2 and
OpenFOAM, which clearly suggests that WSE from MASS2
has similar a accuracy to OpenFOAM, but MASS1 deviates
from it, especially at the lower WSE (low flow conditions).
From these results, it is reasonable to conclude that the 3-D
CFD model framework proposed in this work can reliably
predict WSE over short-, medium-, and long-term periods
at both calibration and non-calibration locations. The 1-D
and 2-D models, though with accurate calibration, may not
maintain its predictive capability for medium- and long-term
streamflow at some locations. The lower accuracy of 1-D/2-
D models may be attributed to their intrinsic physical simpli-
fications, e.g., cross-sectional or depth average and resulting
nonphysical meaning of roughness parameter (Lane et al.,
2005; Lane and Ferguson, 2005), which necessitate recali-
brating bed roughness to account for the dynamic changes in
discharge.
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4.3 Effects of discharge variations and topography
heterogeneity on riverbed dynamic pressure

Riverbed dynamic pressure gradient affects the water ex-
change between the stream water and groundwater. Depend-
ing on the treatment of dynamic pressure, existing surface—
subsurface interaction models can be categorized into three
types: models without dynamic pressure, one-way coupled
dynamic pressure models, and two-way coupled dynamic
pressure models. The models that solve the surface water
using 1-D/2-D Saint-Venant equations and 3-D hydrostatic
Navier—Stokes equations belong to the first type because dy-
namic pressure is ignored (Maxwell et al., 2014). The sec-
ond type solves the surface water using a 3-D hydrodynamic
model and then uses the computed riverbed total pressure as
a boundary condition for the subsurface flow without feeding
the fluxes from the subsurface back to the surface water (Car-
denas and Wilson, 2007; Bao et al., 2018; Zhou et al., 2018).
The third type is similar to the second type but allows the
fluxes from the subsurface back to surface water (Broecker
et al., 2019; Li et al., 2020). Though the third type of model
is desired to study the impact of dynamic pressure gradient
on surface—subsurface interactions, it is currently limited to
laboratory-scale and idealized flow conditions due to high
computational costs and model instability. For the spatiotem-
poral scales studied in this work, the one-way coupled ap-
proach is the only solution. Despite the importance of the dy-
namic pressure, existing one-way coupled models usually ne-
glect the effects of dynamic pressure based on an assumption
that the dynamic pressure is negligible compared to the hy-
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Figure 13. A comparison of water surface elevation (WSE) from MASS1, MASS2, OpenFOAM, and observations at 100B during 2013 (a)

and at 100HD during 2018-2019 (b). Panel (c) denotes the 1 :

1 plot of WSE between models and observation for 100HD, and (d) denotes

that between OpenFOAM and MASS1/2. Details of the WSE from MASS1 and MASS?2 can be found in Nichus et al. (2014).

drostatic pressure. With the CFD modeling results reported
in Sect. 3.6, it is found that the relative importance of dy-
namic pressure to hydrostatic pressure varies with discharge
and riverbed topography. In general, the dynamic pressure is
less than 10 % of the hydrostatic pressure in 60 % to 80 %
of the total wetted area and is between 10 % and 20 % of
the hydrostatic pressure in 10 % to 30 % of the region. With
variations in discharge, 20 % more area could be covered by
higher dynamic pressure (10 % and 20 % of the hydrostatic
pressure) at low flow (< 2000 m3s71) compared to that at a
high flow (> 4000 m? s~!). Spatially, both the main channel
and dry—wet boundaries (shorelines and island boundaries)
are likely covered with the above higher dynamic pressure
at a low flow, while only the dry—wet boundaries are cov-
ered with the higher dynamic pressure at a high flow. As
30 % of the wetted area could be covered with dynamic pres-
sure whose value is 10 % to 20 % of the hydrostatic pressure,
whether it is acceptable to neglect the dynamic pressure in
existing surface—subsurface models is questionable. In ad-
dition, the frequent discharge fluctuations cause variations
in the magnitude and coverage area of the dynamic pres-
sure. These dynamic variations likely further affect the wa-
ter exchange rate between stream and groundwater. The spe-
cific impacts of riverbed dynamic pressure on the surface—
subsurface exchange have been reported in another work of
ours (Bao et al., 2022).

