
Framework for Ice Sheet - Ocean Coupled modelling (FISOC) Manual, V1.1

Rupert Gladstone and other FISOC contributors (fisoc dev@googlegroups.com)

June 22, 2020

1

Contents

1 Introduction 3
1.1 FISOC community and contact . 3

2 Installing FISOC with established components 3
2.1 Switching between components . 3
2.2 FISOC Environment Variables . 4
2.3 Pre-requisites . 4

2.3.1 Elmer/Ice . 5
2.3.2 ROMS . 5
2.3.3 FVCOM . 7

3 Running FISOC 7
3.1 FISOC runtime configuration . 8

3.1.1 FISOC variables . 10
3.1.2 Updating the ice shelf cavity for the OM . 11

3.2 Timestepping . 11
3.3 Running FISOC with Elmer/Ice . 13

3.3.1 Elmer/Ice specific configuration . 13
3.4 Running FISOC with ROMS . 13
3.5 FISOC output files . 14
3.6 Troubleshooting . 14
3.7 FISOC examples . 15

3.7.1 Example 1: Long thin marine ice sheet . 15
3.7.2 Example 2: Ice cliff . 15
3.7.3 Example 3: Using FISOC to handle time evolving forcing 15
3.7.4 Example 4: Simple floating only test . 15
3.7.5 Example 5: Simple grounding line migration test . 15

4 Post processing 16

5 FISOC design and development 17
5.1 ESMF run time objects . 17
5.2 Incorporating new OM or ISM components . 18
5.3 Coding practices . 18

5.3.1 Error handling . 19
5.4 Configuration options . 19

5.4.1 Default values and derived attributes . 19
5.5 Sequential parallelism . 20

A Pre-requisite installation notes 21

2

1 Introduction

The “Framework for Ice Sheet - Ocean model Coupling” (FISOC) has been written to enable Ice Sheet Models
(ISMs) and Ocean Models (OMs) to be run as a single executable to address the co-evolution of ice and ocean
properties. It is primarily designed to handle exchange of variables between ice and ocean at the underside of
a floating ice shelf. At time of writing (May 2020) exchange of variables at an ice cliff is not supported, though
this is a planned development.

In this context an ISM simulates (part of) a marine ice sheet, including both grounded and floating parts,
representing the dynamic evolution over time of the ice sheet.

An OM simulates the sub-shelf cavity circulation under the floating part of the ice sheet, and optionally
also a wider ocean domain.

FISOC comprises a set of code modules and driver built using the Earth System Modelling Framework
(ESMF, https://www.earthsystemcog.org/projects/esmf/), and written in Fortran 90. Some knowledge
of the ESMF is essential in order to fully understand the FISOC code. It should be possible to run FISOC
as an end-user without knowledge of ESMF. FISOC is intended to be flexible: the additional development
effort required to couple a different ocean or ice component into the framework is minimal, so long as the new
component is ESMF-compatible.

FISOC initially couples the ISM Elmer/Ice to the OM “Regional Ocean Modelling System” (ROMS). A
full description of the physical processes represented in FISOC in its initial configuration is given in a model
description paper (to be submitted to Geoscientific Model Development, GMD, during 2020).

This manual describes how to use FISOC with an ISM and OM for which it has been developed (Section 3)
and also how to integrate additional ISM or OM components into the FISOC framework (Section 5).

A number of web links are given at various points in this document. The links were correct at the time
they were added. Please contact the developers if any of these are found to be out of date.

1.1 FISOC community and contact

Three email groups exist within the FISOC project.
fisoc@googlegroups.com is for news and updates. It has low traffic. Anyone may apply to join this

group.
fisoc tech@googlegroups.com is for active users and developers to share technical issues and trou-

bleshooting. It is higher traffic. Anyone may apply to join this group.
fisoc dev@googlegroups.com is the contact address to get in touch with the FISOC developers. Mem-

bership is by invitation only, but anyone may post to, and read, this group’s contents.

2 Installing FISOC with established components

FISOC can be obtained directly from a public github repository:
https://github.com/RupertGladstone/FISOC

The most active branch is devel, and master is updated from this infrequently.
FISOC has a simple build process. The Makefile in the top level FISOC directory contains the hard coded

dependencies needed to build FISOC code. The Makefile refers to certain environment variables to determine
paths and component choices (Section 2.2). An example script to build and install FISOC, “buildFISOCexam-
ple.sh”, is available in the top level FISOC directory. The script simply sets appropriate environment variables
then calls the Make process. The pre-requisites (Section 2.3) must already be installed.

FISOC has been built and used with GNU and with Intel compilers. This has been carried out on different
flavours of Linux. Automated testing to validate an install is planned for the future.

2.1 Switching between components

Many aspects of FISOC are runtime configurable (Section 3), but the choice of which component to use is a
compile time option, implemented by choice of model-specific wrapper. This is determined by environment

3

https://www.earthsystemcog.org/projects/esmf/
https://github.com/RupertGladstone/FISOC

Environment variable Description Default

ESMFMKFILE Required Tells FISOC where to find ESMF None
FISOC INSTALL DIR Optional Determines where FISOC executable $HOME/bin

will be installed (should be in $PATH)
FISOC EXE Optional Name of the FISOC executable FISOC caller.
CPPFLAGS Optional Preprocessor directives None

FISOC ISM Required Determines ISM component None
(“dummy”, “Elmer” or “FOOL”)

FISOC ISM INCLUDE Optional Location of ISM header files None
FISOC ISM LIBPATH Optional Location of ISM library files None
FISOC ISM LIBS Optional Linker directives for ISM library None
FISOC ISM GEOM Optional ESMF geometry object for ISM FISOC ISM MESH

(FISOC ISM GRID or
FISOC ISM MESH)

FISOC OM Required Determines OM component None
(“dummy”, “ROMS” or “FVCOM”)

FISOC OM INCLUDE Optional Location of OM header files None
FISOC OM LIBPATH Optional Location of OM library files None
FISOC OM LIBS Optional Linker directives for OM library None
FISOC OM GEOM Optional ESMF geometry object for OM FISOC OM GRID

(FISOC OM GRID or
FISOC OM MESH)

Table 1: Environment variables that are used in the FISOC build process. Note that CPPFLAGS should
include FISOC MPI for parallel runs.

variables FISOC OM and FISOC ISM (Section 2.2).
In order to test the build process the dummy wrappers may be used. Libraries are not needed for dummy

wrappers, and the corresponding environment variables can be set to any value. See “buildFISOCexample.sh”
for examples.

In addition to the dummy wrappers, undocumented ISM components include: “FOrcing OffLine” (FOOL),
which acts as a wrapper for netcdf files containing time evolving geometry forcing we want to use to force the
OM; “Frank’s Ice Shelf model” (FISh), a very simple flowline SSA ice shelf model from Frank Pattyn, used
for simple testing during development. There is also an undocumented OM component, the Finite Volume
Community Ocean Model (FVCOM), which is newly coupled through FISOC and will be documented soon
(intended during 2020).

2.2 FISOC Environment Variables

A number of environment variables, summarised in Table 1, may be used in the build process. Some of these
are mandatory. Variables listed as optional in Table 1 may be mandatory for some configurations other than
“dummy”. These environment variables are not used at run time, only during the compilation/installation of
FISOC.

See also Section 2.3.2 for ROMS-specific preprocessor directives.

