Model description paper 11 Feb 2021
Model description paper | 11 Feb 2021
The Framework For Ice Sheet–Ocean Coupling (FISOC) V1.1
Rupert Gladstone et al.
Related authors
Hélène Seroussi, Sophie Nowicki, Antony J. Payne, Heiko Goelzer, William H. Lipscomb, Ayako Abe-Ouchi, Cécile Agosta, Torsten Albrecht, Xylar Asay-Davis, Alice Barthel, Reinhard Calov, Richard Cullather, Christophe Dumas, Benjamin K. Galton-Fenzi, Rupert Gladstone, Nicholas R. Golledge, Jonathan M. Gregory, Ralf Greve, Tore Hattermann, Matthew J. Hoffman, Angelika Humbert, Philippe Huybrechts, Nicolas C. Jourdain, Thomas Kleiner, Eric Larour, Gunter R. Leguy, Daniel P. Lowry, Chistopher M. Little, Mathieu Morlighem, Frank Pattyn, Tyler Pelle, Stephen F. Price, Aurélien Quiquet, Ronja Reese, Nicole-Jeanne Schlegel, Andrew Shepherd, Erika Simon, Robin S. Smith, Fiammetta Straneo, Sainan Sun, Luke D. Trusel, Jonas Van Breedam, Roderik S. W. van de Wal, Ricarda Winkelmann, Chen Zhao, Tong Zhang, and Thomas Zwinger
The Cryosphere, 14, 3033–3070, https://doi.org/10.5194/tc-14-3033-2020, https://doi.org/10.5194/tc-14-3033-2020, 2020
Short summary
Short summary
The Antarctic ice sheet has been losing mass over at least the past 3 decades in response to changes in atmospheric and oceanic conditions. This study presents an ensemble of model simulations of the Antarctic evolution over the 2015–2100 period based on various ice sheet models, climate forcings and emission scenarios. Results suggest that the West Antarctic ice sheet will continue losing a large amount of ice, while the East Antarctic ice sheet could experience increased snow accumulation.
Xiaoran Guo, Liyun Zhao, Rupert M. Gladstone, Sainan Sun, and John C. Moore
The Cryosphere, 13, 3139–3153, https://doi.org/10.5194/tc-13-3139-2019, https://doi.org/10.5194/tc-13-3139-2019, 2019
Rupert M. Gladstone, Yuwei Xia, and John Moore
The Cryosphere, 12, 3605–3615, https://doi.org/10.5194/tc-12-3605-2018, https://doi.org/10.5194/tc-12-3605-2018, 2018
Short summary
Short summary
Computer models for the simulation of marine ice sheets (ice sheets resting on bedrock below sea level) historically show poor numerical convergence for grounding line (the boundary between grounded and floating parts of the ice sheet) movement. We have further characterised the nature of the numerical problems leading to poor convergence and highlighted implications for the design of computer experiments that test grounding line movement.
Chen Zhao, Rupert M. Gladstone, Roland C. Warner, Matt A. King, Thomas Zwinger, and Mathieu Morlighem
The Cryosphere, 12, 2637–2652, https://doi.org/10.5194/tc-12-2637-2018, https://doi.org/10.5194/tc-12-2637-2018, 2018
Short summary
Short summary
A combination of computer modelling and observational data were used to infer the resistance to ice flow at the bed of the Fleming Glacier on the Antarctic Peninsula. The model was also used to simulate the distribution of temperature within the ice, which governs the rate at which the ice can deform. This is especially important for glaciers like the Fleming Glacier, which has both regions of rapid deformation and regions of rapid sliding at the bed.
Chen Zhao, Rupert M. Gladstone, Roland C. Warner, Matt A. King, Thomas Zwinger, and Mathieu Morlighem
The Cryosphere, 12, 2653–2666, https://doi.org/10.5194/tc-12-2653-2018, https://doi.org/10.5194/tc-12-2653-2018, 2018
Short summary
Short summary
A combination of computer modelling and observational data were used to infer the resistance to ice flow at the bed of the Fleming Glacier on the Antarctic Peninsula in both 2008 and 2015. The comparison suggests the grounding line retreated by ~ 9 km from 2008 to 2015. The retreat may be enhanced by a positive feedback between friction, melting and sliding at the glacier bed.
Lenneke M. Jong, Rupert M. Gladstone, Benjamin K. Galton-Fenzi, and Matt A. King
The Cryosphere, 12, 2425–2436, https://doi.org/10.5194/tc-12-2425-2018, https://doi.org/10.5194/tc-12-2425-2018, 2018
Short summary
Short summary
We used an ice sheet model to simulate temporary regrounding of a marine ice sheet retreating across a retrograde bedrock slope. We show that a sliding relation incorporating water-filled cavities and the ice overburden pressure at the base allows the temporary regrounding to occur. This suggests that choice of basal sliding relation can be important when modelling grounding line behaviour of regions where potential ice rises and pinning points are present and regrounding could occur.
Yongmei Gong, Thomas Zwinger, Jan Åström, Bas Altena, Thomas Schellenberger, Rupert Gladstone, and John C. Moore
The Cryosphere, 12, 1563–1577, https://doi.org/10.5194/tc-12-1563-2018, https://doi.org/10.5194/tc-12-1563-2018, 2018
Short summary
Short summary
In this study we apply a discrete element model capable of simulating ice fracturing. A microscopic-scale discrete process is applied in addition to a continuum ice dynamics model to investigate the mechanisms facilitated by basal meltwater production, surface meltwater and ice crack opening, for the surge in Basin 3, Austfonna ice cap. The discrete element model is used to locate the ice cracks that can penetrate though the full thickness of the glacier and deliver surface water to the bed.
Sainan Sun, Stephen L. Cornford, John C. Moore, Rupert Gladstone, and Liyun Zhao
The Cryosphere, 11, 2543–2554, https://doi.org/10.5194/tc-11-2543-2017, https://doi.org/10.5194/tc-11-2543-2017, 2017
Short summary
Short summary
The buttressing effect of the floating ice shelves is diminished by the fracture process. We developed a continuum damage mechanics model component of the ice sheet model to simulate the process. The model is tested on an ideal marine ice sheet geometry. We find that behavior of the simulated marine ice sheet is sensitive to fracture processes on the ice shelf, and the stiffness of ice around the grounding line is essential to ice sheet evolution.
Rupert Michael Gladstone, Roland Charles Warner, Benjamin Keith Galton-Fenzi, Olivier Gagliardini, Thomas Zwinger, and Ralf Greve
The Cryosphere, 11, 319–329, https://doi.org/10.5194/tc-11-319-2017, https://doi.org/10.5194/tc-11-319-2017, 2017
Short summary
Short summary
Computer models are used to simulate the behaviour of glaciers and ice sheets. It has been found that such models are required to be run at very high resolution (which means high computational expense) in order to accurately represent the evolution of marine ice sheets (ice sheets resting on bedrock below sea level), in certain situations which depend on sub-glacial physical processes.
Xylar S. Asay-Davis, Stephen L. Cornford, Gaël Durand, Benjamin K. Galton-Fenzi, Rupert M. Gladstone, G. Hilmar Gudmundsson, Tore Hattermann, David M. Holland, Denise Holland, Paul R. Holland, Daniel F. Martin, Pierre Mathiot, Frank Pattyn, and Hélène Seroussi
Geosci. Model Dev., 9, 2471–2497, https://doi.org/10.5194/gmd-9-2471-2016, https://doi.org/10.5194/gmd-9-2471-2016, 2016
Short summary
Short summary
Coupled ice sheet–ocean models capable of simulating moving grounding lines are just becoming available. Such models have a broad range of potential applications in studying the dynamics of ice sheets and glaciers, including assessing their contributions to sea level change. Here we describe the idealized experiments that make up three interrelated Model Intercomparison Projects (MIPs) for marine ice sheet models and regional ocean circulation models incorporating ice shelf cavities.
S. L. Cornford, D. F. Martin, A. J. Payne, E. G. Ng, A. M. Le Brocq, R. M. Gladstone, T. L. Edwards, S. R. Shannon, C. Agosta, M. R. van den Broeke, H. H. Hellmer, G. Krinner, S. R. M. Ligtenberg, R. Timmermann, and D. G. Vaughan
The Cryosphere, 9, 1579–1600, https://doi.org/10.5194/tc-9-1579-2015, https://doi.org/10.5194/tc-9-1579-2015, 2015
Short summary
Short summary
We used a high-resolution ice sheet model capable of resolving grounding line dynamics (BISICLES) to compute responses of the major West Antarctic ice streams to projections of ocean and atmospheric warming. This is computationally demanding, and although other groups have considered parts of West Antarctica, we think this is the first calculation for the whole region at the sub-kilometer resolution that we show is required.
M. Schäfer, F. Gillet-Chaulet, R. Gladstone, R. Pettersson, V. A. Pohjola, T. Strozzi, and T. Zwinger
The Cryosphere, 8, 1951–1973, https://doi.org/10.5194/tc-8-1951-2014, https://doi.org/10.5194/tc-8-1951-2014, 2014
R. Gladstone, M. Schäfer, T. Zwinger, Y. Gong, T. Strozzi, R. Mottram, F. Boberg, and J. C. Moore
The Cryosphere, 8, 1393–1405, https://doi.org/10.5194/tc-8-1393-2014, https://doi.org/10.5194/tc-8-1393-2014, 2014
Daniel Shapero, Jessica Badgeley, Andrew Hoffmann, and Ian Joughin
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2020-419, https://doi.org/10.5194/gmd-2020-419, 2021
Preprint under review for GMD
Short summary
Short summary
This paper describes a new software package called icepack for modeling the flow of ice sheets and glaciers. Glaciologists use tools like icepack to better understand how ice sheets flow, what role they have played in shaping earth's climate, and how much sea-level rise we can expect in the coming decades to centuries. Icepack includes several innovations to help researchers describe and solve interesting glaciological problems and to experiment with the underlying model physics.
Andrew O. Hoffman, Knut Christianson, Daniel Shapero, Benjamin E. Smith, and Ian Joughin
The Cryosphere, 14, 4603–4609, https://doi.org/10.5194/tc-14-4603-2020, https://doi.org/10.5194/tc-14-4603-2020, 2020
Short summary
Short summary
The West Antarctic Ice Sheet has long been considered geometrically prone to collapse, and Thwaites Glacier, the largest glacier in the Amundsen Sea, is likely in the early stages of disintegration. Using observations of Thwaites Glacier velocity and elevation change, we show that the transport of ~2 km3 of water beneath Thwaites Glacier has only a small and transient effect on glacier speed relative to ongoing thinning driven by ocean melt.
Xiangbin Cui, Hafeez Jeofry, Jamin S. Greenbaum, Jingxue Guo, Lin Li, Laura E. Lindzey, Feras A. Habbal, Wei Wei, Duncan A. Young, Neil Ross, Mathieu Morlighem, Lenneke M. Jong, Jason L. Roberts, Donald D. Blankenship, Sun Bo, and Martin J. Siegert
Earth Syst. Sci. Data, 12, 2765–2774, https://doi.org/10.5194/essd-12-2765-2020, https://doi.org/10.5194/essd-12-2765-2020, 2020
Short summary
Short summary
We present a topographic digital elevation model (DEM) for Princess Elizabeth Land (PEL), East Antarctica. The DEM covers an area of approximately 900 000 km2 and was built from radio-echo sounding data collected in four campaigns since 2015. Previously, to generate the Bedmap2 topographic product, PEL’s bed was characterised from low-resolution satellite gravity data across an otherwise large (>200 km wide) data-free zone.
Camilla K. Crockart, Tessa R. Vance, Alexander D. Fraser, Nerilie J. Abram, Alison S. Criscitiello, Mark A. J. Curran, Vincent Favier, Ailie J. E. Gallant, Helle A. Kjær, Andrew R. Klekociuk, Lenneke M. Jong, Andrew D. Moy, Christopher T. Plummer, Paul T. Vallelonga, Jonathon Wille, and Lingwei Zhang
Clim. Past Discuss., https://doi.org/10.5194/cp-2020-134, https://doi.org/10.5194/cp-2020-134, 2020
Preprint under review for CP
Short summary
Short summary
Preliminary analyses of the annual sea salt concentrations and snowfall accumulation in a new East Antarctic ice core, Mount Brown South. We compare this record with an updated Law Dome (Dome Summit South site) ice core record over the period 1975–2016. The Mount Brown South record preserves a stronger and inverse signal for the El Niño Southern Oscillation (in austral winter and spring) compared to the Law Dome record (in summer).
Claudia Wekerle, Tore Hattermann, Qiang Wang, Laura Crews, Wilken-Jon von Appen, and Sergey Danilov
Ocean Sci., 16, 1225–1246, https://doi.org/10.5194/os-16-1225-2020, https://doi.org/10.5194/os-16-1225-2020, 2020
Short summary
Short summary
The high-resolution ocean models ROMS and FESOM configured for the Fram Strait reveal very energetic ocean conditions there. The two main currents meander strongly and shed circular currents of water, called eddies. Our analysis shows that this region is characterised by small and short-lived eddies (on average around a 5 km radius and 10 d lifetime). Both models agree on eddy properties and show similar patterns of baroclinic and barotropic instability of the West Spitsbergen Current.
Yaowen Zheng, Lenneke M. Jong, Steven J. Phipps, Jason L. Roberts, Andrew D. Moy, Mark A. J. Curran, and Tas D. van Ommen
Clim. Past Discuss., https://doi.org/10.5194/cp-2020-124, https://doi.org/10.5194/cp-2020-124, 2020
Preprint under review for CP
Short summary
Short summary
South West Western Australia has experienced a prolonged drought in recent decades. The causes of this drought are unclear. We use an ice core from East Antarctica to reconstruct changes in rainfall over the past 2,000 years. We find that the current drought is unusual, with only two other droughts of similar severity having occurred during this period. Climate modelling shows that greenhouse gas emissions during the industrial era are likely to have contributed to the recent drying trend.
