Articles | Volume 14, issue 12
https://doi.org/10.5194/gmd-14-7345-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/gmd-14-7345-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
STEMMUS-UEB v1.0.0: integrated modeling of snowpack and soil water and energy transfer with three complexity levels of soil physical processes
Lianyu Yu
Faculty of Geo-information Science and Earth Observation (ITC),
University of Twente, Enschede, the Netherlands
Faculty of Geo-information Science and Earth Observation (ITC),
University of Twente, Enschede, the Netherlands
Zhongbo Su
CORRESPONDING AUTHOR
Faculty of Geo-information Science and Earth Observation (ITC),
University of Twente, Enschede, the Netherlands
Key Laboratory of Subsurface Hydrology and Ecological Effect in
Arid Region of Ministry of Education, School of Water and Environment,
Chang'an University, Xi'an, China
Related authors
Lianyu Yu, Yijian Zeng, Huanjie Cai, Mengna Li, Yuanyuan Zha, Jicai Zeng, Hui Qian, and Zhongbo Su
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2022-221, https://doi.org/10.5194/gmd-2022-221, 2023
Revised manuscript not accepted
Short summary
Short summary
We developed a coupled soil water-groundwater (SW-GW) model, which is verified as physically accurate and applicable in large-scale groundwater problems. The role of vadose zone processes, coupling approach, and spatiotemporal heterogeneity of SW-GW interactions were highlighted as essential to represent the SW-GW system. Given the relevant dataset, the developed SW-GW modeling framework has the potential to portray the processes "from bedrock to atmosphere" in a physically consistent manner.
Mengna Li, Yijian Zeng, Maciek W. Lubczynski, Jean Roy, Lianyu Yu, Hui Qian, Zhenyu Li, Jie Chen, Lei Han, Han Zheng, Tom Veldkamp, Jeroen M. Schoorl, Harrie-Jan Hendricks Franssen, Kai Hou, Qiying Zhang, Panpan Xu, Fan Li, Kai Lu, Yulin Li, and Zhongbo Su
Earth Syst. Sci. Data, 13, 4727–4757, https://doi.org/10.5194/essd-13-4727-2021, https://doi.org/10.5194/essd-13-4727-2021, 2021
Short summary
Short summary
The Tibetan Plateau is the source of most of Asia's major rivers and has been called the Asian Water Tower. Due to its remoteness and the harsh environment, there is a lack of field survey data to investigate its hydrogeology. Borehole core lithology analysis, an altitude survey, soil thickness measurement, hydrogeological surveys, and hydrogeophysical surveys were conducted in the Maqu catchment within the Yellow River source region to improve a full–picture understanding of the water cycle.
Yunfei Wang, Yijian Zeng, Lianyu Yu, Peiqi Yang, Christiaan Van der Tol, Qiang Yu, Xiaoliang Lü, Huanjie Cai, and Zhongbo Su
Geosci. Model Dev., 14, 1379–1407, https://doi.org/10.5194/gmd-14-1379-2021, https://doi.org/10.5194/gmd-14-1379-2021, 2021
Short summary
Short summary
This study integrates photosynthesis and transfer of energy, mass, and momentum in the soil–plant–atmosphere continuum system, via a simplified 1D root growth model. The results indicated that the simulation of land surface fluxes was significantly improved by considering the root water uptake, especially when vegetation was experiencing severe water stress. This finding highlights the importance of enhanced soil heat and moisture transfer in simulating ecosystem functioning.
Lianyu Yu, Simone Fatichi, Yijian Zeng, and Zhongbo Su
The Cryosphere, 14, 4653–4673, https://doi.org/10.5194/tc-14-4653-2020, https://doi.org/10.5194/tc-14-4653-2020, 2020
Short summary
Short summary
The role of soil water and heat transfer physics in portraying the function of a cold region ecosystem was investigated. We found that explicitly considering the frozen soil physics and coupled water and heat transfer is important in mimicking soil hydrothermal dynamics. The presence of soil ice can alter the vegetation leaf onset date and deep leakage. Different complexity in representing vadose zone physics does not considerably affect interannual energy, water, and carbon fluxes.