2.3 Pre-requisites

A Message Passing Interface (MPI) implementation, such as OpenMPI is required.
http://www.open-mpi.org/

The Network Common Data Form (NetCDF) Fortran interface must be available. More specifically,
NetCDF4 in parallel should be used (this is not the same as PnetCDF).
http://www.unidata.ucar.edu/software/netcdf/

4

http://www.open-mpi.org/
http://www.unidata.ucar.edu/software/netcdf/

ESMF must be available. ESMF should have been built with NetCDF and MPI (see also notes in Ap-
pendix A).
https://www.earthsystemcog.org/projects/esmf/.

Viable ISM and OM components must be available for any physically meaningful simulations (the build
may be tested using “dummy” components). See Sections 2.3.1 and 2.3.2.

2.3.1 Elmer/Ice

Compiling Elmer/Ice for FISOC
At time of writing (May 2020) FISOC requires a non-standard Elmer/Ice code branch. The Elmer repository is
here: https://github.com/ElmerCSC/elmerfem/. The standard branch used by glaciologists is the elmerice
branch. The branch needed for FISOC is the elmerice FISOC branch. It is intended to merge the changes
during 2020. You can checkout the relevant branch with a command like this:

git clone git://www.github.com/ElmerCSC/elmerfem -b elmerice_FISOC MyLocalName

There is nothing FISOC-specific about the Elmer/Ice build process. So long as you have the FISOC-
compatible code branch, you can build Elmer/Ice just the same as normal. The Elmer/Ice wiki has information
on a standard build: http://elmerice.elmerfem.org/wiki/doku.php?id=compilation:compilationcmake

Compiling FISOC with Elmer/Ice
When compiling FISOC with Elmer/Ice, FISOC needs to know where to find the relevant Elmer/Ice libraries.
This can be done at FISOC compile time through the $FISOC ISM environment variables. For example:

export FISOC_ISM="Elmer"

export FISOC_ISM_INCLUDE="$ELMER_HOME/share/elmersolver/include"

export FISOC_ISM_LIBPATH="$ELMER_HOME/lib/"

export FISOC_ISM_LIBS="-lelmersolver"

2.3.2 ROMS

Compiling ROMS for FISOC
FISOC has been developed and tested with an ice shelf enabled version of ROMS. This is branched from the
Rutgers ROMS repository. Information about the Rutgers ROMS can be found at https://www.myroms.org/.

Development of the ice shelf enabled version is currently ongoing in a private repository (please contact the
developers if you need access to this).

Example build scripts can be found in the ROMS/Bin subdirectory of a git clone from the repository
mentioned above. It is assumed that users are familiar with a standard ROMS build process.

When compiling ROMS for use with FISOC, the following additional environment variables are needed:

export MAKE_SHAREDLIB="Yes"

export LIBDIR="/usr/local/lib"

export MY_CPP_FLAGS=" -DFISOC"

It is essential to activate the option to compile the ROMS shared library, which is done by setting the
environment variable MAKE SHAREDLIB to any value. The -fPIC flag is essential, and this will in general
be activated by MAKE SHAREDLIB in a makefile supplement included by a line like this in the makefile:

include $(COMPILERS)/$(OS)-$(strip $(FORT)).mk

This should simply work, but may require minor modifications on new OS/compiler combinations.
The shared library will be installed in the location given by the LIBDIR environment variable.
The -DFISOC flag activates FISOC-specific code segments. This includes telling ROMS to use a specific

hard coded unit rather than outputting to screen. This relies on the same unit being hard coded in the FISOC
ROMS wrapper, and results in the ROMS messages being sent to file instead of printed to screen.

5

https://www.earthsystemcog.org/projects/esmf/
https://github.com/ElmerCSC/elmerfem/
http://elmerice.elmerfem.org/wiki/doku.php?id=compilation:compilationcmake
https://www.myroms.org/

Some aspects of the ROMS setup for specific simulations are determined at compile time rather than run
time. These are determined through cpp directives set in an application-specific header file in ROMS/Include in
the ROMS clone. ROMS must be compiled with an “application” (this is set through an environment variable,
see example ROMS build script) that has been setup for use with FISOC. This should give a good indication
of which applications are FISOC-compatible:

grep ‘‘ifdef FISOC’’ ROMS/Include/*h

The cpp options are described in ROMS/Include/cppdefs.h. More detail of the FISOC specific options is
given below, but to compile ROMS for use with existing FISOC examples, knowledge of these is not required
as the header files will set the required cpp directives and the header file is determined by choice of ROMS
application.

To tell ROMS to expect FISOC to provide a cavity change rate:
FISOC DDDT
To tell ROMS to expect FISOC to provide an upper ice surface change rate (required for grounding line
migration and is used to update the wet/dry masks based on floatation):
FISOC DSDT
To tell ROMS to expect FISOC to directly overwrite the iceshelf draft (this and FISOC DDDT are mutually
exclusive):
FISOC DRAFT
To tell ROMS to expect to receive a vertical temperature gradient at the ice base from FISOC:
FISOC DTDZ
To tell ROMS to calculate the averages of the variables provided to FISOC at the end of each ROMS run call:
ROMS AVERAGES
If ice shelf geometry evolution is required in ROMS this options must be defined:
ICESHELF MORPH
If grounding line movement is required in ROMS the following cpp options must be defined:
LIMIT BSTRESS
LIMIT ICESTRESS
WET DRY

By default ROMS will install the module files in the directory given by SCRATCH DIR.

Compiling FISOC with ROMS
When compiling FISOC with ROMS, FISOC needs to know where to find the relevant ROMS libraries. This
can be done at FISOC compile time through the $FISOC OM environment variables. For example:

export MY_ROMS_DIR="/home/elmeruser/Source/ROMSIceShelf_devel"

export FISOC_OM="ROMS"

export FISOC_OM_LIBS="-loceanM"

export FISOC_OM_INCLUDE="${MY_ROMS_DIR}/Build"

export FISOC_OM_LIBPATH="/usr/local/lib"

The ROMS cpp directives require matching cpp directives in the FISOC compilation process. These can be
set for a FISOC build using the CPPFLAGS environment variable. For example (see also the example FISOC
build script):

export CPPFLAGS="$CPPFLAGS -D ROMS_DDDT"

At the time of writing, the relevant values are ROMS MASKING, ROMS SPHERICAL, ROMS DDDT,
ROMS DSDT, ROMS DRAFT and ROMS AVERAGES. Use of the averaged melt rate from ROMS is activated
in FISOC by the ROMS AVERAGES cpp. The general rule is that any of these directives that are defined for
the ROMS compilation need to be defined also for the FISOC compilation.

6

2.3.3 FVCOM

Compiling FVCOM for FISOC
FISOC has also been developed and tested with an ice shelf enabled version of unstructured grid Finite Vol-
ume Community Ocean Model as described in https://doi.org/10.1016/j.ocemod.2019.101536. General
information about FVCOM can be found at http://fvcom.smast.umassd.edu/fvcom/. Note that this web-
site contains a registration form which must be completed to download the model source code. The mod-
ule for ice shelf cavity dynamics is available via a static patch (https://doi.org/10.17632/m6g4c3hm9m.1)
that can be used to augment the standard version of the model, or via the development branch https:

//source.coderefinery.org/apn/fvcom4_fisoc (please contact the authors of the above work for access).
Example build scripts can be found in the directory of a git clone from the repository mentioned above (fv-

com4 fisoc). It is assumed that users are familiar with a standard FVCOM build process. buildFVCOM FX4.sh
is the build script for FISOC Example 4 and it calls buildFVCOM FX4.py that installs required libraries and
compiles FVCOM. Any hard coded paths in buildFVCOM FX4.py should be replaced with corresponding paths
to compile FVCOM for use with the Example 4. The build is specific to the machine on which FVCOM/FISOC
was developed and tested.