Nicolas C. Jourdain, Xylar Asay-Davis, Tore Hattermann, Fiammetta Straneo, Hélène Seroussi, Christopher M. Little, and Sophie Nowicki
The Cryosphere, 14, 3111–3134, https://doi.org/10.5194/tc-14-3111-2020, https://doi.org/10.5194/tc-14-3111-2020, 2020
Short summary
Short summary
To predict the future Antarctic contribution to sea level rise, we need to use ice sheet models. The Ice Sheet Model Intercomparison Project for AR6 (ISMIP6) builds an ensemble of ice sheet projections constrained by atmosphere and ocean projections from the 6th Coupled Model Intercomparison Project (CMIP6). In this work, we present and assess a method to derive ice shelf basal melting in ISMIP6 from the CMIP6 ocean outputs, and we give examples of projected melt rates.
Hélène Seroussi, Sophie Nowicki, Antony J. Payne, Heiko Goelzer, William H. Lipscomb, Ayako Abe-Ouchi, Cécile Agosta, Torsten Albrecht, Xylar Asay-Davis, Alice Barthel, Reinhard Calov, Richard Cullather, Christophe Dumas, Benjamin K. Galton-Fenzi, Rupert Gladstone, Nicholas R. Golledge, Jonathan M. Gregory, Ralf Greve, Tore Hattermann, Matthew J. Hoffman, Angelika Humbert, Philippe Huybrechts, Nicolas C. Jourdain, Thomas Kleiner, Eric Larour, Gunter R. Leguy, Daniel P. Lowry, Chistopher M. Little, Mathieu Morlighem, Frank Pattyn, Tyler Pelle, Stephen F. Price, Aurélien Quiquet, Ronja Reese, Nicole-Jeanne Schlegel, Andrew Shepherd, Erika Simon, Robin S. Smith, Fiammetta Straneo, Sainan Sun, Luke D. Trusel, Jonas Van Breedam, Roderik S. W. van de Wal, Ricarda Winkelmann, Chen Zhao, Tong Zhang, and Thomas Zwinger
The Cryosphere, 14, 3033–3070, https://doi.org/10.5194/tc-14-3033-2020, https://doi.org/10.5194/tc-14-3033-2020, 2020
Short summary
Short summary
The Antarctic ice sheet has been losing mass over at least the past 3 decades in response to changes in atmospheric and oceanic conditions. This study presents an ensemble of model simulations of the Antarctic evolution over the 2015–2100 period based on various ice sheet models, climate forcings and emission scenarios. Results suggest that the West Antarctic ice sheet will continue losing a large amount of ice, while the East Antarctic ice sheet could experience increased snow accumulation.
Ole Richter, David E. Gwyther, Matt A. King, and Benjamin K. Galton-Fenzi
The Cryosphere Discuss., https://doi.org/10.5194/tc-2020-169, https://doi.org/10.5194/tc-2020-169, 2020
Preprint under review for TC
Ole Richter, David E. Gwyther, Benjamin K. Galton-Fenzi, and Kaitlin A. Naughten
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2020-164, https://doi.org/10.5194/gmd-2020-164, 2020
Preprint under review for GMD
Short summary
Short summary
Here we present an improved model of the Antarctic continental shelf ocean and demonstrate that it is capable of reproducing present day conditions. The improvements are fundamental and regard the inclusion of tides and ocean eddies. We conclude that the model is well suited to gain new insights into processes that are important for Antarctic ice sheet retreat and global ocean changes. Hence, the model will ultimately help to improve projections of sea level rise and climate change.
Coen Hofstede, Sebastian Beyer, Hugh Corr, Olaf Eisen, Tore Hattermann, Veit Helm, Niklas Neckel, Emma C. Smith, Daniel Steinhage, Ole Zeising, and Angelika Humbert
The Cryosphere Discuss., https://doi.org/10.5194/tc-2020-54, https://doi.org/10.5194/tc-2020-54, 2020
Revised manuscript accepted for TC
Thomas Zwinger, Grace A. Nield, Juha Ruokolainen, and Matt A. King
Geosci. Model Dev., 13, 1155–1164, https://doi.org/10.5194/gmd-13-1155-2020, https://doi.org/10.5194/gmd-13-1155-2020, 2020
Short summary
Short summary
We present a newly developed flat-earth model, Elmer/Earth, for viscoelastic treatment of solid earth deformation under ice loads. Unlike many previous approaches with proprietary software, this model is based on the open-source FEM code Elmer, with the advantage for scientists to apply and alter the model without license constraints. The new-generation full-stress ice-sheet model Elmer/Ice shares the same code base, enabling future coupled ice-sheet–glacial-isostatic-adjustment simulations.
Xiaoran Guo, Liyun Zhao, Rupert M. Gladstone, Sainan Sun, and John C. Moore
The Cryosphere, 13, 3139–3153, https://doi.org/10.5194/tc-13-3139-2019, https://doi.org/10.5194/tc-13-3139-2019, 2019
Katrin Lindbäck, Geir Moholdt, Keith W. Nicholls, Tore Hattermann, Bhanu Pratap, Meloth Thamban, and Kenichi Matsuoka
The Cryosphere, 13, 2579–2595, https://doi.org/10.5194/tc-13-2579-2019, https://doi.org/10.5194/tc-13-2579-2019, 2019
Short summary
Short summary
In this study, we used a ground-penetrating radar technique to measure melting at high precision under Nivlisen, an ice shelf in central Dronning Maud Land, East Antarctica. We found that summer-warmed ocean surface waters can increase melting close to the ice shelf front. Our study shows the use of and need for measurements in the field to monitor Antarctica's coastal margins; these detailed variations in basal melting are not captured in satellite data but are vital to predict future changes.
Shahbaz Memon, Dorothée Vallot, Thomas Zwinger, Jan Åström, Helmut Neukirchen, Morris Riedel, and Matthias Book
Geosci. Model Dev., 12, 3001–3015, https://doi.org/10.5194/gmd-12-3001-2019, https://doi.org/10.5194/gmd-12-3001-2019, 2019
Short summary
Short summary
Scientific workflows enable complex scientific computational scenarios, which include data intensive scenarios, parametric executions, and interactive simulations. In this article, we applied the UNICORE workflow management system to automate a formerly hard-coded coupling of a glacier flow model and a calving model, which contain many tasks and dependencies, ranging from pre-processing and data management to repetitive executions on heterogeneous high-performance computing (HPC) resources.
Joe Todd, Poul Christoffersen, Thomas Zwinger, Peter Råback, and Douglas I. Benn
The Cryosphere, 13, 1681–1694, https://doi.org/10.5194/tc-13-1681-2019, https://doi.org/10.5194/tc-13-1681-2019, 2019
Short summary
Short summary
The Greenland Ice Sheet loses 30 %–60 % of its ice due to iceberg calving. Calving processes and their links to climate are not well understood or incorporated into numerical models of glaciers. Here we use a new 3-D calving model to investigate calving at Store Glacier, West Greenland, and test its sensitivity to increased submarine melting and reduced support from ice mélange (sea ice and icebergs). We find Store remains fairly stable despite these changes, but less so in the southern side.
Rupert M. Gladstone, Yuwei Xia, and John Moore
The Cryosphere, 12, 3605–3615, https://doi.org/10.5194/tc-12-3605-2018, https://doi.org/10.5194/tc-12-3605-2018, 2018
Short summary
Short summary
Computer models for the simulation of marine ice sheets (ice sheets resting on bedrock below sea level) historically show poor numerical convergence for grounding line (the boundary between grounded and floating parts of the ice sheet) movement. We have further characterised the nature of the numerical problems leading to poor convergence and highlighted implications for the design of computer experiments that test grounding line movement.
Eef C. H. van Dongen, Nina Kirchner, Martin B. van Gijzen, Roderik S. W. van de Wal, Thomas Zwinger, Gong Cheng, Per Lötstedt, and Lina von Sydow
Geosci. Model Dev., 11, 4563–4576, https://doi.org/10.5194/gmd-11-4563-2018, https://doi.org/10.5194/gmd-11-4563-2018, 2018
Short summary
Short summary
Ice flow forced by gravity is governed by the full Stokes (FS) equations, which are computationally expensive to solve. Therefore, approximations to the FS equations are used, especially when modeling an ice sheet on long time spans. Here, we report a combination of an approximation with the FS equations that allows simulating the dynamics of ice sheets over long time spans without introducing artifacts caused by application of approximations in parts of the domain where they are not valid.
Liren Wei, Duoying Ji, Chiyuan Miao, Helene Muri, and John C. Moore
Atmos. Chem. Phys., 18, 16033–16050, https://doi.org/10.5194/acp-18-16033-2018, https://doi.org/10.5194/acp-18-16033-2018, 2018
Short summary
Short summary
We analyzed streamflow and flood frequency under the stratospheric aerosol geoengineering scenario simulated by climate models. Stratospheric aerosol geoengineering appears to reduce flood risk in most regions, but the overall effects are largely determined by the large-scale geographic pattern. Over the Amazon, stratospheric aerosol geoengineering ameliorates the drying trend here under a future warming climate.
Michael J. Wolovick and John C. Moore
The Cryosphere, 12, 2955–2967, https://doi.org/10.5194/tc-12-2955-2018, https://doi.org/10.5194/tc-12-2955-2018, 2018
Short summary
Short summary
In this paper, we explore the possibility of using locally targeted geoengineering to slow the rate of an ice sheet collapse. We find that an intervention as big as existing large civil engineering projects could have a 30 % probability of stopping an ice sheet collapse, while larger interventions have better odds of success. With more research to improve upon the simple designs we considered, it may be possible to perfect a design that was both achievable and had good odds of success.
Ben Kravitz, Philip J. Rasch, Hailong Wang, Alan Robock, Corey Gabriel, Olivier Boucher, Jason N. S. Cole, Jim Haywood, Duoying Ji, Andy Jones, Andrew Lenton, John C. Moore, Helene Muri, Ulrike Niemeier, Steven Phipps, Hauke Schmidt, Shingo Watanabe, Shuting Yang, and Jin-Ho Yoon
Atmos. Chem. Phys., 18, 13097–13113, https://doi.org/10.5194/acp-18-13097-2018, https://doi.org/10.5194/acp-18-13097-2018, 2018
Short summary
Short summary
Marine cloud brightening has been proposed as a means of geoengineering/climate intervention, or deliberately altering the climate system to offset anthropogenic climate change. In idealized simulations that highlight contrasts between land and ocean, we find that the globe warms, including the ocean due to transport of heat from land. This study reinforces that no net energy input into the Earth system does not mean that temperature will necessarily remain unchanged.
Chad A. Greene, Duncan A. Young, David E. Gwyther, Benjamin K. Galton-Fenzi, and Donald D. Blankenship
The Cryosphere, 12, 2869–2882, https://doi.org/10.5194/tc-12-2869-2018, https://doi.org/10.5194/tc-12-2869-2018, 2018
Short summary
Short summary
We show that Totten Ice Shelf accelerates each spring in response to the breakup of seasonal landfast sea ice at the ice shelf calving front. The previously unreported seasonal flow variability may have aliased measurements in at least one previous study of Totten's response to ocean forcing on interannual timescales. The role of sea ice in buttressing the flow of the ice shelf implies that long-term changes in sea ice cover could have impacts on the mass balance of the East Antarctic Ice Sheet.
Chen Zhao, Rupert M. Gladstone, Roland C. Warner, Matt A. King, Thomas Zwinger, and Mathieu Morlighem
The Cryosphere, 12, 2637–2652, https://doi.org/10.5194/tc-12-2637-2018, https://doi.org/10.5194/tc-12-2637-2018, 2018
Short summary
Short summary
A combination of computer modelling and observational data were used to infer the resistance to ice flow at the bed of the Fleming Glacier on the Antarctic Peninsula. The model was also used to simulate the distribution of temperature within the ice, which governs the rate at which the ice can deform. This is especially important for glaciers like the Fleming Glacier, which has both regions of rapid deformation and regions of rapid sliding at the bed.
Chen Zhao, Rupert M. Gladstone, Roland C. Warner, Matt A. King, Thomas Zwinger, and Mathieu Morlighem
The Cryosphere, 12, 2653–2666, https://doi.org/10.5194/tc-12-2653-2018, https://doi.org/10.5194/tc-12-2653-2018, 2018
Short summary
Short summary
A combination of computer modelling and observational data were used to infer the resistance to ice flow at the bed of the Fleming Glacier on the Antarctic Peninsula in both 2008 and 2015. The comparison suggests the grounding line retreated by ~ 9 km from 2008 to 2015. The retreat may be enhanced by a positive feedback between friction, melting and sliding at the glacier bed.
Peter J. Irvine, David W. Keith, and John Moore
The Cryosphere, 12, 2501–2513, https://doi.org/10.5194/tc-12-2501-2018, https://doi.org/10.5194/tc-12-2501-2018, 2018
Short summary
Short summary
Stratospheric aerosol geoengineering, a form of solar geoengineering, is a proposal to add a reflective layer of aerosol to the upper atmosphere. This would reduce sea level rise by slowing the melting of ice on land and the thermal expansion of the oceans. However, there is considerable uncertainty about its potential efficacy. This article highlights key uncertainties in the sea level response to solar geoengineering and recommends approaches to address these in future work.