Lianyu Yu, Yijian Zeng, and Zhongbo Su
Hydrol. Earth Syst. Sci., 24, 4813–4830, https://doi.org/10.5194/hess-24-4813-2020, https://doi.org/10.5194/hess-24-4813-2020, 2020
Short summary
Short summary
Soil mass and heat transfer processes were represented in three levels of model complexities to understand soil freeze–thaw mechanisms. Results indicate that coupled mass and heat transfer models considerably improved simulations of the soil hydrothermal regime. Vapor flow and thermal effects on water flow are the main mechanisms for the improvements. Given the explicit consideration of airflow, vapor flow and its effects on heat transfer were enhanced during the freeze–thaw transition period.
Lianyu Yu, Yijian Zeng, Zhongbo Su, Huanjie Cai, and Zhen Zheng
Hydrol. Earth Syst. Sci., 20, 975–990, https://doi.org/10.5194/hess-20-975-2016, https://doi.org/10.5194/hess-20-975-2016, 2016
Short summary
Short summary
The coupled water vapor and heat transport model using two different ET (ETdir, ETind) methods varied concerning the simulation of soil moisture and ET components, while agreed well for the simulation of soil temperature. Considering aerodynamic and surface resistance terms improved the ETdir method regarding simulating soil evaporation, especially after irrigation. The interactive effect of crop growth parameters with changing environment played an important role in estimating ET components.
Tobias Karl David Weber, Lutz Weihermüller, Attila Nemes, Michel Bechtold, Aurore Degré, Efstathios Diamantopoulos, Simone Fatichi, Vilim Filipović, Surya Gupta, Tobias L. Hohenbrink, Daniel R. Hirmas, Conrad Jackisch, Quirijn de Jong van Lier, John Koestel, Peter Lehmann, Toby R. Marthews, Budiman Minasny, Holger Pagel, Martine van der Ploeg, Shahab Aldin Shojaeezadeh, Simon Fiil Svane, Brigitta Szabó, Harry Vereecken, Anne Verhoef, Michael Young, Yijian Zeng, Yonggen Zhang, and Sara Bonetti
Hydrol. Earth Syst. Sci., 28, 3391–3433, https://doi.org/10.5194/hess-28-3391-2024, https://doi.org/10.5194/hess-28-3391-2024, 2024
Short summary
Short summary
Pedotransfer functions (PTFs) are used to predict parameters of models describing the hydraulic properties of soils. The appropriateness of these predictions critically relies on the nature of the datasets for training the PTFs and the physical comprehensiveness of the models. This roadmap paper is addressed to PTF developers and users and critically reflects the utility and future of PTFs. To this end, we present a manifesto aiming at a paradigm shift in PTF research.
Paolo Nasta, Günter Blöschl, Heye R. Bogena, Steffen Zacharias, Roland Baatz, Gabriëlle De Lannoy, Karsten H. Jensen, Salvatore Manfreda, Laurent Pfister, Ana M. Tarquis, Ilja van Meerveld, Marc Voltz, Yijian Zeng, William Kustas, Xin Li, Harry Vereecken, and Nunzio Romano
EGUsphere, https://doi.org/10.5194/egusphere-2024-1678, https://doi.org/10.5194/egusphere-2024-1678, 2024
Short summary
Short summary
The Unsolved Problems in Hydrology (UPH) initiative has emphasized the need to establish networks of multi-decadal hydrological observatories to tackle catchment-scale challenges on a global scale. This opinion paper provocatively discusses two end members of possible future hydrological observatory (HO) networks for a given hypothesized community budget: a comprehensive set of moderately instrumented observatories or, alternatively, a small number of highly instrumented super-sites.
Yunfei Wang, Yijian Zeng, Zengjing Song, Danyang Yu, Qianqian Han, Enting Tang, Henk de Bruin, and Zhongbo Su
EGUsphere, https://doi.org/10.5194/egusphere-2024-1321, https://doi.org/10.5194/egusphere-2024-1321, 2024
Preprint archived
Short summary
Short summary
Various methods were proposed to estimate irrigation water requirements (IWR). However, the simulated IWR exhibits large differences. This study evaluates six potential evapotranspiration (PET) methods and proposes a practical approach to estimate IWR. The radiation-based methods show promise in approximating daily PET accurately, and the STEMMUS-SCOPE model can reliably estimate IWR. This research enhances our understanding of different PET methods and their implications for water management.