The cpp options for building FVCOM are described in /fvcom4 fisoc/FVCOM source/make.inc. The FISOC
specific options are:

CPP_MISC ?= -DICESHELF -DICEDRAFTMORPHY -DFVCOM_API -DFISOC_DDDT -DFISOC_DRAFT

Detailed description of the FISOC specific options is given below.

To tell FVCOM to expect FISOC to provide the iceshelf change rate:
FISOC DRAFT
To tell FVCOM to expect FISOC to provide a cavity change rate:
FISOC DDDT
To tell FVCOM to expect FISOC to provide an upper ice surface change rate (required for grounding line
migration and is used to update the wet/dry masks based on floatation):
FISOC DSDT
To tell FVCOM to calculate the averages of the variables provided to FISOC at the end of each FVCOM run
call:
FVCOM API
If ice shelf geometry evolution is required in FVCOM this options must be defined:
ICEDRAFTMORPHY
If grounding line movement is required in ROMS the following cpp options must be defined:
WET DRY

Compiling FISOC with FVCOM
When compiling FISOC with FVCOM, FISOC needs to know where to find the relevant FVCOM libraries.
This can be done at FISOC compile time through the $FISOC OM environment variables. For example:

export FISOC_OM="FVCOM"

export FISOC_OM_LIBS="-lfvcom_api -lmetis -ljulian"

export FISOC_OM_INCLUDE="${MY_FVCOM_DIR}/FVCOM_source"

export FISOC_OM_LIBPATH="/usr/local/lib"

3 Running FISOC

The FISOC executable is by default called FISOC caller, and should be located in your path after installation.
The installation is specific to the choice of component (you need to re-compile if you switch, for example, from
one OM to another). Beyond choice of components, all run time choices are made in the FISOC config.rc file
(Section 3.1), or through component specific initialisation.

7

https://doi.org/10.1016/j.ocemod.2019.101536
http://fvcom.smast.umassd.edu/fvcom/
https://doi.org/10.17632/m6g4c3hm9m.1
https://source.coderefinery.org/apn/fvcom4_fisoc
https://source.coderefinery.org/apn/fvcom4_fisoc

For example, you can run FISOC in serial like this:

FISOC_caller

You can run FISOC in parallel like this (depending on your system):

mpirun -np 4 FISOC_caller

In the first instance a dummy coupler can be run by setting both environment variables FISOC ISM and
FISOC OM to “dummy” at compile time. This can help to test the compilation, and was used during devel-
opment, but performs no meaningful science.

In verbose mode (Section 3.1) some run time information may be printed to the screen. Independently of
this, log files are always written (see Section 3.5).

3.1 FISOC runtime configuration

The FISOC configuration file is named FISOC config.rc, and is expected to be present in the current directory
when running FISOC. This is a resource file, as described by the ESMF documentation. It supports different
types and also lists. In principle, lists of mixed types are supported, though FISOC does not utilise this capabil-
ity. Basic syntax highlighting for .rc files can be activated within emacs (see notes in doc/FISOC emacsMode.asc
in the FISOC repository).

FISOC config.rc mainly contains parameters specific to the coupling rather than to the running of indi-
vidual components. Components should use their standard means for configuration, and component-specific
configuration files should be specified in the FISOC configuration file.

Some of the FISOC config entries are strictly required and some are optional. This section describes all the
valid standard config entries. Note that model-specific non-standard entries can be added if needed, and use of
these should be through the model-specific wrapper code.

ISM options

ISM configFile: [STRING] [optional]
The name of the ISM-specific config file.

ISM stdoutFile: [STRING] [optional]
The name of a file to which to write the ISM standard output. May be required depending on model-specific
wrapper.

FISOC ISM ReqVars: [STRING] [required]
List of variable names required to be provided by the ISM.

ISM varNames: [STRING] [optional]
List of native names of variables in the ISM, for use by the model-specific wrapper. May also be required or
unused depending on the wrapper. Must be same length as FISOC ISM ReqVars.

FISOC ISM DerVars: [STRING] [required]
List of variables derived by FISOC from the ISM variables. These are calculated from ISM required variables
by hard coded routines in FISOC ISM or FISOC utils. This list is allowed to be empty.

ISM maskOMvars: [LOGICAL] [optional]
Determines whether the ISM maskOMvars should be turned on or not. The generic pre-requisite for this is
that ISM gmask must be present, i.e. it must be a member of either FISOC ISM ReqVars or
FISOC ISM DerVars. The Elmer-specific pre-requisite is that the Elmer variable GroundedMask must exist
according to the .sif.

ISM2OM vars: [STRING] [optional]
List of variables to be passed from the ISM to the OM. Defaults to all ISM variables (union of required and
derived variables). If an empty list is given no variables will be passed from the ISM to the OM. This can be
useful for unit testing.

8

ISM2OM init vars: [LOGICAL] [optional]
Determines whether the ISM2OM vars should be passed to the OM during the second phase of OM
initialisation. Default is .TRUE.

ISM2OM regrid: [STRING] [optional]
The ESM regridding method to use. If not set, the default will be written to the log files. Possible values are
given in the ESMF documentation. http://www.earthsystemmodeling.org/esmf_releases/public/last/
ESMF_refdoc/node9.html#SECTION090146000000000000000

ISM2OM extrap: [STRING] [optional]
Some ESMF regridding methods may be supplemented with an extrapolation method for target points
outside the source domain.

OM options

OM configFile: [STRING] [optional]
The name of the ISM-specific config file.

OM stdoutFile: [STRING] [optional]
The name of a file to which to write the OM standard output. May be required depending on model-specific
wrapper.

FISOC OM ReqVars: [STRING] [required]
List of variable names required to be provided by the OM.

OM ReqVars stagger: [STRING] [optional]
Corresponding exactly to FISOC OM ReqVars, descriptions of the grid stagger for each variable.

FISOC OM DerVars: [STRING] [required]
List of variables derived by FISOC from the OM vars. To be calculated from OM vars by hard coded routines
in FISOC OM.

OM2ISM vars: [STRING] [optional]
List of variables to be passed from the OM to the ISM. Defaults to all OM variables (union of required and
derived variables). If an empty list is given no variables will be passed from the OM to the ISM. This can be
useful for unit testing.

OM2ISM init vars: [LOGICAL] [optional]
Determines whether the OM2ISM vars should be passed to the ISM during the second phase of ISM
initialisation. Default is .TRUE.

OM initCavityFromISM: [LOGICAL] [optional]
Switch to allow the OM to overwrite its cavity geometry with ISM z l0 during the second phase of
initialisation. Defaults to .FALSE.

OM cavityUpdate: [STRING] [optional]
How to process ISM ice draft for use in OM. Valid values are RecentIce
(default), Rate, CorrectedRate, and Linterp.

OM WCmin: [REAL] [optional]
Minimum water column thickness imposed by OM. Defaults to zero. When using ROMS, this corresponds to
the ROMS DCRIT (in the .in file) and should be set to the same value. Only used with CorrectedRate to
preserve a “dry” water column under grounded ice.