Lenneke M. Jong, Rupert M. Gladstone, Benjamin K. Galton-Fenzi, and Matt A. King
The Cryosphere, 12, 2425–2436, https://doi.org/10.5194/tc-12-2425-2018, https://doi.org/10.5194/tc-12-2425-2018, 2018
Short summary
Short summary
We used an ice sheet model to simulate temporary regrounding of a marine ice sheet retreating across a retrograde bedrock slope. We show that a sliding relation incorporating water-filled cavities and the ice overburden pressure at the base allows the temporary regrounding to occur. This suggests that choice of basal sliding relation can be important when modelling grounding line behaviour of regions where potential ice rises and pinning points are present and regrounding could occur.
Sue Cook, Jan Åström, Thomas Zwinger, Benjamin Keith Galton-Fenzi, Jamin Stevens Greenbaum, and Richard Coleman
The Cryosphere, 12, 2401–2411, https://doi.org/10.5194/tc-12-2401-2018, https://doi.org/10.5194/tc-12-2401-2018, 2018
Short summary
Short summary
The growth of fractures on Antarctic ice shelves is important because it controls the amount of ice lost as icebergs. We use a model constructed of multiple interconnected blocks to predict the locations where fractures will form on the Totten Ice Shelf in East Antarctica. The results show that iceberg calving is controlled not only by fractures forming near the front of the ice shelf but also by fractures which formed many kilometres upstream.
Duoying Ji, Songsong Fang, Charles L. Curry, Hiroki Kashimura, Shingo Watanabe, Jason N. S. Cole, Andrew Lenton, Helene Muri, Ben Kravitz, and John C. Moore
Atmos. Chem. Phys., 18, 10133–10156, https://doi.org/10.5194/acp-18-10133-2018, https://doi.org/10.5194/acp-18-10133-2018, 2018
Short summary
Short summary
We examine extreme temperature and precipitation under climate-model-simulated solar dimming and stratospheric aerosol injection geoengineering schemes. Both types of geoengineering lead to lower minimum temperatures at higher latitudes and greater cooling of minimum temperatures and maximum temperatures over land compared with oceans. Stratospheric aerosol injection is more effective in reducing tropical extreme precipitation, while solar dimming is more effective over extra-tropical regions.
Qin Wang, John C. Moore, and Duoying Ji
Atmos. Chem. Phys., 18, 9173–9188, https://doi.org/10.5194/acp-18-9173-2018, https://doi.org/10.5194/acp-18-9173-2018, 2018
Short summary
Short summary
(1) Genesis potential and ventilation indices are assessed in 6 ESMs running RCP4.5 and G4, in 6 tropical cyclone genesis basins.
(2) Genesis potential is reasonably well parameterized by simple surface temperature, but other factors are important in different basins and models such as relative humidity and wind shear.
(3) The Northern Hemisphere basins behave rather differently from the southern ones, and these dominate TC statistics. G4 leads to significantly fewer TCs globally than RCP4.5.
Anboyu Guo, John C. Moore, and Duoying Ji
Atmos. Chem. Phys., 18, 8689–8706, https://doi.org/10.5194/acp-18-8689-2018, https://doi.org/10.5194/acp-18-8689-2018, 2018
Short summary
Short summary
This is an examination of both the zonal and meridional tropical circulations under G1 geoengineering using eight ESMs. Drivers of the changes are examined, with meridional temperature gradient being the dominant factor. The Hadley circulation is changed under G1 differently for each hemisphere, but changes are small compared with abrupt4xCO2. Changes in the Walker circulation are subtle but potentially important in some regions, and ENSO impacts circulations only slightly differently under G1.
Liyun Zhao, John C. Moore, Bo Sun, Xueyuan Tang, and Xiaoran Guo
The Cryosphere, 12, 1651–1663, https://doi.org/10.5194/tc-12-1651-2018, https://doi.org/10.5194/tc-12-1651-2018, 2018
Short summary
Short summary
We investigate the age–depth profile to be expected of the ongoing deep ice coring at Kunlun station, Dome A, using the depth-varying anisotropic fabric suggested by the recent polarimetric measurements in a three-dimensional, thermo-mechanically coupled full-Stokes model. The model results suggest that the age of the deep ice at Kunlun is 649–831 ka, and there are large regions where 1-million-year-old ice may be found 200 m above the bedrock within 5–6 km of the Kunlun station.
Yongmei Gong, Thomas Zwinger, Jan Åström, Bas Altena, Thomas Schellenberger, Rupert Gladstone, and John C. Moore
The Cryosphere, 12, 1563–1577, https://doi.org/10.5194/tc-12-1563-2018, https://doi.org/10.5194/tc-12-1563-2018, 2018
Short summary
Short summary
In this study we apply a discrete element model capable of simulating ice fracturing. A microscopic-scale discrete process is applied in addition to a continuum ice dynamics model to investigate the mechanisms facilitated by basal meltwater production, surface meltwater and ice crack opening, for the surge in Basin 3, Austfonna ice cap. The discrete element model is used to locate the ice cracks that can penetrate though the full thickness of the glacier and deliver surface water to the bed.
Kaitlin A. Naughten, Katrin J. Meissner, Benjamin K. Galton-Fenzi, Matthew H. England, Ralph Timmermann, Hartmut H. Hellmer, Tore Hattermann, and Jens B. Debernard
Geosci. Model Dev., 11, 1257–1292, https://doi.org/10.5194/gmd-11-1257-2018, https://doi.org/10.5194/gmd-11-1257-2018, 2018
Short summary
Short summary
MetROMS and FESOM are two ocean/sea-ice models which resolve Antarctic ice-shelf cavities and consider thermodynamics at the ice-shelf base. We simulate the period 1992–2016 with both models, and with two options for resolution in FESOM, and compare output from the three simulations. Ice-shelf melt rates, sub-ice-shelf circulation, continental shelf water masses, and sea-ice processes are compared and evaluated against available observations.
Dorothée Vallot, Jan Åström, Thomas Zwinger, Rickard Pettersson, Alistair Everett, Douglas I. Benn, Adrian Luckman, Ward J. J. van Pelt, Faezeh Nick, and Jack Kohler
The Cryosphere, 12, 609–625, https://doi.org/10.5194/tc-12-609-2018, https://doi.org/10.5194/tc-12-609-2018, 2018
Short summary
Short summary
This paper presents a new perspective on the role of ice dynamics and ocean interaction in glacier calving processes applied to Kronebreen, a tidewater glacier in Svalbard. A global modelling approach includes ice flow modelling, undercutting estimation by a combination of glacier energy balance and plume modelling as well as calving by a discrete particle model. We show that modelling undercutting is necessary and calving is influenced by basal friction velocity and geometry.
Camilla W. Stjern, Helene Muri, Lars Ahlm, Olivier Boucher, Jason N. S. Cole, Duoying Ji, Andy Jones, Jim Haywood, Ben Kravitz, Andrew Lenton, John C. Moore, Ulrike Niemeier, Steven J. Phipps, Hauke Schmidt, Shingo Watanabe, and Jón Egill Kristjánsson
Atmos. Chem. Phys., 18, 621–634, https://doi.org/10.5194/acp-18-621-2018, https://doi.org/10.5194/acp-18-621-2018, 2018
Short summary
Short summary
Marine cloud brightening (MCB) has been proposed to help limit global warming. We present here the first multi-model assessment of idealized MCB simulations from the Geoengineering Model Intercomparison Project. While all models predict a global cooling as intended, there is considerable spread between the models both in terms of radiative forcing and the climate response, largely linked to the substantial differences in the models' representation of clouds.
Sainan Sun, Stephen L. Cornford, John C. Moore, Rupert Gladstone, and Liyun Zhao
The Cryosphere, 11, 2543–2554, https://doi.org/10.5194/tc-11-2543-2017, https://doi.org/10.5194/tc-11-2543-2017, 2017
Short summary
Short summary
The buttressing effect of the floating ice shelves is diminished by the fracture process. We developed a continuum damage mechanics model component of the ice sheet model to simulate the process. The model is tested on an ideal marine ice sheet geometry. We find that behavior of the simulated marine ice sheet is sensitive to fracture processes on the ice shelf, and the stiffness of ice around the grounding line is essential to ice sheet evolution.
Hakime Seddik, Ralf Greve, Thomas Zwinger, and Shin Sugiyama
The Cryosphere, 11, 2213–2229, https://doi.org/10.5194/tc-11-2213-2017, https://doi.org/10.5194/tc-11-2213-2017, 2017
Short summary
Short summary
The Shirase Glacier in Antarctica is studied by means of a computer model. This model implements two physical approaches to represent the glacier flow dynamics. This study finds that it is important to use the more precise and sophisticated method in order to better understand and predict the evolution of fast flowing glaciers. This may be important to more accurately predict the sea level change due to global warming.
Jason Roberts, Andrew Moy, Christopher Plummer, Tas van Ommen, Mark Curran, Tessa Vance, Samuel Poynter, Yaping Liu, Joel Pedro, Adam Treverrow, Carly Tozer, Lenneke Jong, Pippa Whitehouse, Laetitia Loulergue, Jerome Chappellaz, Vin Morgan, Renato Spahni, Adrian Schilt, Cecilia MacFarling Meure, David Etheridge, and Thomas Stocker
Clim. Past Discuss., https://doi.org/10.5194/cp-2017-96, https://doi.org/10.5194/cp-2017-96, 2017
Preprint withdrawn
Short summary
Short summary
Here we present a revised Law Dome, Dome Summit South (DSS) ice core age model (denoted LD2017) that significantly improves the chronology over the last 88 thousand years. An ensemble approach was used, allowing for the computation of both a median age and associated uncertainty as a function of depth. We use a non-linear interpolation between age ties and unlike previous studies, we made an independent estimate of the snow accumulation rate, where required, for the use of gas based age ties.
Liyun Zhao, Yi Yang, Wei Cheng, Duoying Ji, and John C. Moore
Atmos. Chem. Phys., 17, 6547–6564, https://doi.org/10.5194/acp-17-6547-2017, https://doi.org/10.5194/acp-17-6547-2017, 2017
Short summary
Short summary
We find stratospheric sulfate aerosol injection geoengineering, G3, can slow shrinkage of high-mountain Asia glaciers by about 50 % by 2069 relative to losses from RCP8.5. The reduction in mean precipitation expected for solar geoengineering is less important than the temperature-driven shift from solid to liquid precipitation for forcing Himalayan glacier change. The termination of geoengineering in 2069 leads to temperature rise of 1.3 °C and corresponding increase in glacier volume loss rate.
Felicity S. Graham, Jason L. Roberts, Ben K. Galton-Fenzi, Duncan Young, Donald Blankenship, and Martin J. Siegert
Earth Syst. Sci. Data, 9, 267–279, https://doi.org/10.5194/essd-9-267-2017, https://doi.org/10.5194/essd-9-267-2017, 2017
Short summary
Short summary
Antarctic bed topography datasets are interpolated onto low-resolution grids because our observed topography data are sparsely sampled. This has implications for ice-sheet model simulations, especially in regions prone to instability, such as grounding lines, where detailed knowledge of the topography is required. Here, we constructed a high-resolution synthetic bed elevation dataset using observed covariance properties to assess the dependence of simulated ice-sheet dynamics on grid resolution.
Hiroki Kashimura, Manabu Abe, Shingo Watanabe, Takashi Sekiya, Duoying Ji, John C. Moore, Jason N. S. Cole, and Ben Kravitz
Atmos. Chem. Phys., 17, 3339–3356, https://doi.org/10.5194/acp-17-3339-2017, https://doi.org/10.5194/acp-17-3339-2017, 2017
Short summary
Short summary
This study analyses shortwave radiation (SW) in the G4 experiment of the Geoengineering Model Intercomparison Project. G4 involves stratospheric injection of 5 Tg yr−1 of SO2 against the RCP4.5 scenario. The global mean forcing of the sulphate geoengineering has an inter-model variablity of −3.6 to −1.6 W m−2, implying a high uncertainty in modelled processes of sulfate aerosols. Changes in water vapour and cloud amounts due to the SO2 injection weaken the forcing at the surface by around 50 %.
Rupert Michael Gladstone, Roland Charles Warner, Benjamin Keith Galton-Fenzi, Olivier Gagliardini, Thomas Zwinger, and Ralf Greve
The Cryosphere, 11, 319–329, https://doi.org/10.5194/tc-11-319-2017, https://doi.org/10.5194/tc-11-319-2017, 2017
Short summary
Short summary
Computer models are used to simulate the behaviour of glaciers and ice sheets. It has been found that such models are required to be run at very high resolution (which means high computational expense) in order to accurately represent the evolution of marine ice sheets (ice sheets resting on bedrock below sea level), in certain situations which depend on sub-glacial physical processes.
Christopher J. Fogwill, Erik van Sebille, Eva A. Cougnon, Chris S. M. Turney, Steve R. Rintoul, Benjamin K. Galton-Fenzi, Graeme F. Clark, E. M. Marzinelli, Eleanor B. Rainsley, and Lionel Carter
The Cryosphere, 10, 2603–2609, https://doi.org/10.5194/tc-10-2603-2016, https://doi.org/10.5194/tc-10-2603-2016, 2016
Short summary
Short summary
Here we report new data from in situ oceanographic surveys and high-resolution ocean modelling experiments in the Commonwealth Bay region of East Antarctica, where in 2010 there was a major reconfiguration of the regional icescape due to the collision of the 97 km long iceberg B09B with the Mertz Glacier tongue. Here we compare post-calving observations with high-resolution ocean modelling which suggest that this reconfiguration has led to the development of a new polynya off Commonwealth Bay.