Enting Tang, Yijian Zeng, Yunfei Wang, Zengjing Song, Danyang Yu, Hongyue Wu, Chenglong Qiao, Christiaan van der Tol, Lingtong Du, and Zhongbo Su
Biogeosciences, 21, 893–909, https://doi.org/10.5194/bg-21-893-2024, https://doi.org/10.5194/bg-21-893-2024, 2024
Short summary
Short summary
Our study shows that planting shrubs in a semiarid grassland reduced the soil moisture and increased plant water uptake and transpiration. Notably, the water used by the ecosystem exceeded the rainfall received during the growing seasons, indicating an imbalance in the water cycle. The findings demonstrate the effectiveness of the STEMMUS–SCOPE model as a tool to represent ecohydrological processes and highlight the need to consider energy and water budgets for future revegetation projects.
Gab Abramowitz, Anna Ukkola, Sanaa Hobeichi, Jon Cranko Page, Mathew Lipson, Martin De Kauwe, Sam Green, Claire Brenner, Jonathan Frame, Grey Nearing, Martyn Clark, Martin Best, Peter Anthoni, Gabriele Arduini, Souhail Boussetta, Silvia Caldararu, Kyeungwoo Cho, Matthias Cuntz, David Fairbairn, Craig Ferguson, Hyungjun Kim, Yeonjoo Kim, Jürgen Knauer, David Lawrence, Xiangzhong Luo, Sergey Malyshev, Tomoko Nitta, Jerome Ogee, Keith Oleson, Catherine Ottlé, Phillipe Peylin, Patricia de Rosnay, Heather Rumbold, Bob Su, Nicolas Vuichard, Anthony Walker, Xiaoni Wang-Faivre, Yunfei Wang, and Yijian Zeng
EGUsphere, https://doi.org/10.5194/egusphere-2023-3084, https://doi.org/10.5194/egusphere-2023-3084, 2024
Short summary
Short summary
This paper evaluates land models – computer based models that simulate ecosystem dynamics, the land carbon, water and energy cycles and the role of land in the climate system. It uses machine learning / AI approaches to show that despite the complexity of land models, they do not perform nearly as well as they could, given the amount of information they are provided with about the prediction problem.
Qianqian Han, Yijian Zeng, Lijie Zhang, Calimanut-Ionut Cira, Egor Prikaziuk, Ting Duan, Chao Wang, Brigitta Szabó, Salvatore Manfreda, Ruodan Zhuang, and Bob Su
Geosci. Model Dev., 16, 5825–5845, https://doi.org/10.5194/gmd-16-5825-2023, https://doi.org/10.5194/gmd-16-5825-2023, 2023
Short summary
Short summary
Using machine learning, we estimated global surface soil moisture (SSM) to aid in understanding water, energy, and carbon exchange. Ensemble models outperformed individual algorithms in predicting SSM under different climates. The best-performing ensemble included K-neighbours Regressor, Random Forest Regressor, and Extreme Gradient Boosting. This is important for hydrological and climatological applications such as water cycle monitoring, irrigation management, and crop yield prediction.
Kai-Gao Ouyang, Xiao-Wei Jiang, Gang Mei, Hong-Bin Yan, Ran Niu, Li Wan, and Yijian Zeng
Hydrol. Earth Syst. Sci., 27, 2579–2590, https://doi.org/10.5194/hess-27-2579-2023, https://doi.org/10.5194/hess-27-2579-2023, 2023
Short summary
Short summary
Our knowledge on sources and dynamics of rock moisture is limited. By using frequency domain reflectometry (FDR), we monitored rock moisture in a cave. The results of an explainable deep learning model reveal that the direct source of rock moisture responsible for weathering in the studied cave is vapour, not infiltrating precipitation. A physics-informed deep learning model, which uses variables controlling vapor condensation as model inputs, leads to accurate rock water content predictions.
Lianyu Yu, Yijian Zeng, Huanjie Cai, Mengna Li, Yuanyuan Zha, Jicai Zeng, Hui Qian, and Zhongbo Su
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2022-221, https://doi.org/10.5194/gmd-2022-221, 2023
Revised manuscript not accepted
Short summary
Short summary
We developed a coupled soil water-groundwater (SW-GW) model, which is verified as physically accurate and applicable in large-scale groundwater problems. The role of vadose zone processes, coupling approach, and spatiotemporal heterogeneity of SW-GW interactions were highlighted as essential to represent the SW-GW system. Given the relevant dataset, the developed SW-GW modeling framework has the potential to portray the processes "from bedrock to atmosphere" in a physically consistent manner.