OM CavCorr: [REAL] [optional]
The proportion of the OM - ISM cavity discrepancy to correct in one FISOC call to the OM run method.
This cavity correction factor can take values from 0 to 1. Defaults to 0.2. Only used with CorrectedRate.

OM outputInterval: [INTEGER][optional]

9

http://www.earthsystemmodeling.org/esmf_releases/public/last/ESMF_refdoc/node9.html#SECTION090146000000000000000
http://www.earthsystemmodeling.org/esmf_releases/public/last/ESMF_refdoc/node9.html#SECTION090146000000000000000

FISOC collects OM output once every OM outputInterval OM timesteps. Defaults to 1.
dt ratio/OM outputInterval must be integer.

OM2ISM regrid: [STRING] [optional]
The ESMF regridding method to use. If not set, the default will be written to the log files. Possible values are
given in the ESMF documentation. http://www.earthsystemmodeling.org/esmf_releases/public/last/
ESMF_refdoc/node9.html#SECTION090146000000000000000

OM2ISM extrap: [STRING] [optional]
Some ESMF regridding methods may be supplemented with an extrapolation method for target points
outside the source domain.

Netcdf output options
Note: these are considered OM options because the output writing occurs from the OM generic wrapper. The
OM import state here contains the ISM variables regridded to the OM grid.

OM writeNetcdf: [LOGICAL] [optional]
Switch for dumping the OM import and export variables to NetCDF files. Defaults to .TRUE.

output dir: [STRING] [optional]
Path to directory (must already exist) to which to write the NetCDF files. Defaults to current directory.

OM NCfreq: [STRING] [optional]
Output writing frequency. Defaults to “all”. Valid values are “all” or “ISM” (only write netcdf outputs after
an ISM timestep).

Timestepping options
OM dt sec: [INTEGER][required]
OM timestep length in seconds. When using ROMS, this may be a multiple of the ROMS timestep length, in
which case each FISOC call to the ROMS run method will run multiple ROMS timesteps.

dt ratio: [INTEGER][required]
ISM/OM timestep ratio.

start year: [INTEGER][required]
Start year and month define the start time of the coupled simulation.

start month: [INTEGER][required]

end year: [INTEGER][optional]
End year and month define the finish time of the coupled simulation.

end month: [INTEGER][optional]

runLength ISM steps: [INTEGER][optional]
As an alternative to specifying an end time, the run length in terms of ISM timesteps may be specified.

General options
verbose coupling: [LOGICAL][required]
If true, some run time information is printed to the screen. A log file is always written, but writing to the log
during timestepping is suppressed when verbose coupling is false.

3.1.1 FISOC variables

The union of FISOC ISM ReqVars, FISOC ISM DerVars, FISOC OM ReqVars and FISOC OM DerVars
describes the full set of variables required by FISOC for a given simulation. Valid values are given in Table 2.

10

http://www.earthsystemmodeling.org/esmf_releases/public/last/ESMF_refdoc/node9.html#SECTION090146000000000000000
http://www.earthsystemmodeling.org/esmf_releases/public/last/ESMF_refdoc/node9.html#SECTION090146000000000000000

Note that the units given in Table 2 are suggested units. FISOC doesn’t care about units, but the user must
ensure unit consistency. There may be hard coded unit assumptions in the model specific wrappers.

As a naming convention, “z” refers to the vertical coordinate, and “l0” and “l1” refer to the model level at
the ice-ocean interface (this would typically be the lowest level of the ISM or the uppermost level of the OM)
and one level above it, respectively. “lts” refers to the top surface of the ISM.

FISOC outputting occurs on the ocean grid, and consists of dumping both the import and export fields to
netcdf files. FISOC ISM ReqVars may contain variables that are required only so that they can be written
out on the ocean grid (typically as a sanity or regridding check) rather than actually being needed by the OM.

The list of derived variables, FISOC ISM DerVars, indicates which variables are needed by the OM but
are not calculated by the ISM or its wrapper. The methods for calculating the derived variables are hard coded
in FISOC ISM.f90. Valid values for FISOC ISM DerVars include:

ISM z l0 previous. This is the depth of ice base at previous ISM timestep. This is simply stored in memory.
No calculation is required, but this variable is needed for the other “derived” variables.

ISM dTdz l0. Temperature gradient at ice base. This is calculated as

ISM dTdz l0 =
ISM temperature l1− ISM temperature l0

ISM z l1− ISM z l0
(1)

ISM dddt. Rate of change of depth of ice base. This is calculated as

ISM dddt =
ISM z l0− ISM z l0 previous

ISM dt
(2)

ISM dsdt is calculated similarly to ISM dddt.
Not all ISM variables need to be passed to the OM, and vice versa. This choice is made by the user through

use of configuration options ISM2OM vars and OM2ISM vars. These options alow the user to specify a subset
of the full set of required and derived variables that will be passed to the other component in a given simulation.
An empty list can be used to avoid any variables being passed between components. This can be useful during
testing and troubleshooting.

A note on efficiency (May 2020): All the ISM and OM variables are currently being regridded and passed
to the wrapper for the opposite component. It is at the model-specific wrapper level that ISM2OM vars and
OM2ISM vars are checked. If regridding becomes a significant proportion of FISOC’s computational cost this
should be re-implemented to reduce non-essential regridding operations.

3.1.2 Updating the ice shelf cavity for the OM

Several options are available through FISOC for updating the OM representation of the ocean cavity. These
vary from the simplest option of using the most recent cavity geometry from the ISM to update the OM
representation of cavity geometry to smoother options via either interpolation in time or specifying a rate of
change of cavity geometry.

The options (summarised in Table 3) are all implemented within FISOC, based on the cavity geometry
calculated by the ISM. Some options are through FISOC derived variables, as described in Section 3.1.1. The
key ISM output from which all cavity options are calculated is ISM z l0.

The FISOC GMD paper will provide more details about these approaches to updating the ocean represen-
tation of the ice shelf cavity, and also about the wetting and drying scheme used for grounding line migration.

3.2 Timestepping

Different asynchronous timestepping options are planned. Currently recommended (May 2020) is to set dt ratio
= 1 and use the ISM timestep for both the ISM and OM components. ROMS or FVCOM will run as many
timesteps as needed (see also DT in the ROMS .in file) for each call to their run method. With this approach
the Rate or CorrectedRate methods for cavity evolution are recommended. FISOC can pass the ROMS melt
rate to the ISM after the call to the ROMS run method.

11

Variable Description Units

ISM temperature l0 Ice temperature at the ice ocean interface. K
ISM temperature l1 Ice temperature in the ISM one level above K

the ice ocean interface.
ISM z l0 Height relative to sea level of the ice m

base.
ISM z lts Height relative to sea level of the ice m

top surface.
ISM z l1 Height relative to sea level of the first

ISM model level above the ice base. m
ISM z l0 previous Height relative to sea level of the ice m

base one ISM timestep previously.
ISM z lts previous Height relative to sea level of the ice m

top surface one ISM timestep previously.
ISM thick Ice thickness m
ISM dTdz l0 Vertical temperature gradient in the ice K/m

at the ice base.
ISM dddt Rate of change of the ice draft with respect m/a

to time.
ISM dsdt Rate of change of the ice top surface m/a

height with respect to time.
ISM velocity l0 Ice flow velocity at the ice base m/a
ISM maskOMvars Mask the fields being passed from OM

to the ISM
OM bmb Ice shelf basal melt rate. m/a
OM temperature l0 Ocean temperature at the ice ocean

interface.
OM z l0 Height relative to sea level of the ice m

base.
OM bed Ocean bathymetry
OM z lts Height relative to sea level of the ice m

top surface.