Wenli Wang, Annette Rinke, John C. Moore, Duoying Ji, Xuefeng Cui, Shushi Peng, David M. Lawrence, A. David McGuire, Eleanor J. Burke, Xiaodong Chen, Bertrand Decharme, Charles Koven, Andrew MacDougall, Kazuyuki Saito, Wenxin Zhang, Ramdane Alkama, Theodore J. Bohn, Philippe Ciais, Christine Delire, Isabelle Gouttevin, Tomohiro Hajima, Gerhard Krinner, Dennis P. Lettenmaier, Paul A. Miller, Benjamin Smith, Tetsuo Sueyoshi, and Artem B. Sherstiukov
The Cryosphere, 10, 1721–1737, https://doi.org/10.5194/tc-10-1721-2016, https://doi.org/10.5194/tc-10-1721-2016, 2016
Short summary
Short summary
The winter snow insulation is a key process for air–soil temperature coupling and is relevant for permafrost simulations. Differences in simulated air–soil temperature relationships and their modulation by climate conditions are found to be related to the snow model physics. Generally, models with better performance apply multilayer snow schemes.
Xylar S. Asay-Davis, Stephen L. Cornford, Gaël Durand, Benjamin K. Galton-Fenzi, Rupert M. Gladstone, G. Hilmar Gudmundsson, Tore Hattermann, David M. Holland, Denise Holland, Paul R. Holland, Daniel F. Martin, Pierre Mathiot, Frank Pattyn, and Hélène Seroussi
Geosci. Model Dev., 9, 2471–2497, https://doi.org/10.5194/gmd-9-2471-2016, https://doi.org/10.5194/gmd-9-2471-2016, 2016
Short summary
Short summary
Coupled ice sheet–ocean models capable of simulating moving grounding lines are just becoming available. Such models have a broad range of potential applications in studying the dynamics of ice sheets and glaciers, including assessing their contributions to sea level change. Here we describe the idealized experiments that make up three interrelated Model Intercomparison Projects (MIPs) for marine ice sheet models and regional ocean circulation models incorporating ice shelf cavities.
W. Wang, A. Rinke, J. C. Moore, X. Cui, D. Ji, Q. Li, N. Zhang, C. Wang, S. Zhang, D. M. Lawrence, A. D. McGuire, W. Zhang, C. Delire, C. Koven, K. Saito, A. MacDougall, E. Burke, and B. Decharme
The Cryosphere, 10, 287–306, https://doi.org/10.5194/tc-10-287-2016, https://doi.org/10.5194/tc-10-287-2016, 2016
Short summary
Short summary
We use a model-ensemble approach for simulating permafrost on the Tibetan Plateau. We identify the uncertainties across models (state-of-the-art land surface models) and across methods (most commonly used methods to define permafrost).
We differentiate between uncertainties stemming from climatic driving data or from physical process parameterization, and show how these uncertainties vary seasonally and inter-annually, and how estimates are subject to the definition of permafrost used.
We differentiate between uncertainties stemming from climatic driving data or from physical process parameterization, and show how these uncertainties vary seasonally and inter-annually, and how estimates are subject to the definition of permafrost used.
S. Peng, P. Ciais, G. Krinner, T. Wang, I. Gouttevin, A. D. McGuire, D. Lawrence, E. Burke, X. Chen, B. Decharme, C. Koven, A. MacDougall, A. Rinke, K. Saito, W. Zhang, R. Alkama, T. J. Bohn, C. Delire, T. Hajima, D. Ji, D. P. Lettenmaier, P. A. Miller, J. C. Moore, B. Smith, and T. Sueyoshi
The Cryosphere, 10, 179–192, https://doi.org/10.5194/tc-10-179-2016, https://doi.org/10.5194/tc-10-179-2016, 2016
Short summary
Short summary
Soil temperature change is a key indicator of the dynamics of permafrost. Using nine process-based ecosystem models with permafrost processes, a large spread of soil temperature trends across the models. Air temperature and longwave downward radiation are the main drivers of soil temperature trends. Based on an emerging observation constraint method, the total boreal near-surface permafrost area decrease comprised between 39 ± 14 × 103 and 75 ± 14 × 103 km2 yr−1 from 1960 to 2000.
B. Kravitz, A. Robock, S. Tilmes, O. Boucher, J. M. English, P. J. Irvine, A. Jones, M. G. Lawrence, M. MacCracken, H. Muri, J. C. Moore, U. Niemeier, S. J. Phipps, J. Sillmann, T. Storelvmo, H. Wang, and S. Watanabe
Geosci. Model Dev., 8, 3379–3392, https://doi.org/10.5194/gmd-8-3379-2015, https://doi.org/10.5194/gmd-8-3379-2015, 2015
S. L. Cornford, D. F. Martin, A. J. Payne, E. G. Ng, A. M. Le Brocq, R. M. Gladstone, T. L. Edwards, S. R. Shannon, C. Agosta, M. R. van den Broeke, H. H. Hellmer, G. Krinner, S. R. M. Ligtenberg, R. Timmermann, and D. G. Vaughan
The Cryosphere, 9, 1579–1600, https://doi.org/10.5194/tc-9-1579-2015, https://doi.org/10.5194/tc-9-1579-2015, 2015
Short summary
Short summary
We used a high-resolution ice sheet model capable of resolving grounding line dynamics (BISICLES) to compute responses of the major West Antarctic ice streams to projections of ocean and atmospheric warming. This is computationally demanding, and although other groups have considered parts of West Antarctica, we think this is the first calculation for the whole region at the sub-kilometer resolution that we show is required.
T. Zwinger, T. Malm, M. Schäfer, R. Stenberg, and J. C. Moore
The Cryosphere, 9, 1415–1426, https://doi.org/10.5194/tc-9-1415-2015, https://doi.org/10.5194/tc-9-1415-2015, 2015
Short summary
Short summary
By deploying a large-scale high-resolution turbulent CFD simulation using the present-day topography of the Scharffenbergbotnen (SBB) valley, we show how the surrounding topography redirects incoming easterly katabatic storm fronts to impact the blue ice areas (BIA) inside the valley, where the snow cover frequently is removed. A further simulation of a reconstructed topography at the Late Glacial Maximum further reveals that the BIA at SBB must have formed after this period.
M. A. Rawlins, A. D. McGuire, J. S. Kimball, P. Dass, D. Lawrence, E. Burke, X. Chen, C. Delire, C. Koven, A. MacDougall, S. Peng, A. Rinke, K. Saito, W. Zhang, R. Alkama, T. J. Bohn, P. Ciais, B. Decharme, I. Gouttevin, T. Hajima, D. Ji, G. Krinner, D. P. Lettenmaier, P. Miller, J. C. Moore, B. Smith, and T. Sueyoshi
Biogeosciences, 12, 4385–4405, https://doi.org/10.5194/bg-12-4385-2015, https://doi.org/10.5194/bg-12-4385-2015, 2015
Short summary
Short summary
We used outputs from nine models to better understand land-atmosphere CO2 exchanges across Northern Eurasia over the period 1960-1990. Model estimates were assessed against independent ground and satellite measurements. We find that the models show a weakening of the CO2 sink over time; the models tend to overestimate respiration, causing an underestimate in NEP; the model range in regional NEP is twice the multimodel mean. Residence time for soil carbon decreased, amid a gain in carbon storage.
M. Schäfer, F. Gillet-Chaulet, R. Gladstone, R. Pettersson, V. A. Pohjola, T. Strozzi, and T. Zwinger
The Cryosphere, 8, 1951–1973, https://doi.org/10.5194/tc-8-1951-2014, https://doi.org/10.5194/tc-8-1951-2014, 2014
D. Ji, L. Wang, J. Feng, Q. Wu, H. Cheng, Q. Zhang, J. Yang, W. Dong, Y. Dai, D. Gong, R.-H. Zhang, X. Wang, J. Liu, J. C. Moore, D. Chen, and M. Zhou
Geosci. Model Dev., 7, 2039–2064, https://doi.org/10.5194/gmd-7-2039-2014, https://doi.org/10.5194/gmd-7-2039-2014, 2014
S. Sun, S. L. Cornford, Y. Liu, and J. C. Moore
The Cryosphere, 8, 1561–1576, https://doi.org/10.5194/tc-8-1561-2014, https://doi.org/10.5194/tc-8-1561-2014, 2014
R. Gladstone, M. Schäfer, T. Zwinger, Y. Gong, T. Strozzi, R. Mottram, F. Boberg, and J. C. Moore
The Cryosphere, 8, 1393–1405, https://doi.org/10.5194/tc-8-1393-2014, https://doi.org/10.5194/tc-8-1393-2014, 2014
B. Sun, J. C. Moore, T. Zwinger, L. Zhao, D. Steinhage, X. Tang, D. Zhang, X. Cui, and C. Martín
The Cryosphere, 8, 1121–1128, https://doi.org/10.5194/tc-8-1121-2014, https://doi.org/10.5194/tc-8-1121-2014, 2014
S. Cook, I. C. Rutt, T. Murray, A. Luckman, T. Zwinger, N. Selmes, A. Goldsack, and T. D. James
The Cryosphere, 8, 827–841, https://doi.org/10.5194/tc-8-827-2014, https://doi.org/10.5194/tc-8-827-2014, 2014
T. Zwinger, M. Schäfer, C. Martín, and J. C. Moore
The Cryosphere, 8, 607–621, https://doi.org/10.5194/tc-8-607-2014, https://doi.org/10.5194/tc-8-607-2014, 2014
T. Sato, T. Shiraiwa, R. Greve, H. Seddik, E. Edelmann, and T. Zwinger
Clim. Past, 10, 393–404, https://doi.org/10.5194/cp-10-393-2014, https://doi.org/10.5194/cp-10-393-2014, 2014
B. de Fleurian, O. Gagliardini, T. Zwinger, G. Durand, E. Le Meur, D. Mair, and P. Råback
The Cryosphere, 8, 137–153, https://doi.org/10.5194/tc-8-137-2014, https://doi.org/10.5194/tc-8-137-2014, 2014
J. A. Åström, T. I. Riikilä, T. Tallinen, T. Zwinger, D. Benn, J. C. Moore, and J. Timonen
The Cryosphere, 7, 1591–1602, https://doi.org/10.5194/tc-7-1591-2013, https://doi.org/10.5194/tc-7-1591-2013, 2013
O. Gagliardini, T. Zwinger, F. Gillet-Chaulet, G. Durand, L. Favier, B. de Fleurian, R. Greve, M. Malinen, C. Martín, P. Råback, J. Ruokolainen, M. Sacchettini, M. Schäfer, H. Seddik, and J. Thies
Geosci. Model Dev., 6, 1299–1318, https://doi.org/10.5194/gmd-6-1299-2013, https://doi.org/10.5194/gmd-6-1299-2013, 2013
A. S. Drouet, D. Docquier, G. Durand, R. Hindmarsh, F. Pattyn, O. Gagliardini, and T. Zwinger
The Cryosphere, 7, 395–406, https://doi.org/10.5194/tc-7-395-2013, https://doi.org/10.5194/tc-7-395-2013, 2013
L. Zhao, L. Tian, T. Zwinger, R. Ding, J. Zong, Q. Ye, and J. C. Moore
The Cryosphere Discuss., https://doi.org/10.5194/tcd-7-145-2013, https://doi.org/10.5194/tcd-7-145-2013, 2013
Revised manuscript not accepted
F. Gillet-Chaulet, O. Gagliardini, H. Seddik, M. Nodet, G. Durand, C. Ritz, T. Zwinger, R. Greve, and D. G. Vaughan
The Cryosphere, 6, 1561–1576, https://doi.org/10.5194/tc-6-1561-2012, https://doi.org/10.5194/tc-6-1561-2012, 2012
Z. Zhang and J. C. Moore
Ann. Geophys., 30, 1743–1750, https://doi.org/10.5194/angeo-30-1743-2012, https://doi.org/10.5194/angeo-30-1743-2012, 2012
Related subject area
Cryosphere
Comparison of sea ice kinematics at different resolutions modeled with a grid hierarchy in the Community Earth System Model (version 1.2.1)
Snow profile alignment and similarity assessment for aggregating, clustering, and evaluating snowpack model output for avalanche forecasting
Improvements in one-dimensional grounding-line parameterizations in an ice-sheet model with lateral variations (PSUICE3D v2.1)
Implementation of the RCIP scheme and its performance for 1-D age computations in ice-sheet models
COSIPY v1.3 – an open-source coupled snowpack and ice surface energy and mass balance model
Using Arctic ice mass balance buoys for evaluation of modelled ice energy fluxes
Impact of the ice thickness distribution discretization on the sea ice concentration variability in the NEMO3.6–LIM3 global ocean–sea ice model
Simulating the Early Holocene demise of the Laurentide Ice Sheet with BISICLES (public trunk revision 3298)
Extended enthalpy formulations in the Ice-sheet and Sea-level System Model (ISSM) version 4.17: discontinuous conductivity and anisotropic streamline upwind Petrov–Galerkin (SUPG) method
The Community Firn Model (CFM) v1.0
CrocO_v1.0 : a Particle Filter to assimilate snowpack observations in a spatialised framework
Description and validation of the ice-sheet model Yelmo (version 1.0)
A fully coupled Arctic sea ice-ocean-atmosphere model (ArcIOAM v1.0) based on C-Coupler2: model description and preliminary results
Evaluating integrated surface/subsurface permafrost thermal hydrology models in ATS (v0.88) against observations from a polygonal tundra site
SICOPOLIS-AD v1: an open-source adjoint modeling framework for ice sheet simulation enabled by the algorithmic differentiation tool OpenAD
On the calculation of normalized viscous–plastic sea ice stresses
Modelling thermomechanical ice deformation using an implicit pseudo-transient method (FastICE v1.0) based on graphical processing units (GPUs)
Version 1 of a sea ice module for the physics-based, detailed, multi-layer SNOWPACK model
A module to convert spectral to narrowband snow albedo for use in climate models: SNOWBAL v1.2
On the discretization of the ice thickness distribution in the NEMO3.6-LIM3 global ocean–sea ice model
Scientific workflows applied to the coupling of a continuum (Elmer v8.3) and a discrete element (HiDEM v1.0) ice dynamic model
A rapidly converging initialisation method to simulate the present-day Greenland ice sheet using the GRISLI ice sheet model (version 1.3)
Assessment of sub-shelf melting parameterisations using the ocean–ice-sheet coupled model NEMO(v3.6)–Elmer/Ice(v8.3)
CSIB v1 (Canadian Sea-ice Biogeochemistry): a sea-ice biogeochemical model for the NEMO community ocean modelling framework
LIVVkit 2.1: automated and extensible ice sheet model validation
ATAT 1.1, the Automated Timing Accordance Tool for comparing ice-sheet model output with geochronological data
The Open Global Glacier Model (OGGM) v1.1
Description and evaluation of the Community Ice Sheet Model (CISM) v2.1
Implementation and performance of adaptive mesh refinement in the Ice Sheet System Model (ISSM v4.14)