Pei Zhang, Donghai Zheng, Rogier van der Velde, Jun Wen, Yaoming Ma, Yijian Zeng, Xin Wang, Zuoliang Wang, Jiali Chen, and Zhongbo Su
Earth Syst. Sci. Data, 14, 5513–5542, https://doi.org/10.5194/essd-14-5513-2022, https://doi.org/10.5194/essd-14-5513-2022, 2022
Short summary
Short summary
Soil moisture and soil temperature (SMST) are important state variables for quantifying the heat–water exchange between land and atmosphere. Yet, long-term, regional-scale in situ SMST measurements at multiple depths are scarce on the Tibetan Plateau (TP). The presented dataset would be valuable for the evaluation and improvement of long-term satellite- and model-based SMST products on the TP, enhancing the understanding of TP hydrometeorological processes and their response to climate change.
Hong Zhao, Yijian Zeng, Jan G. Hofste, Ting Duan, Jun Wen, and Zhongbo Su
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2022-333, https://doi.org/10.5194/hess-2022-333, 2022
Revised manuscript not accepted
Short summary
Short summary
This paper demonstrated the capability of our developed platform for simulating microwave emission and backscatter signals at multi-frequency. The results of associated investigations on impacts of vegetation water (VW) and temperature (T) imply the need to first disentangle the impact of T for the use of high-frequency signals as its variation is more due to dynamic T. Estimated vegetation optical depth is frequency-dependent, while its diurnal variation depends on that of VW despite frequency.
Shaoning Lv, Clemens Simmer, Yijian Zeng, Jun Wen, Yuanyuan Guo, and Zhongbo Su
The Cryosphere Discuss., https://doi.org/10.5194/tc-2021-369, https://doi.org/10.5194/tc-2021-369, 2022
Preprint withdrawn
Short summary
Short summary
The freeze-thaw of the ground is an interesting topic to climatology, hydrology, and other earth sciences. The global freeze-thaw distribution is available by passive microwave remote sensing technique. However, the remote sensing technique indirectly detects freeze-thaw states by measuring the brightness temperature difference between frozen and unfrozen soil. Thus, we present different interprets of the brightness signals to the FT-state by using its sub-daily character.
Wouter Dorigo, Irene Himmelbauer, Daniel Aberer, Lukas Schremmer, Ivana Petrakovic, Luca Zappa, Wolfgang Preimesberger, Angelika Xaver, Frank Annor, Jonas Ardö, Dennis Baldocchi, Marco Bitelli, Günter Blöschl, Heye Bogena, Luca Brocca, Jean-Christophe Calvet, J. Julio Camarero, Giorgio Capello, Minha Choi, Michael C. Cosh, Nick van de Giesen, Istvan Hajdu, Jaakko Ikonen, Karsten H. Jensen, Kasturi Devi Kanniah, Ileen de Kat, Gottfried Kirchengast, Pankaj Kumar Rai, Jenni Kyrouac, Kristine Larson, Suxia Liu, Alexander Loew, Mahta Moghaddam, José Martínez Fernández, Cristian Mattar Bader, Renato Morbidelli, Jan P. Musial, Elise Osenga, Michael A. Palecki, Thierry Pellarin, George P. Petropoulos, Isabella Pfeil, Jarrett Powers, Alan Robock, Christoph Rüdiger, Udo Rummel, Michael Strobel, Zhongbo Su, Ryan Sullivan, Torbern Tagesson, Andrej Varlagin, Mariette Vreugdenhil, Jeffrey Walker, Jun Wen, Fred Wenger, Jean Pierre Wigneron, Mel Woods, Kun Yang, Yijian Zeng, Xiang Zhang, Marek Zreda, Stephan Dietrich, Alexander Gruber, Peter van Oevelen, Wolfgang Wagner, Klaus Scipal, Matthias Drusch, and Roberto Sabia
Hydrol. Earth Syst. Sci., 25, 5749–5804, https://doi.org/10.5194/hess-25-5749-2021, https://doi.org/10.5194/hess-25-5749-2021, 2021
Short summary
Short summary
The International Soil Moisture Network (ISMN) is a community-based open-access data portal for soil water measurements taken at the ground and is accessible at https://ismn.earth. Over 1000 scientific publications and thousands of users have made use of the ISMN. The scope of this paper is to inform readers about the data and functionality of the ISMN and to provide a review of the scientific progress facilitated through the ISMN with the scope to shape future research and operations.