Table 2: FISOC standard variables and typical units. Note that heights relative to sea level are always positive
upward. Some variables in this table differ only in their prefix (ISM or OM). The only differnce is that they
are defined on the geometry object (grid or mesh) of their respective component. For example ISM z lts is
needed to pass the ice upper surface from the ISM to the OM, and OM z lts is needed in order to derive a drift
correction if the correctedRate cavity option is used.

12

Cavity option Summary Required ISM2OM
variable

RecentIce Most recent ice draft from ISM ISM z l0
Rate Rate of change of ice draft from two most ISM dddt

recent ISM steps
CorrectedRate As above with additional drift correction ISM dddt
Linterp Time-interpolated ice draft from two most ISM z l0 linterp

recent ISM steps

Table 3: Cavity update options. Note that of the possible ISM cavity variables (ISM z l0, ISM z l0 linterp,
ISM dddt) only the required variable (third column) should be passed to the OM (constrained using
ISM2OM vars). At time of writing (May 2020) the Rate and CorrectedRate are giving the most reliable
outcomes and are recommended.

3.3 Running FISOC with Elmer/Ice

For dynamic linked libraries, shared object files may be needed at run time. This can be ensured through use
of the $LD LIBRARY PATH environment variable.

For example (it is assumed $ELMER HOME was set during Elmer installation):

export LD_LIBRARY_PATH="$FISOC_ISM_LIBPATH/:$LD_LIBRARY_PATH"

As with a normal Elmer/Ice simulation, the mesh should be partitioned into the same number of partitions
as the number of processors (which is the same as the number of ESMF PETs and DEs).

More information about Elmer, and especially Elmer/Ice, can be found on several sources on the internet.

https://www.csc.fi/web/elmer

http://www.nic.funet.fi/pub/sci/physics/elmer/doc/

http://elmerice.elmerfem.org/

http://elmerice.elmerfem.org/wiki/doku.php

http://www.elmerfem.org/forum/

3.3.1 Elmer/Ice specific configuration

The following options in the FISOC configuration file are used by Elmer/Ice. These are non-standard configu-
ration options.

ISM BodyID: [INTEGER] [required]
The body ID of the surface on which interactions with the ocean occurs. Typically this will be the lower
surface, defined as a boundary in the Elmer/Ice mesh file and as a body in the boundary condition section of
the .sif.

3.4 Running FISOC with ROMS

FISOC needs to access the shared library at run time. One way of ensuring this is to add the location of the
library to the $ LD LIBRARY PATH variable, e.g.:

export LD_LIBRARY_PATH="$FISOC_OM_LIBPATH/:$LD_LIBRARY_PATH"

ROMS writes a lot of information to the screen when run alone. When run through FISOC this is redirected
to a text file. The file name is given by OM stdoutFile, which must be provided in the FISOC config file
whenever ROMS is used.

The number of processes to launch FISOC with must be consistent with the number of partitions in the
ROMS grid. This is set in the OM configFile (i.e. the ROMS .in file) by the Ntile parameters. For example,
the following gives 4 partitions

13

https://www.csc.fi/web/elmer
http://www.nic.funet.fi/pub/sci/physics/elmer/doc/
http://elmerice.elmerfem.org/
http://elmerice.elmerfem.org/wiki/doku.php
http://www.elmerfem.org/forum/

NtileI == 1 ! I-direction partition

NtileJ == 4 ! J-direction partition

Some of the ROMS configuration information is in a .dat file. When running ROMS through FISOC, the
name and full path of this file must be given to VARNAME in the ROMS .in file.

3.5 FISOC output files

The text file outputs from FISOC comprise:
1. Standard out from the job. In interactive runs it is written to the screen.
2. Standard out from the ice model. This is redirected to a file named in the FISOC config file.
3. Standard out from the ocean model. This is redirected to a file named in the FISOC config file.
4. FISOC/ESMF log files (usually named PET*.log). These provide line numbers on which errors occurred.

FISOC can output basic netcdf files from the OM generic wrapper on the OM grid. FISOC can do this for
both ISM and OM variables. This capability is mainly recommended just for sanity checking.

FISOC/ESMF log files have default filenames of “PET#.FISOC.Log”, where “#” is a number from 0
upwards indicating the “Persistent Execution Thread” (PET). These logs are created by FISOC/ESMF and
contain run time messages and errors that can be helpful with troubleshooting. Note that by default FISOC
appends to the logs rather than over-writing at run time, so you may wish to delete old logs periodically.

Aside: PET is an ESMF abstraction designed to be general over differing parallel implementations. In
FISOC, there is always a 1:1 relationship between PETs and MPI processes.

3.6 Troubleshooting

If the error messages to the screen are not helpful, remember to check whether useful information has been
logged in any of the text file outputs (Section 3.5). In particular, the ESMF/FISOC log files contain line
numbers in the code for all logged entries, including errors. These can be used to identify which code segment
caused errors. FISOC aims to provide sufficient troubleshooting information in these files. However, not all
problems are neatly reported at time of writing (May 2020). Some examples of other errors are given below.

A segmentation fault has been known to occurr in the case of an incorrect path to the ROMS configuration
file (the .in file).

Note that DMUMPS error codes, should they occur, can be found in the MUMPS user guide. MUMPS is
often used by Elmer/Ice. http://mumps.enseeiht.fr/

Errors like the following can ocurr (in the log files) when the number of processes is not consistent with the
number of component partitons (this example involves ROMS):

20151119 112603.491 ERROR PET0 ESMCI_DistGrid.C:1200 ESMCI::DistGrid::create() Value

↪→ unrecognized or out of range - deBlockList contains out-of-bounds elements

20151119 112603.491 ERROR PET0 ESMCI_DistGrid_F.C:152 c_esmc_distgridcreatedb() Value

↪→ unrecognized or out of range Internal subroutine call returned Error

20151119 112603.491 ERROR PET0 ESMF_DistGrid.F90:1220 ESMF_DistGridCreateDB() Value

↪→ unrecognized or out of range - Internal subroutine call returned Error

20151119 112603.491 ERROR PET0 src/FISOC_OM_Wrapper_ROMS.f90:612 Value unrecognized or out of

↪→ range - Passing error in return code

20151119 112603.491 ERROR PET0 src/FISOC_OM_Wrapper_ROMS.f90:120 Value unrecognized or out of

↪→ range - Passing error in return code

Errors like the following can occur if a component wrapper attempts to access a field that has not been
created by FISOC, i.e. a field that is not in the list of required variables in the FISOC config file (Section 3.1)
(this example involves FISh):

20151207 152613.483 ERROR PET0 ESMCI_Container_F.C:165 ESMCI::Container::get() Invalid

↪→ argument key does not exist

20151207 152613.484 ERROR PET0 ESMCI_Container_F.C:448 c_esmc_containergetfield() Invalid

↪→ argument Internal subroutine call returned Error

14

http://mumps.enseeiht.fr/

20151207 152613.484 ERROR PET0 ESMF_Container.F90:589 ESMF_ContainerGetField() Invalid

↪→ argument - Internal subroutine call returned Error

20151207 152613.484 ERROR PET0 ESMF_FieldBundle.F90:1456 ESMF_FieldBundleGetItem() Invalid

↪→ argument - Internal subroutine call returned Error

20151207 152613.484 ERROR PET0 src/FISOC_ISM_Wrapper_FISh.f90:198 Invalid argument - Passing

↪→ error in return code

3.7 FISOC examples

Example FISOC configurations can be found in the examples subdirectory of the repository.
The ROMS setup for these examples is defined in the ROMS repository, not in the FISOC repository. This

is because some aspects of the ROMS setup are defined at compile time and it is standard ROMS development
practice to use the ROMS repository for such details. See below for specifics.