A continuum model (PSUMEL1) of ice mélange and its role during retreat of the Antarctic Ice Sheet
ESM-SnowMIP: assessing snow models and quantifying snow-related climate feedbacks
The GRISLI ice sheet model (version 2.0): calibration and validation for multi-millennial changes of the Antarctic ice sheet
CVPM 1.1: a flexible heat-transfer modeling system for permafrost
Dynamically coupling full Stokes and shallow shelf approximation for marine ice sheet flow using Elmer/Ice (v8.3)
The NASA Eulerian Snow on Sea Ice Model (NESOSIM) v1.0: initial model development and analysis
MPAS-Albany Land Ice (MALI): a variable-resolution ice sheet model for Earth system modeling using Voronoi grids
BrAHMs V1.0: a fast, physically based subglacial hydrology model for continental-scale application
SHAKTI: Subglacial Hydrology and Kinetic, Transient Interactions v1.0
SMRT: an active–passive microwave radiative transfer model for snow with multiple microstructure and scattering formulations (v1.0)
PIC v1.3: comprehensive R package for computing permafrost indices with daily weather observations and atmospheric forcing over the Qinghai–Tibet Plateau
Numerical experiments on vapor diffusion in polar snow and firn and its impact on isotopes using the multi-layer energy balance model Crocus in SURFEX v8.0
Implementation of higher-order vertical finite elements in ISSM v4.13 for improved ice sheet flow modeling over paleoclimate timescales
Intercomparison of Antarctic ice-shelf, ocean, and sea-ice interactions simulated by MetROMS-iceshelf and FESOM 1.4
The sea ice model component of HadGEM3-GC3.1
A JavaScript API for the Ice Sheet System Model (ISSM) 4.11: towards an online interactive model for the cryosphere community
Implementation of a physically based water percolation routine in the Crocus/SURFEX (V7.3) snowpack model
Evaluating the performance of coupled snow–soil models in SURFEXv8 to simulate the permafrost thermal regime at a high Arctic site
Sea-ice evaluation of NEMO-Nordic 1.0: a NEMO–LIM3.6-based ocean–sea-ice model setup for the North Sea and Baltic Sea
A vertical representation of soil carbon in the JULES land surface scheme (vn4.3_permafrost) with a focus on permafrost regions
An ice sheet model validation framework for the Greenland ice sheet
Shiming Xu, Jialiang Ma, Lu Zhou, Yan Zhang, Jiping Liu, and Bin Wang
Geosci. Model Dev., 14, 603–628, https://doi.org/10.5194/gmd-14-603-2021, https://doi.org/10.5194/gmd-14-603-2021, 2021
Short summary
Short summary
A multi-resolution tripolar grid hierarchy is constructed and integrated in CESM (version 1.2.1). The resolution range includes 0.45, 0.15, and 0.05°. Based on atmospherically forced sea ice experiments, the model simulates reasonable sea ice kinematics and scaling properties. Landfast ice thickness can also be systematically shifted due to non-convergent solutions to an
elastic–viscous–plastic (EVP) model. This work is a framework for multi-scale modeling of the ocean and sea ice with CESM.
Florian Herla, Simon Horton, Patrick Mair, and Pascal Haegeli
Geosci. Model Dev., 14, 239–258, https://doi.org/10.5194/gmd-14-239-2021, https://doi.org/10.5194/gmd-14-239-2021, 2021
Short summary
Short summary
The adoption of snowpack models in support of avalanche forecasting has been limited. To promote their operational application, we present a numerical method for processing multivariate snow stratigraphy profiles of mixed data types. Our algorithm enables applications like dynamical grouping and summarizing of model simulations, model evaluation, and data assimilation. By emulating the human analysis process, our approach will allow forecasters to familiarly interact with snowpack simulations.
David Pollard and Robert M. DeConto
Geosci. Model Dev., 13, 6481–6500, https://doi.org/10.5194/gmd-13-6481-2020, https://doi.org/10.5194/gmd-13-6481-2020, 2020
Short summary
Short summary
Buttressing by floating ice shelves at ice-sheet grounding lines is an
important process that affects ice retreat and whether structural failure
occurs in deep bathymetry. Here, we use a simple algorithm to better
represent 2-D grounding-line curvature in an ice-sheet model. Along with other
enhancements, this improves the performance in idealized-fjord intercomparisons
and enables better diagnosis of potential structural failure at future
retreating Antarctic grounding lines.
Fuyuki Saito, Takashi Obase, and Ayako Abe-Ouchi
Geosci. Model Dev., 13, 5875–5896, https://doi.org/10.5194/gmd-13-5875-2020, https://doi.org/10.5194/gmd-13-5875-2020, 2020
Short summary
Short summary
The present study introduces the rational function-based constrained interpolation profile (RCIP) method for use in 1 d dating computations in ice sheets and demonstrates the performance of the scheme. Comparisons are examined among the RCIP schemes and the first- and second-order upwind schemes. The results show that, in particular, the RCIP scheme preserves the pattern of input histories, in terms of the profile of internal annual layer thickness, better than the other schemes.
Tobias Sauter, Anselm Arndt, and Christoph Schneider
Geosci. Model Dev., 13, 5645–5662, https://doi.org/10.5194/gmd-13-5645-2020, https://doi.org/10.5194/gmd-13-5645-2020, 2020
Short summary
Short summary
Glacial changes play a key role from a socioeconomic, political, and scientific point of view. Here, we present the open-source coupled snowpack and ice surface energy and mass balance model, which provides a lean, flexible, and user-friendly framework for modeling distributed snow and glacier mass changes. The model provides a suitable platform for sensitivity, detection, and attribution analyses for glacier changes and a tool for quantifying inherent uncertainties.
Alex West, Mat Collins, and Ed Blockley
Geosci. Model Dev., 13, 4845–4868, https://doi.org/10.5194/gmd-13-4845-2020, https://doi.org/10.5194/gmd-13-4845-2020, 2020
Short summary
Short summary
This study calculates sea ice energy fluxes from data produced by ice mass balance buoys (devices measuring ice elevation and temperature). It is shown how the resulting dataset can be used to evaluate a coupled climate model (HadGEM2-ES), with biases in the energy fluxes seen to be consistent with biases in the sea ice state and surface radiation. This method has potential to improve sea ice model evaluation, so as to better understand spread in model simulations of sea ice state.
Eduardo Moreno-Chamarro, Pablo Ortega, and François Massonnet
Geosci. Model Dev., 13, 4773–4787, https://doi.org/10.5194/gmd-13-4773-2020, https://doi.org/10.5194/gmd-13-4773-2020, 2020
Short summary
Short summary
Climate models need to capture sea ice complexity to represent it realistically. Here we assess how distributing sea ice in discrete thickness categories impacts how sea ice variability is simulated in the NEMO3.6–LIM3 model. Simulations and satellite observations are compared by using k-means clustering of sea ice concentration in winter and summer between 1979 and 2014 at both poles. Little improvements in the modeled sea ice lead us to recommend using the standard number of five categories.
Ilkka S. O. Matero, Lauren J. Gregoire, and Ruza F. Ivanovic
Geosci. Model Dev., 13, 4555–4577, https://doi.org/10.5194/gmd-13-4555-2020, https://doi.org/10.5194/gmd-13-4555-2020, 2020
Short summary
Short summary
The Northern Hemisphere cooled by several degrees for a century 8000 years ago due to the collapse of an ice sheet in North America that released large amounts of meltwater into the North Atlantic and slowed down its circulation. We numerically model the ice sheet to understand its evolution during this event. Our results match data thanks to good ice dynamics but depend mostly on surface melt and snowfall. Further work will help us understand how past and future ice melt affects climate.
Martin Rückamp, Angelika Humbert, Thomas Kleiner, Mathieu Morlighem, and Helene Seroussi
Geosci. Model Dev., 13, 4491–4501, https://doi.org/10.5194/gmd-13-4491-2020, https://doi.org/10.5194/gmd-13-4491-2020, 2020
Short summary
Short summary
We present enthalpy formulations within the Ice-Sheet and Sea-Level System model that show better performance than earlier implementations. A first experiment indicates that the treatment of discontinuous conductivities of the solid–fluid system with a geometric mean produce accurate results when applied to coarse vertical resolutions. In a second experiment, we propose a novel stabilization formulation that avoids the problem of thin elements. This method provides accurate and stable results.
C. Max Stevens, Vincent Verjans, Jessica M. D. Lundin, Emma C. Kahle, Annika N. Horlings, Brita I. Horlings, and Edwin D. Waddington
Geosci. Model Dev., 13, 4355–4377, https://doi.org/10.5194/gmd-13-4355-2020, https://doi.org/10.5194/gmd-13-4355-2020, 2020
Short summary
Short summary
Understanding processes in snow (firn), including compaction and airflow, is important for calculating how much mass the ice sheets are losing and for interpreting climate records from ice cores. We have developed the open-source Community Firn Model to simulate these processes. We used it to compare 13 different firn compaction equations and found that they do not agree within 10 %. We also show that including firn compaction in a firn-air model improves the match with data from ice cores.
Bertrand Cluzet, Matthieu Lafaysse, Emmanuel Cosme, Clément Albergel, Louis-François Meunier, and Marie Dumont
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2020-130, https://doi.org/10.5194/gmd-2020-130, 2020
Revised manuscript accepted for GMD
Short summary
Short summary
In mountainous areas, snowpack models suffer from large errors and observations are scarce, a challenge for data assimilation. Here, we develop two variants of the Particle Filter in order to propagate the information content of observations over a complex topography. By adjusting observation errors and exploiting background correlation patterns, these variants demonstrate the potential for partial observations of snow depth and surface reflectance to improve model accuracy in a whole domain.
Alexander Robinson, Jorge Alvarez-Solas, Marisa Montoya, Heiko Goelzer, Ralf Greve, and Catherine Ritz
Geosci. Model Dev., 13, 2805–2823, https://doi.org/10.5194/gmd-13-2805-2020, https://doi.org/10.5194/gmd-13-2805-2020, 2020
Short summary
Short summary
Here we describe Yelmo v1.0, an intuitive and state-of-the-art hybrid ice sheet model. The model design and physics are described, and benchmark simulations are provided to validate its performance. Yelmo is a versatile ice sheet model that can be applied to a wide variety of problems.
Shihe Ren, Xi Liang, Qizhen Sun, Hao Yu, L. Bruno Tremblay, Xiaoping Mai, Fu Zhao, Ming Li, Na Liu, Zhikun Chen, and Yunfei Zhang
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2020-95, https://doi.org/10.5194/gmd-2020-95, 2020
Revised manuscript accepted for GMD
Short summary
Short summary
Sea ice plays a crucial role in global energy and water budge. To get a better simulation of seaice, we coupled seaice model with atmospheric and ocean model to form a fully coupled system. The seaice simulation results of coupled system demonstrated two-way coupled model has better performance in terms of sea ice, especially in summer. This indicates that sea ice-ocean-atmosphere interaction takes a crucial role in controlling Arctic summertime sea ice distribution.
Ahmad Jan, Ethan T. Coon, and Scott L. Painter
Geosci. Model Dev., 13, 2259–2276, https://doi.org/10.5194/gmd-13-2259-2020, https://doi.org/10.5194/gmd-13-2259-2020, 2020
Short summary
Short summary
Computer simulations are important tools for understanding the response of Arctic permafrost to a warming climate. To build confidence in an emerging class of permafrost simulators, we evaluated the Advanced Terrestrial Simulator against field observations from a frozen tundra site near Utqiaġvik (formerly Barrow), Alaska. The 3-year simulations agree well with observations of snow depth, summer water table, soil temperature at multiple locations, and spatially averaged evaporation.
Liz C. Logan, Sri Hari Krishna Narayanan, Ralf Greve, and Patrick Heimbach
Geosci. Model Dev., 13, 1845–1864, https://doi.org/10.5194/gmd-13-1845-2020, https://doi.org/10.5194/gmd-13-1845-2020, 2020
Short summary
Short summary
A new capability has been developed for the ice sheet model SICOPOLIS (SImulation COde for POLythermal Ice Sheets) that enables the generation of derivative code, such as tangent linear or adjoint models, by means of algorithmic differentiation. It relies on the source transformation algorithmic (AD) differentiation tool OpenAD. The reverse mode of AD provides the adjoint model, SICOPOLIS-AD, which may be applied for comprehensive sensitivity analyses as well as gradient-based optimization.
