Articles | Volume 14, issue 2
https://doi.org/10.5194/gmd-14-889-2021
https://doi.org/10.5194/gmd-14-889-2021
Model description paper
 | 
11 Feb 2021
Model description paper |  | 11 Feb 2021

The Framework For Ice Sheet–Ocean Coupling (FISOC) V1.1

Rupert Gladstone, Benjamin Galton-Fenzi, David Gwyther, Qin Zhou, Tore Hattermann, Chen Zhao, Lenneke Jong, Yuwei Xia, Xiaoran Guo, Konstantinos Petrakopoulos, Thomas Zwinger, Daniel Shapero, and John Moore

Download

Interactive discussion

Status: closed
Status: closed
AC: Author comment | RC: Referee comment | SC: Short comment | EC: Editor comment
Printer-friendly Version - Printer-friendly version Supplement - Supplement

Peer-review completion

AR: Author's response | RR: Referee report | ED: Editor decision
AR by Rupert Gladstone on behalf of the Authors (23 Nov 2020)  Author's response   Manuscript 
ED: Publish subject to technical corrections (19 Dec 2020) by Philippe Huybrechts
AR by Rupert Gladstone on behalf of the Authors (23 Dec 2020)  Manuscript 
Download
Short summary
Retreat of the Antarctic ice sheet, and hence its contribution to sea level rise, is highly sensitive to melting of its floating ice shelves. This melt is caused by warm ocean currents coming into contact with the ice. Computer models used for future ice sheet projections are not able to realistically evolve these melt rates. We describe a new coupling framework to enable ice sheet and ocean computer models to interact, allowing projection of the evolution of melt and its impact on sea level.