The Elmer/Ice setup is defined in the FISOC repository. More information about running the examples
can be found in examples/README.

In general it will be necessary to recompile ROMS and FISOC when switching between different examples,
but it will not be necessary to recompile Elmer/Ice.

Examples 4 and 5 are described further in the FISOC GMD paper, where they are referred to as Verification
Experiments 1 and 2 (VE1 and VE2), along with presentation of outputs.

3.7.1 Example 1: Long thin marine ice sheet

A FISOC example using Elmer/Ice and ROMS. At time of writing (7/12/2017) this has not been recently
used, may not work, and may be superceded by example 5. The Elmer/Ice setup is provided with the example
in the subdirectory. The corresponding ROMS header file is ROMS/Include/iceshelf2d.h, the application is
ICESHELF2D, and the input file is ROMS/External/ocean iceshelf2d.in.

3.7.2 Example 2: Ice cliff

Placeholder! To be developed...

3.7.3 Example 3: Using FISOC to handle time evolving forcing

A FISOC example using offline forcing to drive ROMS. This is used for running the ISOMIP+ ocean 3
and 4 experiments. The corresponding ROMS header file is ROMS/Include/isomip plus.h, the application
is ISOMIP PLUS, and the input file is ROMS/External/ocean isomip plus ocn3.in. Processed netcdf files
based on those available through MISOMIP are also required. The netcdf files are not included in the FISOC
repository.

3.7.4 Example 4: Simple floating only test

A FISOC example using Elmer/Ice and ROMS. No grounding line is included. The Elmer/Ice setup is provided
with the example in the subdirectory. The corresponding ROMS header file is ROMS/Include/iceshelf2d toy.h,
the application is ICESHELF2D TOY, and the input file is ROMS/External/ocean iceshelf2d toy.in. This
example is used in the FISOC GMD model description paper where it is referred to as Verification Experiment
1 (VE1 ER).

3.7.5 Example 5: Simple grounding line migration test

A FISOC example using Elmer/Ice and ROMS. Similar domain to example 4, but with an evolving grounding
line. The Elmer/Ice setup is provided with the example in the subdirectory. The corresponding ROMS
header file is ROMS/Include/iceshelf2d toy gl, the application is ICESHELF2D TOY GL, and the input file is
ROMS/External/ocean iceshelf2d toy gl.in. This example is used in the FISOC GMD model description paper
where it is referred to as Verification Experiment 2 (VE2 ER).

15

Script name Dependencies Function

griddata fvcom.m Matlab Regrid FVCOM output to regular grid.
q read fvcom var.m Matlab, griddata fvcom.m Wrapper for griddata fvcom.m.
ROMSvolume.py Python, Netcdf4 module Calculate ROMS total ocean volume.
plotVols.m Matlab, ROMSvolume.py Line plots of Elmer, ROMS and FVCOM

volume or mass.
read from roms.m Matlab Read ROMS gridded data.
velPlots.m Matlab, read from roms.m, Comparative ocean velocity plot.

q read fvcom var.m
ROMS2Para.m Matlab Prepare ROMS netcdf file for Paraview.
ElmerGroundedArea.py Python, Paraview module Calculate Elmer/Ice total grounded

area over time.
IntegrateMelt.py Python, Paraview module Integrated Elmer/Ice total basal melt

over time.
ROMSgroundedArea.py Python, Paraview module Calculate ROMS total dry cell area

over time.

Table 4: Summary of example output processing scripts. These are not intended to be robust and are not
documented. They are provided only as examples.

4 Post processing

OM and ISM components should be able to provide their usual output formats, and the default expectation
is that standard approaches to visualising and processing outputs will be used for OM and ISM components
separately.

The FISOC repository provides some limited functionality for output processing and visualisation. The
scripts provided are not robust, and are provided more as examples than as a post processing or visualisation
framework. These processing scripts are not supported by FISOC developers. A future intention is to provide
more robust and documented post processing utilities.

Elmer/Ice provides .vtu files that are viewable in Paraview. ROMS provides netcdf files that can be made
viewable in Paraview with a small amount of manipulation. The ROMS outputs need to be provided at rho
points, and the vertical coords need to be processed to express variables on depth levels instead of sigma
coordinates. This way it is possible to view both ROMS and Elmer/Ice outputs together interactively through
Paraview. This approach uses Netcdf Operators (NCO) and Matlab.

ROMS Matlab repository information is available here: https://www.myroms.org/wiki/Matlab Scripts.
You will need a ROMS account to access the matlab scripts in their subversion repository. In particular
set depth.m is needed if using the ROMS2para.m function provided here (and set depth calls another ROMS
matlab function...).

An example ncrcat command for processing ROMS output files is given here. This command concatenates
a subset of the ROMS output data into one netcdf file. For example 5:

ncrcat -O -p . -d ocean_time,,,2 -n 72,2,1 ocean_his_0001.nc ocean_his_select.nc -v ocean_time,

↪→ x_rho,y_rho,Sb,Tb,draft,zeta,m,ubar_eastward,vbar_northward,w,u_eastward,v_northward,temp,

↪→ salt,h,wetdry_mask_rho,Vtransform,Vstretching,theta_s,theta_b,hc

The concatenated file should be suitable for processing through the matlab scripts that prepare for reading
ROMS netcdf files into Paraview.

The ROMS2Para Matlab function is provided in the FISOC pp directory of the FISOC repository. This
works for FISOC example 5, but may not work for other ROMS domains depending on the coordinate system.

There are also some example scripts using either Matlab or the Paraview simple module or the Netcdf4 mod-
ule for Python to perform certain specific postprocessing tasks. These are not documented but are summarised

16

Generic module Role

FISOC caller.f90 The FISOC calling program
FISOC parent.f90 FISOC’s top level ESMF gridded component
FISOC coupler.f90 ESMF coupler component, handles regridding
FISOC ISM.f90 ESMF gridded component, top level control for ISM
FISOC OM.f90 ESMF gridded component, top level control for OM
FISOC Utils.f90 Assorted FISOC utilities, available to all modules

Component-specific module

FISOC OM Wrapper XXX.f90 Model-specific wrapper for OM XXX
FISOC ISM Wrapper XXX.f90 Model-specific wrapper for ISM XXX

Table 5: Summary of the role of key FISOC code modules. ISM is short for Ice Sheet Model and OM is short
for Ocean Model.

in Table 4.

5 FISOC design and development

This section describes aspects of FISOC design/development that an end user would typically not need to
know. An overview of FISOC code modules is summarised in Table 5 and this information is presented visually
in Figure 1. FISOC is intended to be flexible from top down and bottom up: FISOC could be called as part
of a larger ESMF coupled model by interfacing to FISOC parent as a shared library (as of May 2020 the code
is not correctly distributed between caller and parent; please contact the developers if you wish to be able to
call FISOC as an ESMF component and we can address this issue). FISOC calls independent ice or ocean
components through model specific wrappers.