Jean-François Lemieux and Frédéric Dupont
Geosci. Model Dev., 13, 1763–1769, https://doi.org/10.5194/gmd-13-1763-2020, https://doi.org/10.5194/gmd-13-1763-2020, 2020
Short summary
Short summary
Sea ice dynamics plays an important role in shaping the sea cover in polar regions. Winds and ocean currents exert large stresses on the sea ice cover. This can lead to the formation of long cracks and ridges, which strongly impact the exchange of heat, momentum and moisture between the atmosphere and the ocean. It is therefore crucial for a sea ice model to be able to represent these features. This article describes how internal sea ice stresses should be diagnosed from model simulations.
Ludovic Räss, Aleksandar Licul, Frédéric Herman, Yury Y. Podladchikov, and Jenny Suckale
Geosci. Model Dev., 13, 955–976, https://doi.org/10.5194/gmd-13-955-2020, https://doi.org/10.5194/gmd-13-955-2020, 2020
Short summary
Short summary
Accurate predictions of future sea level rise require numerical models that predict rapidly deforming ice. Localised ice deformation can be captured numerically only with high temporal and spatial resolution. This paper’s goal is to propose a parallel FastICE solver for modelling ice deformation. Our model is particularly useful for improving our process-based understanding of localised ice deformation. Our solver reaches a parallel efficiency of 99 % on GPU-based supercomputers.
Nander Wever, Leonard Rossmann, Nina Maaß, Katherine C. Leonard, Lars Kaleschke, Marcel Nicolaus, and Michael Lehning
Geosci. Model Dev., 13, 99–119, https://doi.org/10.5194/gmd-13-99-2020, https://doi.org/10.5194/gmd-13-99-2020, 2020
Short summary
Short summary
Sea ice is an important component of the global climate system. The presence of a snow layer covering sea ice can impact ice mass and energy budgets. The detailed, physics-based, multi-layer snow model SNOWPACK was modified to simulate the snow–sea-ice system, providing simulations of the snow microstructure, water percolation and flooding, and superimposed ice formation. The model is applied to in situ measurements from snow and ice mass-balance buoys installed in the Antarctic Weddell Sea.
Christiaan T. van Dalum, Willem Jan van de Berg, Quentin Libois, Ghislain Picard, and Michiel R. van den Broeke
Geosci. Model Dev., 12, 5157–5175, https://doi.org/10.5194/gmd-12-5157-2019, https://doi.org/10.5194/gmd-12-5157-2019, 2019
Short summary
Short summary
Climate models are often limited to relatively simple snow albedo schemes. Therefore, we have developed the SNOWBAL module to couple a climate model with a physically based wavelength dependent snow albedo model. Using SNOWBAL v1.2 to couple the snow albedo model TARTES with the regional climate model RACMO2 indicates a potential performance gain for the Greenland ice sheet.
François Massonnet, Antoine Barthélemy, Koffi Worou, Thierry Fichefet, Martin Vancoppenolle, Clément Rousset, and Eduardo Moreno-Chamarro
Geosci. Model Dev., 12, 3745–3758, https://doi.org/10.5194/gmd-12-3745-2019, https://doi.org/10.5194/gmd-12-3745-2019, 2019
Short summary
Short summary
Sea ice thickness varies considerably on spatial scales of several meters. However, contemporary climate models cannot resolve such scales yet. This is why sea ice models used in climate models include an ice thickness distribution (ITD) to account for this unresolved variability. Here, we explore with the ocean–sea ice model NEMO3.6-LIM3 the sensitivity of simulated mean Arctic and Antarctic sea ice states to the way the ITD is discretized.
Shahbaz Memon, Dorothée Vallot, Thomas Zwinger, Jan Åström, Helmut Neukirchen, Morris Riedel, and Matthias Book
Geosci. Model Dev., 12, 3001–3015, https://doi.org/10.5194/gmd-12-3001-2019, https://doi.org/10.5194/gmd-12-3001-2019, 2019
Short summary
Short summary
Scientific workflows enable complex scientific computational scenarios, which include data intensive scenarios, parametric executions, and interactive simulations. In this article, we applied the UNICORE workflow management system to automate a formerly hard-coded coupling of a glacier flow model and a calving model, which contain many tasks and dependencies, ranging from pre-processing and data management to repetitive executions on heterogeneous high-performance computing (HPC) resources.
Sébastien Le clec'h, Aurélien Quiquet, Sylvie Charbit, Christophe Dumas, Masa Kageyama, and Catherine Ritz
Geosci. Model Dev., 12, 2481–2499, https://doi.org/10.5194/gmd-12-2481-2019, https://doi.org/10.5194/gmd-12-2481-2019, 2019
Short summary
Short summary
To provide reliable projections of the ice-sheet contribution to future sea-level rise, ice sheet models must be able to simulate the observed ice sheet present-day state. Using a low computational iterative minimisation procedure, based on the adjustment of the basal drag coefficient, we rapidly minimise the errors between the simulated and the observed Greenland ice thickness and ice velocity, and we succeed in stabilising the simulated Greenland ice sheet state under present-day conditions.
Lionel Favier, Nicolas C. Jourdain, Adrian Jenkins, Nacho Merino, Gaël Durand, Olivier Gagliardini, Fabien Gillet-Chaulet, and Pierre Mathiot
Geosci. Model Dev., 12, 2255–2283, https://doi.org/10.5194/gmd-12-2255-2019, https://doi.org/10.5194/gmd-12-2255-2019, 2019
Short summary
Short summary
The melting at the base of floating ice shelves is the main driver of the Antarctic ice sheet current retreat. Here, we use an ideal set-up to assess a wide range of melting parameterisations depending on oceanic properties with regard to a new ocean–ice-sheet coupled model, published here for the first time. A parameterisation that depends quadratically on thermal forcing in both a local and a non-local way yields the best results and needs to be further assessed with more realistic set-ups.
Hakase Hayashida, James R. Christian, Amber M. Holdsworth, Xianmin Hu, Adam H. Monahan, Eric Mortenson, Paul G. Myers, Olivier G. J. Riche, Tessa Sou, and Nadja S. Steiner
Geosci. Model Dev., 12, 1965–1990, https://doi.org/10.5194/gmd-12-1965-2019, https://doi.org/10.5194/gmd-12-1965-2019, 2019
Short summary
Short summary
Ice algae, the primary producer in sea ice, play a fundamental role in shaping marine ecosystems and biogeochemical cycling of key elements in polar regions. In this study, we developed a process-based numerical model component representing sea-ice biogeochemistry for a sea ice–ocean coupled general circulation model. The model developed can be used to simulate the projected changes in sea-ice ecosystems and biogeochemistry in response to on-going rapid decline of the Arctic.
Katherine J. Evans, Joseph H. Kennedy, Dan Lu, Mary M. Forrester, Stephen Price, Jeremy Fyke, Andrew R. Bennett, Matthew J. Hoffman, Irina Tezaur, Charles S. Zender, and Miren Vizcaíno
Geosci. Model Dev., 12, 1067–1086, https://doi.org/10.5194/gmd-12-1067-2019, https://doi.org/10.5194/gmd-12-1067-2019, 2019
Short summary
Short summary
A robust validation of ice sheet models is presented using LIVVkit, version 2.1. It targets ice sheet and coupled Earth system models, and handles datasets and operations that require high-performance computing and storage. We apply LIVVkit to a Greenland ice sheet simulation to show the degree to which it captures the surface mass balance. LIVVkit identifies a positive bias due to insufficient melting compared to observations that is focused largely around Greenland's southwest region.
Jeremy C. Ely, Chris D. Clark, David Small, and Richard C. A. Hindmarsh
Geosci. Model Dev., 12, 933–953, https://doi.org/10.5194/gmd-12-933-2019, https://doi.org/10.5194/gmd-12-933-2019, 2019
Short summary
Short summary
During the last 2.6 million years, the Earth's climate has cycled between cold glacials and warm interglacials, causing the growth and retreat of ice sheets. These ice sheets can be independently reconstructed using numerical models or from dated evidence that they leave behind (e.g. sediments, boulders). Here, we present a tool for comparing numerical model simulations with dated ice-sheet material. We demonstrate the utility of this tool by applying it to the last British–Irish ice sheet.
Fabien Maussion, Anton Butenko, Nicolas Champollion, Matthias Dusch, Julia Eis, Kévin Fourteau, Philipp Gregor, Alexander H. Jarosch, Johannes Landmann, Felix Oesterle, Beatriz Recinos, Timo Rothenpieler, Anouk Vlug, Christian T. Wild, and Ben Marzeion
Geosci. Model Dev., 12, 909–931, https://doi.org/10.5194/gmd-12-909-2019, https://doi.org/10.5194/gmd-12-909-2019, 2019
Short summary
Short summary
Mountain glaciers are one of the few remaining subsystems of the global climate system for which no globally applicable community-driven model exists. Here we present the Open Global Glacier Model (OGGM; www.oggm.org), developed to provide a modular and open-source numerical model framework for simulating past and future change of any glacier in the world.
William H. Lipscomb, Stephen F. Price, Matthew J. Hoffman, Gunter R. Leguy, Andrew R. Bennett, Sarah L. Bradley, Katherine J. Evans, Jeremy G. Fyke, Joseph H. Kennedy, Mauro Perego, Douglas M. Ranken, William J. Sacks, Andrew G. Salinger, Lauren J. Vargo, and Patrick H. Worley
Geosci. Model Dev., 12, 387–424, https://doi.org/10.5194/gmd-12-387-2019, https://doi.org/10.5194/gmd-12-387-2019, 2019
Short summary
Short summary
This paper describes the Community Ice Sheet Model (CISM) version 2.1. CISM solves equations for ice flow, heat conduction, surface melting, and other processes such as basal sliding and iceberg calving. It can be used for ice-sheet-only simulations or as the ice sheet component of the Community Earth System Model. Model solutions have been verified for standard test problems. CISM can efficiently simulate the whole Greenland ice sheet, with results that are broadly consistent with observations.
Thiago Dias dos Santos, Mathieu Morlighem, Hélène Seroussi, Philippe Remy Bernard Devloo, and Jefferson Cardia Simões
Geosci. Model Dev., 12, 215–232, https://doi.org/10.5194/gmd-12-215-2019, https://doi.org/10.5194/gmd-12-215-2019, 2019
Short summary
Short summary
The reduction of numerical errors in ice sheet modeling increases the results' accuracy reliability. We improve numerical accuracy by better capturing grounding line dynamics, while maintaining a low computational cost. We implement an adaptive mesh refinement (AMR) technique in the Ice Sheet System Model and compare AMR simulations with uniformly refined meshes. Our results show that the computational time with AMR is significantly shorter than for uniformly refined meshes for a given accuracy.
David Pollard, Robert M. DeConto, and Richard B. Alley
Geosci. Model Dev., 11, 5149–5172, https://doi.org/10.5194/gmd-11-5149-2018, https://doi.org/10.5194/gmd-11-5149-2018, 2018
Short summary
Short summary
Around the margins of ice sheets in contact with the ocean, calving of icebergs can generate large amounts of floating ice debris called "mélange". In major Greenland fjords, mélange significantly slows down ice flow from upstream. Our study applies numerical models to past and possible future episodes of rapid Antarctic Ice Sheet retreat. We find that, due to larger spatial scales, Antarctic mélange does not significantly impede flow or slow ice retreat and associated sea level rise.
Gerhard Krinner, Chris Derksen, Richard Essery, Mark Flanner, Stefan Hagemann, Martyn Clark, Alex Hall, Helmut Rott, Claire Brutel-Vuilmet, Hyungjun Kim, Cécile B. Ménard, Lawrence Mudryk, Chad Thackeray, Libo Wang, Gabriele Arduini, Gianpaolo Balsamo, Paul Bartlett, Julia Boike, Aaron Boone, Frédérique Chéruy, Jeanne Colin, Matthias Cuntz, Yongjiu Dai, Bertrand Decharme, Jeff Derry, Agnès Ducharne, Emanuel Dutra, Xing Fang, Charles Fierz, Josephine Ghattas, Yeugeniy Gusev, Vanessa Haverd, Anna Kontu, Matthieu Lafaysse, Rachel Law, Dave Lawrence, Weiping Li, Thomas Marke, Danny Marks, Martin Ménégoz, Olga Nasonova, Tomoko Nitta, Masashi Niwano, John Pomeroy, Mark S. Raleigh, Gerd Schaedler, Vladimir Semenov, Tanya G. Smirnova, Tobias Stacke, Ulrich Strasser, Sean Svenson, Dmitry Turkov, Tao Wang, Nander Wever, Hua Yuan, Wenyan Zhou, and Dan Zhu
Geosci. Model Dev., 11, 5027–5049, https://doi.org/10.5194/gmd-11-5027-2018, https://doi.org/10.5194/gmd-11-5027-2018, 2018
Short summary
Short summary
This paper provides an overview of a coordinated international experiment to determine the strengths and weaknesses in how climate models treat snow. The models will be assessed at point locations using high-quality reference measurements and globally using satellite-derived datasets. How well climate models simulate snow-related processes is important because changing snow cover is an important part of the global climate system and provides an important freshwater resource for human use.