4.4 Computational efficiency

Despite the rapid growth in computational capacity in the
past three decades, it is still a bottleneck for CFD model-
ing of natural rivers with tens of kilometers scale over mul-
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tiple years. However, we show that such a limitation may
be relieved using highly efficient CFD code, spatiotempo-
ral decomposition approach, and a few hundred CPUs com-
monly available in university-scale or national-scale cyberin-
frastructure. The discussion here is based on modeling results
during 2011 (1 month), 2013-2015 (36 months), and 2018-
2019 (22 months) by using Cascade, a high-performance
computer managed by the Environmental Molecular Sci-
ences Laboratory (EMSL) at PNNL (https://www.emsl.pnnl.
gov, last access: 30 January 2022). For convenience, we de-
fine wall-clock time, CPU time, and solution time as the real-
world time experienced by humans, the time consumed by
the computer, and the time of water flow in the CFD model,
respectively. With these definitions, the computational effi-
ciency can be quantified by the ratio of solution time to wall-
clock time.

Figure 14 shows the advancement of solution time with
respect to wall-clock time for the short-term medium-flow
case. It is observed that the computational efficiency, i.e., the
slope of each line, increases linearly with increasing time
step AT (solid lines with processor number Np = 256). In
addition, increasing the number of processors from 256 to
512 only increases the computational efficiency by a fac-
tor of 1.5 (see magenta and cyan lines). Further increasing
the number of processors decreases the computational effi-
ciency, which means that an optimal number of processors,
i.e., Np =512, exists for our model. The computational ef-
ficiency is also affected by the selection of the linear solver.
In our case, the PCG solver with DIC conditioner increases
the computational efficiency by a factor of 3.6 compared to
using a generalized geometric—algebraic multigrid (GAMG)
solver (see blue and dashed black lines). Despite the changes
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in time step and number of processors, the modeled WSE
does not change (see Fig. A4). Following these analyses, we
show that the computational efficiency is around 36 by us-
ing 512 processors, 3 s as the time step, and DIC-PCG as the
linear solver. This means we can simulate 1-month solution
time in less than 1d of wall-clock time or 1d solution time
in 40 min (1/36 d) of wall-clock time. With the same parallel
computation setups, we divide simulations during medium
term and long term into 36 and 22 cases and run all cases
simultaneously. This approach does not reduce the total CPU
time but significantly reduces the maximum wall-clock time
required to complete all simulations. The OpenFOAM log
files (see data sets) show that all simulations were completed
in less than 6 d of wall-clock time. Considering the number
of processors, the total CPU hours spent is about 1.1 million,
which is equivalent to 19000 CPU hours for each month.
Note that the time considered here does not include the com-
putational time used for calibration which is around 28 % of
the total CPU hours. However, our work shows that calibra-
tion is only required once. Therefore, for rapid predictions
of the streamflow with well-calibrated roughness parameters,
the computational efficiency is likely feasible in terms of how
much time and how many CPU hours are required.

5 Conclusions

This work proposed a semi-automated workflow that com-
bines topographic and water-stage surveys, 3-D computa-
tional fluid dynamics modeling, a distributed rough wall re-
sistance model, and spatiotemporal decomposition to sim-
ulate the streamflow in a 30km long river reach in the
Columbia River spanning 5 years. Specifically, a lidar-
measured river topography is represented by a zig-zag grid in
the 3-D model. The effect of geometric differences between
an actual riverbed and the computational mesh on streamflow
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is modeled with a distributed rough wall resistance model
with the roughness parameters calibrated with measured
WSE at six locations during 2011. The time decomposition
approach enables decomposing the simulation period 2013—
2015 into 36 months and 2018-2019 into 22 months with
each month simulated simultaneously using parallel compu-
tation. Further computational efficiency analyses show that
the time step, number of processors, and selection of lin-
ear solver affect the final computational efficiency. Using the
spatiotemporal decomposition approach, the 3-D CFD mod-
eling of the streamflow in 58 months can be achieved in less
than 6 d with a cost of 1.1 million CPU hours.

Systematical roughness calibration shows that the dis-
tributed roughness field enables an average WSE differ-
ence between modeled and observed ones as —7.5-6.4 cm,
which is equivalent to —2.7 %-2.1 % relative to average wa-
ter depth. With this calibrated roughness field, the modeling
accuracy for WSE is reported as —15.6-9.1 cm, —14.4 cm,
and 7.2 cm for short-term, medium-term, and long-term pre-
dictions, which is equivalent to —7.1 %—6.6 %, —4.6 %, and
5.4 % relative to the average water depth. The model also
demonstrates its predictive capability in reproducing the flow
distribution and depth-averaged flow velocity at 9 out of 12
cross sections with correlation coefficients of 0.71-0.83. Us-
ing the validated modeling results, the relative importance of
dynamic pressure to hydrostatic pressure and its dependen-
cies on discharge variations and topography heterogeneity
are further studied. It is found that the dynamic pressure is
less than 10 % of the hydrostatic pressure in 60 % to 80 % of
the total wetted area, while it is 10 % to 20 % of the hydro-
static pressure in 10 % to 30 % of the wetted region. The rel-
ative importance and the coverage area are found to change
with discharge and locations.