The FISOC ISM and FISOC OM modules provide top level control and processing for ice and ocean compo-
nents. These are not model-specific. The model specific code, which exchanges fields between ESMF structures
and structures used by the individual models, is in the FISOC (O/IS)M Wrapper modules. The main ISM
or OM call structure must be made to be compatible with ESMF, which essentially means having seperate
initialise, run and finalise calls. See the ESMF documentation.

5.1 ESMF run time objects

FISOC maps component grids or meshes to ESMF grid or ESMF mesh objects within the model specific
wrappers. FISOC also maps component “variables” or “fields” to ESMF field objects in the model specific
wrappers. These objects contain pointers to the ESMF grid or ESMF mesh objects. Multiple ESMF field
objects are wrapped in ESMF fieldbundle objects.

ESMF state objects store all data for a gridded component. The model-specific wrappers do not use this
level of ESMF code abstraction. Instead the field bundles are packed/unpacked to/from state objects within
the non model-specific wrappers (i.e. FISOC OM and FISOC ISM modules).

The ESMF routeHandle objects are used to store weights and all information needed for regridding opera-
tions. The coupler component within FISOC sets these up during initialisation using ESMF mesh or ESMF grid
objects obtained from the OM and ISM components.

The ESMF virtual machine (ESMF VM) object provides a generic parallel context and can contain in-
formation for multiple possible parallelism paradigms. ESMF persistent execution threads (PETs) are also
generic objects, representing individual threads within the parallel context. FISOC does not aim for this level
of generality. FISOC is intended to use only the message passing interface (MPI), and requires a one to one
mapping between MPI processes, PETs and domain partitions within geometry objects. FISOC uses ESMF
methods to intialise the parallel context. FISOC then extracts an MPI communicator from the ESMF VM
object and passes this to the ISM and OM components to use in their initialisation phases.

17

FISOC: Framework for Ice Sheet – Ocean Coupling

FISOC: Framework for Ice Sheet – Ocean Coupling

OM_ExpSt
(OM fields

on OM grid)

OM_ImpSt
(processed ISM

fields on OM
grid)

ISM_ExpSt
(ISM fields on

ISM mesh)

ISM mesh and export
fields in ISM native

structures

ISM import fields
in ISM native

structures

Ocean model

OM mesh and
export fields in OM

native structures

OM import fields
in OM native

structures

OM import
fields in ESMF

structures

OM mesh and
export fields in

ESMF structures

ISM_ImpSt
(processed OM

fields on ISM mesh)

FISOC_caller

FISOC_coupler
(regridding)

FISOC_parent
(time processing)

FISOC_OM
(top level OM code,
not model-specific)

FISOC_ISM
(top level ISM code,
not model-specific)

FISOC_ISM_Wrapper
(model-specific

wrapper for ice sheet
model)

Ice sheet model

Legend

Data flow

Call heirarchy

F90 code module

ESMF state object

External data

FISOC_config
(configuration file for the coupling. Component
models can also have independent config files)

ISM import
fields in ESMF

structures

ISM mesh and
export fields in

ESMF structures

ISM configuration
and other inputs

FISOC_OM_Wrapper
(model-specific

wrapper for ocean
model)

OM configuration
and other inputs

Figure 1: FISOC code and data structures.

FISOC also uses EMSF objects for time keeping, but these are not discussed here.

5.2 Incorporating new OM or ISM components

Structural changes to FISOC would be needed to introduce a new type of component, e.g. an atmosphere
model. Implementing an alternative ISM or OM should require no changes to existing FISOC code, just an
additional model-specific wrapper.

Any new OM or ISM component to be used with FISOC must first be ESMF compliant. This basically means
that it should have an initialise, run and finalise routine, and that the developer can provide the component’s
grid and variables in ESMF compatible structures at run time through the new wrapper. The ESMF web site
provides further documentation. https://www.earthsystemcog.org/projects/esmf/

The new wrapper must contain a Fortran module with restrictions on the module name and on the interface
for the initialise, run and finalise methods. The precise requirements are not documented here as they may
evolve during continued development. It is recommended to view an existing wrapper, especially the PUBLIC
routines.

If it is found that changes to other aspects of the FISOC code are required, this should be implemented in
collaboration with the FISOC core developers.

5.3 Coding practices

A new component wrapper should be in a Fortran 90 module. All modules should contain the “implicit
none” statement at the top (immediately after any “USE” statements). This property will be inherited by all
procedures in the module.

FISOC modules have the private attribute, with only required procedures being made public. New model-
specific wrapper modules should ensure that the initialise, run and finalise subroutines are public.

Please implement your developments in a new branch in the FISOC repository. Request a merge to master
when you are happy that it is stable.

18

https://www.earthsystemcog.org/projects/esmf/

Adding new ISM or OM components should not require changes to the Makefile. If you feel that changes
to the Makefile are needed, please first contact the developers to discuss whether this can be achieved through
a build script.

5.3.1 Error handling

ESMF provides defensive error handling, with error codes and error messages passed up the call stack. FISOC
implements “fail-fast” error handling, with errors generally being considered fatal. Exceptions to this may
be made where it is safe to do so (e.g. where a default value can be used in the event of failure to find
a config parameter). All calls to ESMF routines have return codes checked immediately, and errors logged.
If components (OM or ISM) provide a return code or error code, this should be checked by the component
wrapper.

Note that many FISOC subroutines contain a return code, but these are mostly not used in practice. Since
errors are generally considered instantly fatal in FISOC, execution will generally not get as far as returning a
failure code. If a more defensive rather than fail-fast approach is adopted in the future these return codes can
be used.

5.4 Configuration options

Compile time choices include which ISM or OM component to run, the type of ESMF geometry object for each
component (mesh or grid), and paths to find component libraries. These are set through environment variables
during the build process. Other options are mostly run time options, determined by parameters in the FISOC
configuration file.

The configuration file must be named “FISOC config.rc”. It is compatible with ESMF config meth-
ods. An ESMF config object is automatically created from this file at run time. This object is always
named “FISOC config” in the FISOC code. New model-specific parameters needed by the new wrappers
may be introduced to the config file and can be accessed within the model-specific wrapper at run time, via
“FISOC config”. No further coding is needed for this functionality. See existing model-specific wrappers (e.g.
FISOC ISM Wrapper Elmer.f90) for examples of this.

The master list of standard FISOC configuration options is contained in FISOC/doc/FISOC emacsMode.asc
and in Section 3.1 of this manual. When new standard configuration options are added during development,
they should also be added to both the emacsMode file and Section 3.1 of the manual.

5.4.1 Default values and derived attributes

The config file is intended to avoid duplication of information. In the case of configuration options that
can be derived from other configuration options, their derivation is hard coded into FISOC utils.f90 (see
FISOC ConfigDerivedAttribute interface) rather than adding redundant parameters to the config file. It is
recommended (though not strictly required) that further developments also follow this approach.

Note that the approach of derived attributes can be used to hard code a default value for an attribute that
is in essence not a derived attribute. Using the derived attribute subroutines as a wrapper in which to hard
code a default value has the benefit of entering the hard coded value only at one location rather than each
time the attribute is accessed from the config object. It has the disadvantage that the utils module is not the
most intuitive place to store hard coded defaults. Where defaults are set by the utils module, an info statement
should be written to the PET logs.

