Articles | Volume 15, issue 3
https://doi.org/10.5194/gmd-15-1219-2022
https://doi.org/10.5194/gmd-15-1219-2022
Methods for assessment of models
 | 
10 Feb 2022
Methods for assessment of models |  | 10 Feb 2022

A new methodological framework for geophysical sensor combinations associated with machine learning algorithms to understand soil attributes

Danilo César de Mello, Gustavo Vieira Veloso, Marcos Guedes de Lana, Fellipe Alcantara de Oliveira Mello, Raul Roberto Poppiel, Diego Ribeiro Oquendo Cabrero, Luis Augusto Di Loreto Di Raimo, Carlos Ernesto Gonçalves Reynaud Schaefer, Elpídio Inácio Fernandes Filho, Emilson Pereira Leite, and José Alexandre Melo Demattê

Related authors

Application of machine learning to proximal gamma-ray and magnetic susceptibility surveys in the Maritime Antarctic: assessing the influence of periglacial processes and landforms
Danilo César de Mello, Clara Glória Oliveira Baldi, Cássio Marques Moquedace, Isabelle de Angeli Oliveira, Gustavo Vieira Veloso, Lucas Carvalho Gomes, Márcio Rocha Francelino, Carlos Ernesto Gonçalves Reynaud Schaefer, Elpídio Inácio Fernandes-Filho, Edgar Batista de Medeiros Júnior, Fabio Soares de Oliveira, José João Lelis Leal de Souza Souza, Tiago Ferreira, and José A. M. Demattê
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2024-2,https://doi.org/10.5194/gmd-2024-2, 2024
Preprint under review for GMD
Short summary
Weathering intensities in tropical soils evaluated by machine learning, clusterization and geophysical sensors
Danilo César de Mello, Tiago Osório Ferreira, Gustavo Vieira Veloso, Marcos Guedes de Lana, Fellipe Alcantara de Oliveira Mello, Luis Augusto Di Loreto Di Raimo, Diego Ribeiro Oquendo Cabrero, José João Lelis Leal de Souza, Elpídio Inácio Fernandes-Filho, Márcio Rocha Francelino, Carlos Ernesto Gonçalves Reynaud Schaefer, and José A. M. Demattê
SOIL Discuss., https://doi.org/10.5194/soil-2022-17,https://doi.org/10.5194/soil-2022-17, 2022
Revised manuscript not accepted
Short summary

Related subject area

Earth and space science informatics
DustNet (v1): skilful neural network predictions of dust aerosols over the Saharan desert
Trish E. Nowak, Andy T. Augousti, Benno I. Simmons, and Stefan Siegert
Geosci. Model Dev., 18, 3509–3532, https://doi.org/10.5194/gmd-18-3509-2025,https://doi.org/10.5194/gmd-18-3509-2025, 2025
Short summary
RiverBedDynamics v1.0: a Landlab component for computing two-dimensional sediment transport and river bed evolution
Angel D. Monsalve, Samuel R. Anderson, Nicole M. Gasparini, and Elowyn M. Yager
Geosci. Model Dev., 18, 3427–3451, https://doi.org/10.5194/gmd-18-3427-2025,https://doi.org/10.5194/gmd-18-3427-2025, 2025
Short summary
A GPU parallelization of the neXtSIM-DG dynamical core (v0.3.1)
Robert Jendersie, Christian Lessig, and Thomas Richter
Geosci. Model Dev., 18, 3017–3040, https://doi.org/10.5194/gmd-18-3017-2025,https://doi.org/10.5194/gmd-18-3017-2025, 2025
Short summary
The Earth System Grid Federation (ESGF) Virtual Aggregation (CMIP6 v20240125)
Ezequiel Cimadevilla, Bryan N. Lawrence, and Antonio S. Cofiño
Geosci. Model Dev., 18, 2461–2478, https://doi.org/10.5194/gmd-18-2461-2025,https://doi.org/10.5194/gmd-18-2461-2025, 2025
Short summary
Can AI be enabled to perform dynamical downscaling? A latent diffusion model to mimic kilometer-scale COSMO5.0_CLM9 simulations
Elena Tomasi, Gabriele Franch, and Marco Cristoforetti
Geosci. Model Dev., 18, 2051–2078, https://doi.org/10.5194/gmd-18-2051-2025,https://doi.org/10.5194/gmd-18-2051-2025, 2025
Short summary

Cited articles

Agbu, P. A., Fehrenbacher, D. J., and Jansen, I. J.: Soil property relationships with SPOT satellite digital data in east central Illinois, Soil Sci. Soc. Am. J., 54, 807–812, 1990. 
Alvares, C. A., Stape, J. L., Sentelhas, P. C., De Moraes Gonçalves, J. L., and Sparovek, G.: Köppen's climate classification map for Brazil, Meteorol. Z., 22, 711–728, https://doi.org/10.1127/0941-2948/2013/0507, 2013. 
Amundson, R., Berhe, A. A., Hopmans, J. W., Olson, C., Sztein, A. E., and Sparks, D. L.: Soil and human security in the 21st century, Science, 348, 6235, https://doi.org/10.1126/science.1261071, 2015. 
Ayoubi, S., Abazari, P., and Zeraatpisheh, M.: Soil great groups discrimination using magnetic susceptibility technique in a semi-arid region, central Iran, Arab. J. Geosci., 11, 1–12, https://doi.org/10.1007/s12517-018-3941-4, 2018. 
Download
Short summary
We used soil parent material, terrain attributes, and geophysical data from the soil surface to test and compare different and unprecedented geophysical sensor combination, as well as different machine learning algorithms to model and predict several soil attributes. Also, we analyzed the importance of pedoenvironmental variables. The soil attributes were modeled throughout different machine learning algorithms and related to different geophysical sensor combinations.
Share