Articles | Volume 15, issue 5
https://doi.org/10.5194/gmd-15-2197-2022
https://doi.org/10.5194/gmd-15-2197-2022
Model experiment description paper
 | 
16 Mar 2022
Model experiment description paper |  | 16 Mar 2022

Effects of dimensionality on the performance of hydrodynamic models for stratified lakes and reservoirs

Mayra Ishikawa, Wendy Gonzalez, Orides Golyjeswski, Gabriela Sales, J. Andreza Rigotti, Tobias Bleninger, Michael Mannich, and Andreas Lorke

Data sets

Dataset of preprint: Effects of dimensionality on the performance of hydrodynamic models Mayra Ishikawa, Wendy Gonzalez, Orides Golyjeswski, Gabriela Sales, J. Andreza Rigotti, Tobias Bleninger, Michael Mannich, and Andreas Lorke https://doi.org/10.5281/zenodo.5600497

Model code and software

Models source code: GLM (version 3.1.8), CE-QUAL-W2 (version 3.7), Delft3D-FLOW (version 4.04.01) - Preprint: Effects of dimensionality on the performance of hydrodynamic models Mayra Ishikawa, Wendy Gonzalez, Orides Golyjeswski, Gabriela Sales, J. Andreza Rigotti, Tobias Bleninger, Michael Mannich, and Andreas Lorke https://doi.org/10.5281/zenodo.5613653

Download
Short summary
Reservoir hydrodynamics is often described in numerical models differing in dimensionality. 1D and 2D models assume homogeneity along the unresolved dimension. We compare the performance of models with 1 to 3 dimensions. All models presented reasonable results for seasonal temperature dynamics. Neglecting longitudinal transport resulted in the largest deviations in temperature. Flow velocity could only be reproduced by the 3D model. Results support the selection of models and their assessment.