The derived attributes and default values are not fully documented here due to the dynamic nature of the
code base; the code base should be considered to contain the definitive list. Some indication can be obtained
by searching the code. This command, for example, shows the lines surrounding where FISOC catches a “not
found” error from ESMF:

grep -i -C 3 ESMF_RC_NOT_FOUND FISOC_utils.f90

19

Note that it is not intended for physical parameters to have hard coded defaults given using this mechanism.
It is dangerous to provide values for physical parameters in more than one location. Use of derived attributes
to set defaults is aimed at safe parameters e.g. output frequency.

5.5 Sequential parallelism

FISOC component event order

OM intialisation phase 1
ISM intialisation phase 1
Coupler intialisation phase 1
OM intialisation phase 2
Coupler intialisation phase 2
ISM intialisation phase 2
OM run
Coupler run phase 1
ISM run
Coupler run phase 2
OM finalise
ISM finalise
Coupler finalise

ESMF supports sequential and concurrent parallel coupling, and any com-
bination of these. FISOC currently (May 2020) supports only sequential
coupling, and requries that the ISM and OM alternate use of the same set
of processors. This is implemented by duplicating the MPI context from
the ESMF virtual machine (VM) and passing this to each component.
This can be made more flexible in the future if needed.

The Table to the right summarises the order of events within this
sequential coupling paradigm. This ordering is hard coded, but again,
this could be made more flexible in the future if needed. Note that there
are two initialisation phases so that the ISM and OM components have
the chance to modify their initial state based on the initial state of the
other component (e.g. the OM may wish to update its ice shelf cavity
geometry directly from the initialised ISM during OM intialisation phase
2). Note that the run phases are repeated as many times as are required
to complete the simulation. The coupler component has multiple phases
in order to separately handle the regridding in each direction (ice to ocean
and ocean to ice). ESMF places no limitation on the number of initialisation or run phases for each component,
although FISOC currently imposes this fixed ordering, hard coded into FISOC parent.

20

A Pre-requisite installation notes

The following commands worked to install NetCDF and ESMF on a Linux Mint system in 2015 in a suitable
configuration for use with FISOC. Some pre-requisites for netcdf were also installed. The system already had
a working OpenMPI installation. The following is just an example, it is not intended as a usable script.

instructions on installing ESMF can be found here:

http://www.earthsystemmodeling.org/esmf_releases/last_built/ESMF_usrdoc/node9.html

netcdf instructions

http://www.unidata.ucar.edu/software/netcdf/docs/netcdf-install.html

cd /somewhere/to/download/and/compile/source/code

sudo apt-get install m4

wget ftp://ftp.unidata.ucar.edu/pub/netcdf/netcdf-4/zlib-1.2.8.tar.gz

tar -xzf zlib-1.2.8.tar.gz

cd zlib-1.2.8

./configure --prefix=/usr/local/

make check

sudo -E make install

cd ..

wget ftp://ftp.unidata.ucar.edu/pub/netcdf/netcdf-4/hdf5-1.8.13.tar.gz

tar -xzf hdf5-1.8.13.tar.gz

cd hdf5-1.8.13

Note the O0 flag in the next line. The default is O3,

which is strong optimisation. This can result in failed

checks on some systems.

CFLAGS="-O0 -fPIC" CC=mpicc CXX=mpiCC FC=mpif90 ./configure --prefix=/usr/local/ --with-zlib=/usr/

↪→ local --enable-fortran --enable-parallel --enable-shared

make check

sudo -E make install

cd ..

note that netcdf fortran library is now compiled from a

seperate source from the main netcdf c library. Install

the c library first, and make sure to create the shared

object file.

wget ftp://ftp.unidata.ucar.edu/pub/netcdf/netcdf-4.3.3.tar.gz

tar -xzf netcdf-4.3.3.tar.gz

cd netcdf-4.3.3/

LIBS=-ldl CC=mpicc CXX=mpiCC FC=mpif90 CPPFLAGS=-I/usr/local/include/ LDFLAGS=-L/usr/local/lib/ ./

↪→ configure --prefix=/usr/local --enable-parallel

make check

sudo -E make install

cd ..

wget ftp://ftp.unidata.ucar.edu/pub/netcdf/netcdf-fortran-4.4.2.tar.gz

tar -xzf netcdf-fortran-4.4.2.tar.gz

cd netcdf-fortran-4.4.2

LIBS=-ldl CC=mpicc CXX=mpiCC FC=mpif90 LDFLAGS=-L/usr/local/lib/ CPPFLAGS="-I/usr/local/include -

↪→ DUSE_NETCDF4" ./configure --prefix=/usr/local

make check

21

sudo -E make install

cd ..

convenient viewer for contents of netcdf files (not essential)

sudo apt-get install ncview

ESMF requires ESMF_DIR and probably other environment variables.

These can be set at the command line or, for example, in your

.bashrc fileor a local script file. These might work:

export ESMF_DIR="/top/level/directory/for/esmf/"

export ESMF_NETCDF="split"

export ESMF_NETCDF_INCLUDE="/usr/local/include"

export ESMF_NETCDF_LIBPATH="/usr/local/lib"

export ESMF_COMM="openmpi"

export ESMF_PIO="internal"

wget downloads.sourceforge.net/project/esmf/ESMF_6_3_0r/ESMF_6_3_0rp1/esmf_6_3_0rp1_src.tar.gz

tar -xf esmf_6_3_0rp1_src.tar.gz

cd esmf

make check

sudo -E make install

cd ..

In order to actually use ESMF you must set the environment

variable ESMFMKFILE. If you didn’t use environment

variables to specify the install location this make file

will probably end up somewhere like this:

export ESMFMKFILE="$ESMF_DIR/DEFAULTINSTALLDIR/lib/libO/Linux.gfortran.64.openmpi.default/esmf.mk"

... or for ESMF version 7.0.0 ...

wget https://sourceforge.net/projects/esmf/files/ESMF_7_0_0/esmf_7_0_0_src.tar.gz

tar -xf esmf_7_0_0_src.tar.gz

... or for ESMF version 7.1.0 beta snapshot 14 ...

git archive --remote=git://git.code.sf.net/p/esmf/esmf --format=tar --prefix=esmf/

↪→ ESMF_7_1_0_beta_snapshot_14 | tar xf -

22

	Introduction
	FISOC community and contact

	Installing FISOC with established components
	Switching between components
	FISOC Environment Variables
	Pre-requisites
	Elmer/Ice
	ROMS
	FVCOM

	Running FISOC
	FISOC runtime configuration
	FISOC variables
	Updating the ice shelf cavity for the OM

	Timestepping
	Running FISOC with Elmer/Ice
	Elmer/Ice specific configuration

	Running FISOC with ROMS
	FISOC output files
	Troubleshooting
	FISOC examples
	Example 1: Long thin marine ice sheet
	Example 2: Ice cliff
	Example 3: Using FISOC to handle time evolving forcing
	Example 4: Simple floating only test
	Example 5: Simple grounding line migration test

	Post processing
	FISOC design and development
	ESMF run time objects
	Incorporating new OM or ISM components
	Coding practices
	Error handling

	Configuration options
	Default values and derived attributes

	Sequential parallelism

	Pre-requisite installation notes

