Articles | Volume 15, issue 5
https://doi.org/10.5194/gmd-15-2197-2022
https://doi.org/10.5194/gmd-15-2197-2022
Model experiment description paper
 | 
16 Mar 2022
Model experiment description paper |  | 16 Mar 2022

Effects of dimensionality on the performance of hydrodynamic models for stratified lakes and reservoirs

Mayra Ishikawa, Wendy Gonzalez, Orides Golyjeswski, Gabriela Sales, J. Andreza Rigotti, Tobias Bleninger, Michael Mannich, and Andreas Lorke

Related authors

Temporal dynamics and environmental controls of carbon dioxide and methane fluxes measured by the eddy covariance method over a boreal river
Aki Vähä, Timo Vesala, Sofya Guseva, Anders Lindroth, Andreas Lorke, Sally MacIntyre, and Ivan Mammarella
EGUsphere, https://doi.org/10.5194/egusphere-2024-1644,https://doi.org/10.5194/egusphere-2024-1644, 2024
Short summary
A Fast-Response Automated Gas Equilibrator (FaRAGE) for continuous in situ measurement of CH4 and CO2 dissolved in water
Shangbin Xiao, Liu Liu, Wei Wang, Andreas Lorke, Jason Woodhouse, and Hans-Peter Grossart
Hydrol. Earth Syst. Sci., 24, 3871–3880, https://doi.org/10.5194/hess-24-3871-2020,https://doi.org/10.5194/hess-24-3871-2020, 2020
Short summary
Diel and seasonal variability of methane emissions from a shallow and eutrophic pond
Wenli Zhang, Shangbin Xiao, Heng Xie, Jia Liu, Dan Lei, and Andreas Lorke
Biogeosciences Discuss., https://doi.org/10.5194/bg-2020-178,https://doi.org/10.5194/bg-2020-178, 2020
Manuscript not accepted for further review
Short summary
Multimodel simulation of vertical gas transfer in a temperate lake
Sofya Guseva, Tobias Bleninger, Klaus Jöhnk, Bruna Arcie Polli, Zeli Tan, Wim Thiery, Qianlai Zhuang, James Anthony Rusak, Huaxia Yao, Andreas Lorke, and Victor Stepanenko
Hydrol. Earth Syst. Sci., 24, 697–715, https://doi.org/10.5194/hess-24-697-2020,https://doi.org/10.5194/hess-24-697-2020, 2020
Short summary
Regional-scale lateral carbon transport and CO2 evasion in temperate stream catchments
Katrin Magin, Celia Somlai-Haase, Ralf B. Schäfer, and Andreas Lorke
Biogeosciences, 14, 5003–5014, https://doi.org/10.5194/bg-14-5003-2017,https://doi.org/10.5194/bg-14-5003-2017, 2017
Short summary

Related subject area

Hydrology
Deep dive into hydrologic simulations at global scale: harnessing the power of deep learning and physics-informed differentiable models (δHBV-globe1.0-hydroDL)
Dapeng Feng, Hylke Beck, Jens de Bruijn, Reetik Kumar Sahu, Yusuke Satoh, Yoshihide Wada, Jiangtao Liu, Ming Pan, Kathryn Lawson, and Chaopeng Shen
Geosci. Model Dev., 17, 7181–7198, https://doi.org/10.5194/gmd-17-7181-2024,https://doi.org/10.5194/gmd-17-7181-2024, 2024
Short summary
PyEt v1.3.1: a Python package for the estimation of potential evapotranspiration
Matevž Vremec, Raoul A. Collenteur, and Steffen Birk
Geosci. Model Dev., 17, 7083–7103, https://doi.org/10.5194/gmd-17-7083-2024,https://doi.org/10.5194/gmd-17-7083-2024, 2024
Short summary
Prediction of hysteretic matric potential dynamics using artificial intelligence: application of autoencoder neural networks
Nedal Aqel, Lea Reusser, Stephan Margreth, Andrea Carminati, and Peter Lehmann
Geosci. Model Dev., 17, 6949–6966, https://doi.org/10.5194/gmd-17-6949-2024,https://doi.org/10.5194/gmd-17-6949-2024, 2024
Short summary
Regionalization in global hydrological models and its impact on runoff simulations: a case study using WaterGAP3 (v 1.0.0)
Jenny Kupzig, Nina Kupzig, and Martina Flörke
Geosci. Model Dev., 17, 6819–6846, https://doi.org/10.5194/gmd-17-6819-2024,https://doi.org/10.5194/gmd-17-6819-2024, 2024
Short summary
STORM v.2: A simple, stochastic rainfall model for exploring the impacts of climate and climate change at and near the land surface in gauged watersheds
Manuel F. Rios Gaona, Katerina Michaelides, and Michael Bliss Singer
Geosci. Model Dev., 17, 5387–5412, https://doi.org/10.5194/gmd-17-5387-2024,https://doi.org/10.5194/gmd-17-5387-2024, 2024
Short summary
Download
Short summary
Reservoir hydrodynamics is often described in numerical models differing in dimensionality. 1D and 2D models assume homogeneity along the unresolved dimension. We compare the performance of models with 1 to 3 dimensions. All models presented reasonable results for seasonal temperature dynamics. Neglecting longitudinal transport resulted in the largest deviations in temperature. Flow velocity could only be reproduced by the 3D model. Results support the selection of models and their assessment.