Given the high modeling accuracy and computational effi-
ciency of our model, this work provides a generic framework
to evaluate and predict the impacts of climate- and human-
induced discharge variations on river flow velocity, stage,
and dynamic pressure at decadal temporal scales and tens-
of-kilometers spatial scales that are relevant to the hyper-
resolution (0.1-1 km) global- and continental-scale land sur-
face (Wood et al., 2011; Bierkens et al., 2015) and groundwa-
ter modeling (Condon et al., 2021). With the discharge from
global hydrological models at relevant scales, e.g., 5 to 10 km
in space and hourly to daily in time (Lin et al., 2019; Alfieri
et al., 2020; Harrigan et al., 2020; Yang et al., 2021), the
streamflow model can be better constrained by climate- and
human-induced discharge disturbances and can also serve as
a test bed for the characterization of the processes at the
scales (less than 0.1 km) not represented in global hydrologic
models.
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Appendix A: Uncertainty analyses

Al Mesh resolution and time step uncertainty

The mesh resolution and time step are common sources of
uncertainty of CFD models. As one goal of this paper is to
predict the total pressure at the streambed, a summation of
the hydrostatic pressure and the dynamic pressure, Fig. Al
shows the difference and the 1:1 plot of the total pres-
sure head between a fine mesh (20m x 20m x 0.5m) and a
coarse mesh (20 m x 20m x 1 m) at the time 16 PM 16 Jan-
uary 2013. The result shows that the difference is in the range
—0.1-0.1 m at most of the locations and the spatial average
difference is —0.03 m (Fig. Ala). The 1 : 1 plot also shows
that the total pressure head from the two meshes almost over-
laps with a mean difference, a root mean square, and a R?
value as —0.03 m, 0.1 m, and 0.9987, respectively (Fig. Alb).
Recalling that the WSE (related to the hydrostatic pressure
head) observation itself could have an uncertainty of 0.032 m
(see Appendix A2), the uncertainty attributed to mesh resolu-
tion is of a similar order of uncertainty in water-stage obser-
vation. This suggests that the mesh resolution does not con-
tribute significant error to the total pressure head. To further
evaluate the effect of time step, Fig. A4 shows a comparison
of the modeled WSE using five different time steps at the six
observation locations. The results reveal that the time step
tested here does not affect the accuracy of WSE. Therefore,
we choose the time step of 3 s as the final time step in order
to reduce computational costs (see Sect. 2.7).
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A2 Water-stage observation uncertainty

To illustrate the uncertainty in WSE observations, Fig. A7
shows a comparison of the WSE at 100B observed at two
nearby locations. The results show that the ME between ob-
servation 2 and observation 1 is 3.219 cm; however, the stan-
dard deviation between the two observations is 11.555cm
(Fig. A7b). We argue that the large standard deviation is at-
tributed to a small time uncertainty during the observation.
This can be proven by Fig. A7c, which shows that the stan-
dard deviation reduces to 4.763 cm if the time history in ob-
servation 2 is shifted by 39.3 min. However, Fig. A7c also
means the time shift does not contribute to a large uncertainty
in its mean value as the ME is always in the range 3.08-
3.22 cm for any time shift between —120 and 120 min. As the
mean value of WSE is used to calibrate roughness, the above
results thus demonstrate that the current WSE survey tech-
nique does not bring significant uncertainty for roughness
quantification but could result in a large difference in stan-
dard deviation, mean absolute error, and root mean square
when comparing the modeled WSE to observed ones. Ac-
tually, if we do an alignment of observation 2, i.e., shifting
observation 2 by 39.3 min in time and adding 3.219 cm to its
value, we see that the difference between observation 1 and
such an aligned WSE is clearly reduced (Fig. A7b).
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Figure AS. A comparison of depth-averaged velocity component along x from ADCP surveys and CFD modeling at E1-E12. Black circles
denote measured outliers visually determined from Fig. AS or Fig. A6.
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Figure A6. A comparison of depth-averaged velocity component along y from ADCP surveys and CFD modeling at E1-E12. Black circles
denote measured outliers visually determined from Fig. A5 or Fig. A6.