Mengna Li, Yijian Zeng, Maciek W. Lubczynski, Jean Roy, Lianyu Yu, Hui Qian, Zhenyu Li, Jie Chen, Lei Han, Han Zheng, Tom Veldkamp, Jeroen M. Schoorl, Harrie-Jan Hendricks Franssen, Kai Hou, Qiying Zhang, Panpan Xu, Fan Li, Kai Lu, Yulin Li, and Zhongbo Su
Earth Syst. Sci. Data, 13, 4727–4757, https://doi.org/10.5194/essd-13-4727-2021, https://doi.org/10.5194/essd-13-4727-2021, 2021
Short summary
Short summary
The Tibetan Plateau is the source of most of Asia's major rivers and has been called the Asian Water Tower. Due to its remoteness and the harsh environment, there is a lack of field survey data to investigate its hydrogeology. Borehole core lithology analysis, an altitude survey, soil thickness measurement, hydrogeological surveys, and hydrogeophysical surveys were conducted in the Maqu catchment within the Yellow River source region to improve a full–picture understanding of the water cycle.
Hong-Yu Xie, Xiao-Wei Jiang, Shu-Cong Tan, Li Wan, Xu-Sheng Wang, Si-Hai Liang, and Yijian Zeng
Hydrol. Earth Syst. Sci., 25, 4243–4257, https://doi.org/10.5194/hess-25-4243-2021, https://doi.org/10.5194/hess-25-4243-2021, 2021
Short summary
Short summary
Freezing-induced groundwater migration and water table decline are widely observed, but quantitative understanding of these processes is lacking. By considering wintertime atmospheric conditions and occurrence of lateral groundwater inflow, a model coupling soil water and groundwater reproduced field observations of soil temperature, soil water content, and groundwater level well. The model results led to a clear understanding of the balance of the water budget during the freezing–thawing cycle.
Cunbo Han, Yaoming Ma, Binbin Wang, Lei Zhong, Weiqiang Ma, Xuelong Chen, and Zhongbo Su
Earth Syst. Sci. Data, 13, 3513–3524, https://doi.org/10.5194/essd-13-3513-2021, https://doi.org/10.5194/essd-13-3513-2021, 2021
Short summary
Short summary
Actual terrestrial evapotranspiration (ETa) is a key parameter controlling the land–atmosphere interaction processes and water cycle. However, the spatial distribution and temporal changes in ETa over the Tibetan Plateau (TP) remain very uncertain. Here we estimate the multiyear (2001–2018) monthly ETa and its spatial distribution on the TP by a combination of meteorological data and satellite products. Results have been validated at six eddy-covariance monitoring sites and show high accuracy.
Pei Zhang, Donghai Zheng, Rogier van der Velde, Jun Wen, Yijian Zeng, Xin Wang, Zuoliang Wang, Jiali Chen, and Zhongbo Su
Earth Syst. Sci. Data, 13, 3075–3102, https://doi.org/10.5194/essd-13-3075-2021, https://doi.org/10.5194/essd-13-3075-2021, 2021
Short summary
Short summary
This paper reports on the status of the Tibet-Obs and presents a 10-year (2009–2019) surface soil moisture (SM) dataset produced based on in situ measurements taken at a depth of 5 cm collected from the Tibet-Obs. This surface SM dataset includes the original 15 min in situ measurements collected by multiple SM monitoring sites of three networks (i.e. the Maqu, Naqu, and Ngari networks) and the spatially upscaled SM records produced for the Maqu and Shiquanhe networks.
Jan G. Hofste, Rogier van der Velde, Jun Wen, Xin Wang, Zuoliang Wang, Donghai Zheng, Christiaan van der Tol, and Zhongbo Su
Earth Syst. Sci. Data, 13, 2819–2856, https://doi.org/10.5194/essd-13-2819-2021, https://doi.org/10.5194/essd-13-2819-2021, 2021
Short summary
Short summary
The dataset reported in this paper concerns the measurement of microwave reflections from an alpine meadow over the Tibetan Plateau. These microwave reflections were measured continuously over 1 year. With it, variations in soil water content due to evaporation, precipitation, drainage, and soil freezing/thawing can be seen. A better understanding of the effects aforementioned processes have on microwave reflections may improve methods for estimating soil water content used by satellites.