Aurélien Quiquet, Christophe Dumas, Catherine Ritz, Vincent Peyaud, and Didier M. Roche
Geosci. Model Dev., 11, 5003–5025, https://doi.org/10.5194/gmd-11-5003-2018, https://doi.org/10.5194/gmd-11-5003-2018, 2018
Short summary
Short summary
This paper presents the GRISLI (Grenoble ice sheet and land ice) model in its newest revision. We present the recent model improvements from its original version (Ritz et al., 2001), together with a discussion of the model performance in reproducing the present-day Antarctic ice sheet geometry and the grounding line advances and retreats during the last 400 000 years. We show that GRISLI is a computationally cheap model, able to reproduce the large-scale behaviour of ice sheets.
Gary D. Clow
Geosci. Model Dev., 11, 4889–4908, https://doi.org/10.5194/gmd-11-4889-2018, https://doi.org/10.5194/gmd-11-4889-2018, 2018
Short summary
Short summary
CVPM is a modular heat-transfer modeling system designed for scientific and engineering studies in permafrost terrain, and as an educational tool. CVPM implements the heat-transfer equations in both Cartesian and cylindrical coordinates. To accommodate a diversity of geologic settings, a variety of materials can be specified within the model domain. CVPM can be used over a broad range of depth, temperature, porosity, water saturation, and solute conditions on either Earth or Mars.
Eef C. H. van Dongen, Nina Kirchner, Martin B. van Gijzen, Roderik S. W. van de Wal, Thomas Zwinger, Gong Cheng, Per Lötstedt, and Lina von Sydow
Geosci. Model Dev., 11, 4563–4576, https://doi.org/10.5194/gmd-11-4563-2018, https://doi.org/10.5194/gmd-11-4563-2018, 2018
Short summary
Short summary
Ice flow forced by gravity is governed by the full Stokes (FS) equations, which are computationally expensive to solve. Therefore, approximations to the FS equations are used, especially when modeling an ice sheet on long time spans. Here, we report a combination of an approximation with the FS equations that allows simulating the dynamics of ice sheets over long time spans without introducing artifacts caused by application of approximations in parts of the domain where they are not valid.
Alek A. Petty, Melinda Webster, Linette Boisvert, and Thorsten Markus
Geosci. Model Dev., 11, 4577–4602, https://doi.org/10.5194/gmd-11-4577-2018, https://doi.org/10.5194/gmd-11-4577-2018, 2018
Matthew J. Hoffman, Mauro Perego, Stephen F. Price, William H. Lipscomb, Tong Zhang, Douglas Jacobsen, Irina Tezaur, Andrew G. Salinger, Raymond Tuminaro, and Luca Bertagna
Geosci. Model Dev., 11, 3747–3780, https://doi.org/10.5194/gmd-11-3747-2018, https://doi.org/10.5194/gmd-11-3747-2018, 2018
Short summary
Short summary
MPAS-Albany Land Ice (MALI) is a new variable-resolution land ice model that uses unstructured grids on a plane or sphere. MALI is built for Earth system modeling on high-performance computing platforms using existing software libraries. MALI simulates the evolution of ice thickness, velocity, and temperature, and it includes schemes for simulating iceberg calving and the flow of water beneath ice sheets and its effect on ice sliding. The model is demonstrated for the Antarctic ice sheet.
Mark Kavanagh and Lev Tarasov
Geosci. Model Dev., 11, 3497–3513, https://doi.org/10.5194/gmd-11-3497-2018, https://doi.org/10.5194/gmd-11-3497-2018, 2018
Short summary
Short summary
We present and validate BrAHMs (BAsal Hydrology Model): a new
physically based basal hydrology model, which captures the two main
types of subglacial drainage systems (high-pressure distributed systems and
low-pressure channelized systems). BrAHMs is designed for continental
glacial cycle scale contexts, for which computational speed is
essential. This speed is accomplished, in part, by numerical methods
novel to basal hydrology contexts.
Aleah Sommers, Harihar Rajaram, and Mathieu Morlighem
Geosci. Model Dev., 11, 2955–2974, https://doi.org/10.5194/gmd-11-2955-2018, https://doi.org/10.5194/gmd-11-2955-2018, 2018
Short summary
Short summary
Meltwater drainage beneath glaciers and ice sheets influences how fast they move and is complicated and constantly changing. Most models distinguish between
fastand
slowdrainage with different equations for each system. The SHAKTI model allows for the ice–water drainage arrangement to transition naturally between different types of flow. This model can be used to understand how drainage affects glacier speeds and the associated ice loss to further inform predictions of sea level rise.
Ghislain Picard, Melody Sandells, and Henning Löwe
Geosci. Model Dev., 11, 2763–2788, https://doi.org/10.5194/gmd-11-2763-2018, https://doi.org/10.5194/gmd-11-2763-2018, 2018
Short summary
Short summary
The Snow Microwave Radiative Transfer (SMRT) is a novel model developed to calculate how microwaves are scattered and emitted by snow. The model is built from separate, interconnecting modules to make it easy to compare different aspects of the theory. SMRT is the first model to allow a choice of how to represent the microstructure of the snow, which is extremely important, and has been used to unite multiple previous studies. This model will ultimately be used to observe snow from space.
Lihui Luo, Zhongqiong Zhang, Wei Ma, Shuhua Yi, and Yanli Zhuang
Geosci. Model Dev., 11, 2475–2491, https://doi.org/10.5194/gmd-11-2475-2018, https://doi.org/10.5194/gmd-11-2475-2018, 2018
Short summary
Short summary
Based on the current situation of permafrost modeling in the Qinghai–Tibet Plateau (QTP), a software PIC was developed to evaluate the temporal–spatial change trends of permafrost, which allows us to automatically compute permafrost indices with daily weather and atmospheric forcing datasets. The main features include computing, visualization, and statistics. The software will serve engineering applications and can be used to assess the impact of climate change on permafrost over the QTP.
Alexandra Touzeau, Amaëlle Landais, Samuel Morin, Laurent Arnaud, and Ghislain Picard
Geosci. Model Dev., 11, 2393–2418, https://doi.org/10.5194/gmd-11-2393-2018, https://doi.org/10.5194/gmd-11-2393-2018, 2018
Short summary
Short summary
We introduced a new module of water vapor diffusion into the snowpack model Crocus. Vapor transport locally modifies the density of snow layers, possibly influencing compaction. It also affects the original isotopic signature of snow layers. We also introduced water isotopes (𝛿18O) in the model. Over 10 years, the modeled attenuation of isotopic variations due to vapor diffusion is 7–18 % lower than the observations. Thus, other processes are required to explain the total attenuation.
Joshua K. Cuzzone, Mathieu Morlighem, Eric Larour, Nicole Schlegel, and Helene Seroussi
Geosci. Model Dev., 11, 1683–1694, https://doi.org/10.5194/gmd-11-1683-2018, https://doi.org/10.5194/gmd-11-1683-2018, 2018
Short summary
Short summary
This paper details the implementation of higher-order vertical finite elements in the Ice Sheet System Model (ISSM). When using higher-order vertical finite elements, fewer vertical layers are needed to accurately capture the thermal structure in an ice sheet versus a conventional linear vertical interpolation, therefore greatly improving model runtime speeds, particularly in higher-order stress balance ice sheet models. The implications for paleoclimate ice sheet simulations are discussed.
Kaitlin A. Naughten, Katrin J. Meissner, Benjamin K. Galton-Fenzi, Matthew H. England, Ralph Timmermann, Hartmut H. Hellmer, Tore Hattermann, and Jens B. Debernard
Geosci. Model Dev., 11, 1257–1292, https://doi.org/10.5194/gmd-11-1257-2018, https://doi.org/10.5194/gmd-11-1257-2018, 2018
Short summary
Short summary
MetROMS and FESOM are two ocean/sea-ice models which resolve Antarctic ice-shelf cavities and consider thermodynamics at the ice-shelf base. We simulate the period 1992–2016 with both models, and with two options for resolution in FESOM, and compare output from the three simulations. Ice-shelf melt rates, sub-ice-shelf circulation, continental shelf water masses, and sea-ice processes are compared and evaluated against available observations.
Jeff K. Ridley, Edward W. Blockley, Ann B. Keen, Jamie G. L. Rae, Alex E. West, and David Schroeder
Geosci. Model Dev., 11, 713–723, https://doi.org/10.5194/gmd-11-713-2018, https://doi.org/10.5194/gmd-11-713-2018, 2018
Short summary
Short summary
The sea ice component of the Met Office coupled climate model, HadGEM3-GC3.1, is presented and evaluated. We determine that the mean state of the sea ice is well reproduced for the Arctic; however, a warm sea surface temperature bias over the Southern Ocean results in a low Antarctic sea ice cover.
Eric Larour, Daniel Cheng, Gilberto Perez, Justin Quinn, Mathieu Morlighem, Bao Duong, Lan Nguyen, Kit Petrie, Silva Harounian, Daria Halkides, and Wayne Hayes
Geosci. Model Dev., 10, 4393–4403, https://doi.org/10.5194/gmd-10-4393-2017, https://doi.org/10.5194/gmd-10-4393-2017, 2017
Short summary
Short summary
This work presents a new way of carrying out simulations using the C++ based Ice Sheet System Model (ISSM) within a web page. This allows for a new generation of websites that can rely on the entire code of a climate model, without compromising or simplifying the physics implemented in such a model. We believe this approach will enable better education/outreach websites as well as improve access to complex climate models without compromising their integrity.
Christopher J. L. D'Amboise, Karsten Müller, Laurent Oxarango, Samuel Morin, and Thomas V. Schuler
Geosci. Model Dev., 10, 3547–3566, https://doi.org/10.5194/gmd-10-3547-2017, https://doi.org/10.5194/gmd-10-3547-2017, 2017
Short summary
Short summary
We present a new water percolation routine added to the Crocus model. The new routine is physically based, describing motion of water through a layered snowpack considering capillary-driven and gravity flow. We tested the routine on two data sets. Wet-snow layers were able to reach higher saturations than the empirical routine. Meaningful applicability is limited until new and better parameterizations of water retention are developed, and feedbacks are adjusted to handle higher saturations.
Mathieu Barrere, Florent Domine, Bertrand Decharme, Samuel Morin, Vincent Vionnet, and Matthieu Lafaysse
Geosci. Model Dev., 10, 3461–3479, https://doi.org/10.5194/gmd-10-3461-2017, https://doi.org/10.5194/gmd-10-3461-2017, 2017
Short summary
Short summary
Global warming projections still suffer from a limited representation of the permafrost–carbon feedback. This study assesses the capacity of snow-soil coupled models to simulate the permafrost thermal regime at Bylot Island, a high Arctic site. Significant flaws are found in the description of Arctic snow properties, resulting in erroneous heat transfers between the soil and the snow in simulations. Improved snow schemes are needed to accurately predict the future of permafrost.
Per Pemberton, Ulrike Löptien, Robinson Hordoir, Anders Höglund, Semjon Schimanke, Lars Axell, and Jari Haapala
Geosci. Model Dev., 10, 3105–3123, https://doi.org/10.5194/gmd-10-3105-2017, https://doi.org/10.5194/gmd-10-3105-2017, 2017
Short summary
Short summary
The Baltic Sea is seasonally ice covered with intense wintertime ship traffic and a sensitive ecosystem. Understanding the sea-ice pack is important for climate effect studies and forecasting. A NEMO-LIM3.6-based model setup for the North Sea/Baltic Sea is introduced, including a method for ice in the coastal zone. We evaluate different sea-ice parameters and overall find that the model agrees well with the observation though deformed ice is more challenging to capture.
Eleanor J. Burke, Sarah E. Chadburn, and Altug Ekici
Geosci. Model Dev., 10, 959–975, https://doi.org/10.5194/gmd-10-959-2017, https://doi.org/10.5194/gmd-10-959-2017, 2017
Short summary
Short summary
There is a large amount of relatively inert organic carbon locked into permafrost soils. In a warming climate the permafrost will thaw and this organic carbon will become vulnerable to decomposition. This process is not typically included within Earth system models (ESMs). This paper describes the development of a vertically resolved soil organic carbon decomposition model which, in the future, can be included within the UKESM to quantify the response of the climate to permafrost carbon loss.
Stephen F. Price, Matthew J. Hoffman, Jennifer A. Bonin, Ian M. Howat, Thomas Neumann, Jack Saba, Irina Tezaur, Jeffrey Guerber, Don P. Chambers, Katherine J. Evans, Joseph H. Kennedy, Jan Lenaerts, William H. Lipscomb, Mauro Perego, Andrew G. Salinger, Raymond S. Tuminaro, Michiel R. van den Broeke, and Sophie M. J. Nowicki
Geosci. Model Dev., 10, 255–270, https://doi.org/10.5194/gmd-10-255-2017, https://doi.org/10.5194/gmd-10-255-2017, 2017
Short summary
Short summary
We introduce the Cryospheric Model Comparison Tool (CmCt) and propose qualitative and quantitative metrics for evaluating ice sheet model simulations against observations. Greenland simulations using the Community Ice Sheet Model are compared to gravimetry and altimetry observations from 2003 to 2013. We show that the CmCt can be used to score simulations of increasing complexity relative to observations of dynamic change in Greenland over the past decade.