122
(a) - — Gbservation 1 —_Obscrvation 2 | Obscrvation 2 after alignment| ~ 3.22 0.4
121.5 \ 1(c
— 1214 ( ) 3.2
= 12050
7]
Z 120 3.18 0.3
£
—
* \ S3.16 g
nov v nov ® oV b wov 20 wo¥ » wov 0 wov » o 0.2~
(b T T T T T T T ©3.14 a
----- Obs 2 - Obs 1: Mean 3.219 cm, SD 11.555 cm D n
Obs 2 after alignment - Obs 1 : Mean 0.009 cm, SD 4.763 cm 1=
i : 312 0.1

3.1 ———Mean: Obs 2 - Obs 1

l ———SD: Obs 2 - Obs 1

WSE Difference (m)

I L L L | o, L L L L 3.08 ' 0
(e‘& ‘Aa(b\- N)(Q\- VW’“\ \\“\g& \“\o\ w‘?m 59,9“& oc\o\ “oqo\ oeco\ \a\‘“\ -120 -90 -60 -30ts (?nln) 30 60 90 120

Figure A7. A comparison of WSE at 100B from observation 1, observation 2, and observation 2 after alignment (a), the differences in WSE
between observation 1 and observation 2 and that between observation 1 and observation 2 after alignment (b), and the mean and standard
deviation between observation 1 and observation 2 with a time shift £ (c).

https://doi.org/10.5194/gmd-15-2917-2022 Geosci. Model Dev., 15, 2917-2947, 2022



2942 Y. Chen et al.: Large spatiotemporal-scale river modeling

—— Interpolated kg (b) 4 ~
O Optimal kg ) ;
s’ Z

6 3
0

0 5 10 15 20 25 30, X
Rkm

Figure A8. The roughness height on 50 pieces of stream interpolated from the six globally optimal roughness parameters (blue circle) (a)
and the decomposition of the streambed into 50 pieces (b).

Table A1. Horizontal coordinates and bed elevation of survey locations.

Station x (m) y(m) zp(m)
100B 555.63 1619.60 117.69
100N 6759.03 5882.76  116.26
100D 8516.19 8082.07 119.05
LI 12580.24 10298.23 113.74

100H 13260.85 9756.13  114.45
100F 16 676.44 4429.60 110.77
100HD  15451.55 7581.22  112.61

Table A2. Coefficients of the k — w turbulence model.

B* Al Qw2 Okl oD B1 B2 Y1 Vi a by a Cy
0.09 05 0856 0.85 1 0.075 0.0828 0.555556 0.44 0.31 1 10 0.09

Table A3. Roughness parameters used in MASS1/2 and associated model accuracy.

Survey MASS] calibration | MASSI validation | MASS2 calibration | MASS2 validation
Station no ks ME MAE | ME MAE | n ks ME MAE | ME MAE
100B 0.033 13.1 —0.2 17.6 24.0 26.0 | 0.038 305 -338 11.7 7.8 12.5
100N 00313 95 0.0 15.6 27.0 30.0 | 0.035 186 -2.8 12.8 45 8.4
100D 0034 156 02 16.1 19.0 220 | 0.034 156 -2.7 10.2 33 47
LI 0.0346 17.3 0.1 48 NA NA | 0027 39 22 11.8 25 4.1
100H 00265 35 02 6.4 -1.0 4910027 39 -2.7 6.6 0.2 0.6
100F 00296 6.8 0.2 7.9 19.0 220 | 003 74 -0.8 39 19 39
Range - - —02-02 48-176 | —1.0-27.0 4.9-30.0 - —38t0—-0.8 39-12.8 | 02-78 0.6-125

Units for n, ks, ME, and MAE are s m"/S, cm, cm, and cm, respectively. The time periods for MASS1 calibration and validation is 3 October 2010-7 March 2011 and 1 July 2011-1
September 2011; and those for MASS?2 are 4 October 2010—10 October 2010 and 4 January 2011-7 January 2011. Values of n, ME, and MAE can be found in Niehus et al. (2014). Values of

ks are used as a reference and calculated by n = %kim with a = 8.4 as discussed in Sect. 4.1.3.
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Code and data availability. OpenFOAM setups, data, and MAT-
LAB code are available at the ESS-DIVE data archive https://doi.
org/10.15485/1819956 (Chen et al., 2021).
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