Yunfei Wang, Yijian Zeng, Lianyu Yu, Peiqi Yang, Christiaan Van der Tol, Qiang Yu, Xiaoliang Lü, Huanjie Cai, and Zhongbo Su
Geosci. Model Dev., 14, 1379–1407, https://doi.org/10.5194/gmd-14-1379-2021, https://doi.org/10.5194/gmd-14-1379-2021, 2021
Short summary
Short summary
This study integrates photosynthesis and transfer of energy, mass, and momentum in the soil–plant–atmosphere continuum system, via a simplified 1D root growth model. The results indicated that the simulation of land surface fluxes was significantly improved by considering the root water uptake, especially when vegetation was experiencing severe water stress. This finding highlights the importance of enhanced soil heat and moisture transfer in simulating ecosystem functioning.
María P. González-Dugo, Xuelong Chen, Ana Andreu, Elisabet Carpintero, Pedro J. Gómez-Giraldez, Arnaud Carrara, and Zhongbo Su
Hydrol. Earth Syst. Sci., 25, 755–768, https://doi.org/10.5194/hess-25-755-2021, https://doi.org/10.5194/hess-25-755-2021, 2021
Short summary
Short summary
Drought is a devastating natural hazard and difficult to define, detect and quantify. Global meteorological data and remote-sensing products present new opportunities to characterize drought in an objective way. In this paper, we applied the surface energy balance model SEBS to estimate monthly evapotranspiration (ET) from 2001 to 2018 over the dehesa area of the Iberian Peninsula. ET anomalies were used to identify the main drought events and analyze their impacts on dehesa vegetation.
Rogier van der Velde, Andreas Colliander, Michiel Pezij, Harm-Jan F. Benninga, Rajat Bindlish, Steven K. Chan, Thomas J. Jackson, Dimmie M. D. Hendriks, Denie C. M. Augustijn, and Zhongbo Su
Hydrol. Earth Syst. Sci., 25, 473–495, https://doi.org/10.5194/hess-25-473-2021, https://doi.org/10.5194/hess-25-473-2021, 2021
Short summary
Short summary
NASA’s SMAP satellite provides estimates of the amount of water in the soil. With measurements from a network of 20 monitoring stations, the accuracy of these estimates has been studied for a 4-year period. We found an agreement between satellite and in situ estimates in line with the mission requirements once the large mismatches associated with rapidly changing water contents, e.g. soil freezing and rainfall, are excluded.
Lianyu Yu, Simone Fatichi, Yijian Zeng, and Zhongbo Su
The Cryosphere, 14, 4653–4673, https://doi.org/10.5194/tc-14-4653-2020, https://doi.org/10.5194/tc-14-4653-2020, 2020
Short summary
Short summary
The role of soil water and heat transfer physics in portraying the function of a cold region ecosystem was investigated. We found that explicitly considering the frozen soil physics and coupled water and heat transfer is important in mimicking soil hydrothermal dynamics. The presence of soil ice can alter the vegetation leaf onset date and deep leakage. Different complexity in representing vadose zone physics does not considerably affect interannual energy, water, and carbon fluxes.
Xu Yuan, Xiaolong Yu, and Zhongbo Su
Ocean Sci., 16, 1285–1296, https://doi.org/10.5194/os-16-1285-2020, https://doi.org/10.5194/os-16-1285-2020, 2020
Short summary
Short summary
This work investigates the variabilities of the barrier layer thickness (BLT) in the tropical Indian Ocean with the Simple Ocean Data Assimilation version 3 ocean reanalysis data. Our results show that the seasonal variation of the BLT is in relation to the changes of thermocline and sea surface salinity. In terms of the interannual timescale, BLT presents a clear seasonal phase locking dominated by different drivers during the Indian Dipole and El Niño–Southern Oscillation events.