Cited articles
Asay-Davis, X. S., Cornford, S. L., Durand, G., Galton-Fenzi, B. K., Gladstone, R. M., Gudmundsson, G. H., Hattermann, T., Holland, D. M., Holland, D., Holland, P. R., Martin, D. F., Mathiot, P., Pattyn, F., and Seroussi, H.: Experimental design for three interrelated marine ice sheet and ocean model intercomparison projects: MISMIP v. 3 (MISMIP +), ISOMIP v. 2 (ISOMIP +) and MISOMIP v. 1 (MISOMIP1), Geosci. Model Dev., 9, 2471–2497, https://doi.org/10.5194/gmd-9-2471-2016, 2016. a
Budd, W., Keage, P. L., and Blundy, N. A.: Empirical studies of ice sliding,
J. Glaciol., 23, 157–170, 1979. a
Budd, W., Jenssen, D., and Smith, I.: A 3-dimensional time-dependent model of
the West Antarctic Ice-Sheet, Ann. Glaciol., 5, 29–36,
https://doi.org/10.3189/1984AoG5-1-29-36, 1984. a
Chen, C., Liu, H., and Beardsley, R. C.: An unstructured grid, finite-volume,
three-dimensional, primitive equation ocean model: Application to coastal
ocean and estuaries, J. Atmos. Ocean. Tech., 20,
159–186, 2003. a
Christianson, K., Bushuk, M., Dutrieux, P., Parizek, B. R., Joughin, I. R.,
Alley, R. B., Shean, D. E., Abrahamsen, E. P., Anandakrishnan, S., Heywood, K. J., Kim, T.-W., Lee, S. H., Nicholls, K., Stanton, T., Truffer, M.,
Webber, B. G. M., Jenkins, A., Jacobs, S., Bindschadler, R., and Holland, D. M.: Sensitivity of Pine Island Glacier to observed ocean forcing,
Geophys. Res. Lett., 43, 10,817–10,825, https://doi.org/10.1002/2016GL070500, 2016. a
Church, J., Clark, P., Cazenave, A., Gregory, J., Jevrejeva, S., Levermann, A.,
Merrifield, M., Milne, G., Nerem, R., Nunn, P., Payne, A., Pfeffer, W.,
Stammer, D., and Unnikrishnan, A.: Sea Level Change, in: Climate Change 2013:
The Physical Science Basis. Contribution of Working Group I to the Fifth
Assessment Report of the Intergovernmental Panel on Climate Change, edited by: Stocker, T., Qin, D., Plattner, G.-K., Tignor, M., Allen, S., Boschung, J.,
Nauels, A., Xia, Y., Bex, V., and Midgley, P., Cambridge University Press,
Cambridge, UK and New York, NY, USA, 2013. a
Collins, N., Theurich, G., DeLuca, C., Suarez, M., Trayanov, A., Balaji, V.,
Li, P., Yang, W., Hill, C., and da Silva, A.: Design and Implementation of
Components in the Earth System Modeling Framework, Int. J. High Perform. C., 19, 341–350,
https://doi.org/10.1177/1094342005056120, 2005. a
Cornford, S. L., Martin, D. F., Graves, D. T., Ranken, D. F., Le Brocq, A. M.,
Gladstone, R. M., Payne, A. J., Ng, E., and Lipscomb, W. H.: Adaptive mesh,
finite volume modeling of marine ice sheets, J. Comput. Phys., 232, 529–549, https://doi.org/10.1016/j.jcp.2012.08.037, 2013. a
De Rydt, J. and Gudmundsson, G. H.: Coupled ice shelf-ocean modeling and
complex grounding line retreat from a seabed ridge, J. Geophys. Res.-Earth, 121, 865–880, https://doi.org/10.1002/2015JF003791, 2016. a, b
De Rydt, J., Holland, P. R., Dutrieux, P., and Jenkins, A.: Geometric and
oceanographic controls on melting beneath Pine Island Glacier, J. Geophys. Res.-Oceans, 119, 2420–2438, https://doi.org/10.1002/2013JC009513,
2014. a
Dinniman, M. S., Klinck, J. M., and Smith Jr., W. O.: Influence of sea ice
cover and icebergs on circulation and water mass formation in a numerical
circulation model of the Ross Sea, Antarctica, J. Geophys. Res.-Oceans, 112, C11013, https://doi.org/10.1029/2006JC004036, 2007. a
Favier, L., Durand, G., Cornford, S. L., Gudmundsson, G. H., Gagliardini, O.,
Gillet-Chaulet, F., Zwinger, T., Payne, A. J., and Le Brocq, A. M.: Retreat
of Pine Island Glacier controlled by marine ice-sheet instability, Nat. Clim. Change, 4, 117–121, https://doi.org/10.1038/NCLIMATE2094, 2014. a
Favier, L., Jourdain, N. C., Jenkins, A., Merino, N., Durand, G., Gagliardini, O., Gillet-Chaulet, F., and Mathiot, P.: Assessment of sub-shelf melting parameterisations using the oceanice-sheet coupled model NEMO(v3.6)Elmer/Ice(v8.3) , Geosci. Model Dev., 12, 2255–2283, https://doi.org/10.5194/gmd-12-2255-2019, 2019. a, b
Gagliardini, O., Zwinger, T., Gillet-Chaulet, F., Durand, G., Favier, L., de Fleurian, B., Greve, R., Malinen, M., Martín, C., Råback, P., Ruokolainen, J., Sacchettini, M., Schäfer, M., Seddik, H., and Thies, J.: Capabilities and performance of Elmer/Ice, a new-generation ice sheet model, Geosci. Model Dev., 6, 1299–1318, https://doi.org/10.5194/gmd-6-1299-2013, 2013. a, b, c, d, e
Galton-Fenzi, B. K., Hunter, J. R., Coleman, R., Marsland, S. J., and Warner, R. C.: Modeling the basal melting and marine ice accretion of the Amery Ice
Shelf, J. Geophys. Res.-Oceans, 117, C09031, https://doi.org/10.1029/2012JC008214, 2012. a, b
Gladstone, R., Lee, V., Vieli, A., and Payne, A.: Grounding Line Migration in
an Adaptive Mesh Ice Sheet Model, J. Geophys. Res.-Earth, 115, F04014, https://doi.org/10.1029/2009JF001615, 2010a. a
Gladstone, R. M., Payne, A. J., and Cornford, S. L.: Parameterising the grounding line in flow-line ice sheet models, The Cryosphere, 4, 605–619, https://doi.org/10.5194/tc-4-605-2010, 2010b. a
Gladstone, R., Lee, V., Rougier, J., Payne, A. J., Hellmer, H., Le Brocq, A.,
Shepherd, A., Edwards, T. L., Gregory, J., and Cornford, S. L.: Calibrated
prediction of Pine Island Glacier retreat during the 21st and 22nd centuries
with a coupled flowline model, Earth Planet. Sc. Lett., 333,
191–199, https://doi.org/10.1016/j.epsl.2012.04.022, 2012. a, b
Gladstone, R. M., Warner, R. C., Galton-Fenzi, B. K., Gagliardini, O., Zwinger, T., and Greve, R.: Marine ice sheet model performance depends on basal sliding physics and sub-shelf melting, The Cryosphere, 11, 319–329, https://doi.org/10.5194/tc-11-319-2017, 2017. a, b
Gladstone, R., Zhao, C., Shapero, D., and Guo, X.: The Framework for Ice Sheet – Ocean Coupling (FISOC) v1.1 (Version v1.1), Zenodo, https://doi.org/10.5281/zenodo.4507182, 2020. a
Glen, J. W.: Experiments on the deformation of ice, J. Glaciol., 2,
111–114, 1952. a
Goldberg, D., Snow, K., Holland, P., Jordan, J., Campin, J.-M., Heimbach, P.,
Arthern, R., and Jenkins, A.: Representing grounding line migration in
synchronous coupling between a marine ice sheet model and a z-coordinate
ocean model, Ocean Model., 125, 45–60,
https://doi.org/10.1016/j.ocemod.2018.03.005, 2018. a, b, c, d, e, f
Hellmer, H. and Olbers, D.: A two-dimensional model for the thermohaline
circulation under an ice shelf, Antarct. Sci., 1, 325–336,
https://doi.org/10.1017/S0954102089000490, 1989. a
Hellmer, H. H., Kauker, F., Timmermann, R., Determann, J., and Rae, J.:
Twenty-first-century warming of a large Antarctic ice-shelf cavity by a
redirected coastal current, Nature, 485, 225–228, https://doi.org/10.1038/nature11064,
2012. a
Hill, C., DeLuca, C., Balaji, Suarez, M., and Silva, A. D.: The Architecture of
the Earth System Modeling Framework, Comput. Sci. Eng., 6,
18–28, https://doi.org/10.1109/MCISE.2004.1255817, 2004. a
Holland, D. M. and Jenkins, A.: Modeling Thermodynamic Ice–Ocean Interactions
at the Base of an Ice Shelf, J. Phys. Oceanogr., 29,
1787–1800, https://doi.org/10.1175/1520-0485(1999)029<1787:MTIOIA>2.0.CO;2, 1999. a
Jenkins, A., Nicholls, K. W., and Corr, H. F. J.: Observation and
Parameterization of Ablation at the Base of Ronne Ice Shelf, Antarctica,
J. Phys. Oceanogr., 40, 2298–2312,
https://doi.org/10.1175/2010JPO4317.1, 2010. a
Large, W. G., McWilliams, J. C., and Doney, S. C.: Oceanic vertical mixing: A
review and a model with a nonlocal boundary layer parameterization, Rev. Geophys., 32, 363–403, https://doi.org/10.1029/94RG01872, 1994. a
Mellor, G. and Yamada, T.: Development of a turbulence closure model for
geophysical fluid problem, Rev. Geophys. Space Ge., 20,
851–875, 1982. a
Mercer, J.: West Antarctic Ice Sheet and CO2 Greenhouse Effect – Threat of
Disaster, Nature, 271, 321–325, 1978. a
Moore, J. C., Grinsted, A., Zwinger, T., and Jevrejeva, S.: Semiempirical And
Process-Based Global Sea Level Projections, Rev. Geophys., 51,
484–522, https://doi.org/10.1002/rog.20015, 2013. a
Mueller, R. D., Hattermann, T., Howard, S. L., and Padman, L.: Tidal influences on a future evolution of the FilchnerRonne Ice Shelf cavity in the Weddell Sea, Antarctica, The Cryosphere, 12, 453–476, https://doi.org/10.5194/tc-12-453-2018, 2018. a
Pattyn, F., Huyghe, A., De Brabander, S., and De Smedt, B.: Role of transition
zones in marine ice sheet dynamics, J. Geophys. Res.-Earth, 111, F02004, https://doi.org/10.1029/2005JF000394, 2006. a
Robel, A. A., Seroussi, H., and Roe, G. H.: Marine ice sheet instability
amplifies and skews uncertainty in projections of future sea-level rise,
P. Natl. Acad. Sci. USA, 116, 14887–14892,
https://doi.org/10.1073/pnas.1904822116, 2019. a
Schoof, C.: Ice sheet grounding line dynamics: Steady states, stability, and
hysteresis, J. Geophys. Res.-Earth, 112, F03S28, https://doi.org/10.1029/2006JF000664, 2007. a, b
Seroussi, H., Nakayama, Y., Larour, E., Menemenlis, D., Morlighem, M., Rignot, E., and Khazendar, A.: Continued retreat of Thwaites Glacier, West
Antarctica, controlled by bed topography and ocean circulation, Geophys. Res. Lett., 44, 6191–6199, https://doi.org/10.1002/2017GL072910, 2017. a, b
Shchepetkin, A. F. and McWilliams, J. C.: The regional oceanic modeling system
(ROMS): a split-explicit, free-surface, topography-following-coordinate
oceanic model, Ocean Model., 9, 347–404,
https://doi.org/10.1016/j.ocemod.2004.08.002, 2005.
a
Smagorinsky, J.: General circulation experiments with the primitive
equations, I. The basic experiment, Mon. Weather Rev., 91, 99–164, https://doi.org/10.1175/1520-0493(1963)091<0099:GCEWTP>2.3.CO;2, 1963. a
Snow, K., N. Goldberg, D., R. Holland, P., R. Jordan, J., J. Arthern, R., and
Jenkins, A.: The Response of Ice Sheets to Climate Variability, Geophys. Res. Lett., 44, 11878–11885, https://doi.org/10.1002/2017GL075745, 2017. a, b
Thoma, M., Determann, J., Grosfeld, K., Goeller, S., and Hellmer, H. H.: Future
sea-level rise due to projected ocean warming beneath the Filchner Ronne Ice
Shelf: A coupled model study, Earth Planet. Sc. Lett., 431, 217–224, https://doi.org/10.1016/j.epsl.2015.09.013, 2015. a, b
Timmermann, R. and Goeller, S.: Response to FilchnerRonne Ice Shelf cavity warming in a coupled oceanice sheet model Part 1: The ocean perspective, Ocean Sci., 13, 765–776, https://doi.org/10.5194/os-13-765-2017, 2017. a
Vieli, A. and Payne, A.: Assessing the ability of numerical ice sheet models to
simulate grounding line migration, J. Geophys. Res.-Earth, 110, F01003, https://doi.org/10.1029/2004JF000202, 2005. a
Warner, J. C., Defne, Z., Haas, K., and Arango, H. G.: A wetting and drying
scheme for ROMS, Comput. Geosci., 58, 54–61,
https://doi.org/10.1016/j.cageo.2013.05.004, 2013. a
Zhou, Q. and Hattermann, T.: Modeling ice shelf cavities in the
unstructured-grid, Finite Volume Community Ocean Model: Implementation and
effects of resolving small-scale topography, Ocean Model., 146, 101536,
https://doi.org/10.1016/j.ocemod.2019.101536, 2020. a, b
Short summary
Retreat of the Antarctic ice sheet, and hence its contribution to sea level rise, is highly sensitive to melting of its floating ice shelves. This melt is caused by warm ocean currents coming into contact with the ice. Computer models used for future ice sheet projections are not able to realistically evolve these melt rates. We describe a new coupling framework to enable ice sheet and ocean computer models to interact, allowing projection of the evolution of melt and its impact on sea level.
Retreat of the Antarctic ice sheet, and hence its contribution to sea level rise, is highly...