Lianyu Yu, Yijian Zeng, and Zhongbo Su
Hydrol. Earth Syst. Sci., 24, 4813–4830, https://doi.org/10.5194/hess-24-4813-2020, https://doi.org/10.5194/hess-24-4813-2020, 2020
Short summary
Short summary
Soil mass and heat transfer processes were represented in three levels of model complexities to understand soil freeze–thaw mechanisms. Results indicate that coupled mass and heat transfer models considerably improved simulations of the soil hydrothermal regime. Vapor flow and thermal effects on water flow are the main mechanisms for the improvements. Given the explicit consideration of airflow, vapor flow and its effects on heat transfer were enhanced during the freeze–thaw transition period.
X. Chen, Z. Su, and Y. Ma
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLII-2-W13, 1729–1733, https://doi.org/10.5194/isprs-archives-XLII-2-W13-1729-2019, https://doi.org/10.5194/isprs-archives-XLII-2-W13-1729-2019, 2019
Mehdi Rahmati, Lutz Weihermüller, Jan Vanderborght, Yakov A. Pachepsky, Lili Mao, Seyed Hamidreza Sadeghi, Niloofar Moosavi, Hossein Kheirfam, Carsten Montzka, Kris Van Looy, Brigitta Toth, Zeinab Hazbavi, Wafa Al Yamani, Ammar A. Albalasmeh, Ma'in Z. Alghzawi, Rafael Angulo-Jaramillo, Antônio Celso Dantas Antonino, George Arampatzis, Robson André Armindo, Hossein Asadi, Yazidhi Bamutaze, Jordi Batlle-Aguilar, Béatrice Béchet, Fabian Becker, Günter Blöschl, Klaus Bohne, Isabelle Braud, Clara Castellano, Artemi Cerdà, Maha Chalhoub, Rogerio Cichota, Milena Císlerová, Brent Clothier, Yves Coquet, Wim Cornelis, Corrado Corradini, Artur Paiva Coutinho, Muriel Bastista de Oliveira, José Ronaldo de Macedo, Matheus Fonseca Durães, Hojat Emami, Iraj Eskandari, Asghar Farajnia, Alessia Flammini, Nándor Fodor, Mamoun Gharaibeh, Mohamad Hossein Ghavimipanah, Teamrat A. Ghezzehei, Simone Giertz, Evangelos G. Hatzigiannakis, Rainer Horn, Juan José Jiménez, Diederik Jacques, Saskia Deborah Keesstra, Hamid Kelishadi, Mahboobeh Kiani-Harchegani, Mehdi Kouselou, Madan Kumar Jha, Laurent Lassabatere, Xiaoyan Li, Mark A. Liebig, Lubomír Lichner, María Victoria López, Deepesh Machiwal, Dirk Mallants, Micael Stolben Mallmann, Jean Dalmo de Oliveira Marques, Miles R. Marshall, Jan Mertens, Félicien Meunier, Mohammad Hossein Mohammadi, Binayak P. Mohanty, Mansonia Pulido-Moncada, Suzana Montenegro, Renato Morbidelli, David Moret-Fernández, Ali Akbar Moosavi, Mohammad Reza Mosaddeghi, Seyed Bahman Mousavi, Hasan Mozaffari, Kamal Nabiollahi, Mohammad Reza Neyshabouri, Marta Vasconcelos Ottoni, Theophilo Benedicto Ottoni Filho, Mohammad Reza Pahlavan-Rad, Andreas Panagopoulos, Stephan Peth, Pierre-Emmanuel Peyneau, Tommaso Picciafuoco, Jean Poesen, Manuel Pulido, Dalvan José Reinert, Sabine Reinsch, Meisam Rezaei, Francis Parry Roberts, David Robinson, Jesús Rodrigo-Comino, Otto Corrêa Rotunno Filho, Tadaomi Saito, Hideki Suganuma, Carla Saltalippi, Renáta Sándor, Brigitta Schütt, Manuel Seeger, Nasrollah Sepehrnia, Ehsan Sharifi Moghaddam, Manoj Shukla, Shiraki Shutaro, Ricardo Sorando, Ajayi Asishana Stanley, Peter Strauss, Zhongbo Su, Ruhollah Taghizadeh-Mehrjardi, Encarnación Taguas, Wenceslau Geraldes Teixeira, Ali Reza Vaezi, Mehdi Vafakhah, Tomas Vogel, Iris Vogeler, Jana Votrubova, Steffen Werner, Thierry Winarski, Deniz Yilmaz, Michael H. Young, Steffen Zacharias, Yijian Zeng, Ying Zhao, Hong Zhao, and Harry Vereecken
Earth Syst. Sci. Data, 10, 1237–1263, https://doi.org/10.5194/essd-10-1237-2018, https://doi.org/10.5194/essd-10-1237-2018, 2018
Short summary
Short summary
This paper presents and analyzes a global database of soil infiltration data, the SWIG database, for the first time. In total, 5023 infiltration curves were collected across all continents in the SWIG database. These data were either provided and quality checked by the scientists or they were digitized from published articles. We are convinced that the SWIG database will allow for a better parameterization of the infiltration process in land surface models and for testing infiltration models.
Hong Zhao, Yijian Zeng, Shaoning Lv, and Zhongbo Su
Earth Syst. Sci. Data, 10, 1031–1061, https://doi.org/10.5194/essd-10-1031-2018, https://doi.org/10.5194/essd-10-1031-2018, 2018
Short summary
Short summary
The Tibet-Obs soil properties dataset was compiled based on in situ and laboratory measurements of soil profiles across three climate zones on the Tibetan Plateau. The appropriate parameterization schemes of soil hydraulic and thermal properties were discussed for their applicability in land surface modeling. The uncertainties of existing soil datasets were evaluated. This paper contributes to land surface modeling and hydro-climatology communities for their studies of the third pole region.
Fakhereh Alidoost, Alfred Stein, Zhongbo Su, and Ali Sharifi
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2017-93, https://doi.org/10.5194/hess-2017-93, 2017
Manuscript not accepted for further review
Short summary
Short summary
Weather stations are often sparse and systematic under/overestimation of a global weather forecast system leads to bias. Most of the available bias correction methods do not consider higher order moments of a probability distribution and they use same distributions families to estimate both marginal and multivariate distributions. We propose three new copula-based bias correction methods, which describe the dependence structure between air temperature and covariates.
Jian Peng, Alexander Loew, Xuelong Chen, Yaoming Ma, and Zhongbo Su
Hydrol. Earth Syst. Sci., 20, 3167–3182, https://doi.org/10.5194/hess-20-3167-2016, https://doi.org/10.5194/hess-20-3167-2016, 2016
Short summary
Short summary
The Tibetan Plateau plays a major role in regional and global climate. The knowledge of latent heat flux can help to better describe the complex interactions between land and atmosphere. The purpose of this paper is to provide a detailed cross-comparison of existing latent heat flux products over the TP. The results highlight the recently developed latent heat product – High Resolution Land Surface Parameters from Space (HOLAPS).
Lianyu Yu, Yijian Zeng, Zhongbo Su, Huanjie Cai, and Zhen Zheng
Hydrol. Earth Syst. Sci., 20, 975–990, https://doi.org/10.5194/hess-20-975-2016, https://doi.org/10.5194/hess-20-975-2016, 2016
Short summary
Short summary
The coupled water vapor and heat transport model using two different ET (ETdir, ETind) methods varied concerning the simulation of soil moisture and ET components, while agreed well for the simulation of soil temperature. Considering aerodynamic and surface resistance terms improved the ETdir method regarding simulating soil evaporation, especially after irrigation. The interactive effect of crop growth parameters with changing environment played an important role in estimating ET components.
X. Chen, Z. Su, Y. Ma, S. Liu, Q. Yu, and Z. Xu
Atmos. Chem. Phys., 14, 13097–13117, https://doi.org/10.5194/acp-14-13097-2014, https://doi.org/10.5194/acp-14-13097-2014, 2014
R. van der Velde, M. S. Salama, T. Pellarin, M. Ofwono, Y. Ma, and Z. Su
Hydrol. Earth Syst. Sci., 18, 1323–1337, https://doi.org/10.5194/hess-18-1323-2014, https://doi.org/10.5194/hess-18-1323-2014, 2014
Related subject area
Cryosphere
Design and performance of ELSA v2.0: an isochronal model for ice-sheet layer tracing
Southern Ocean Ice Prediction System version 1.0 (SOIPS v1.0): description of the system and evaluation of synoptic-scale sea ice forecasts
Lagrangian tracking of sea ice in Community Ice CodE (CICE; version 5)
openAMUNDSEN v1.0: an open-source snow-hydrological model for mountain regions
OpenFOAM-avalanche 2312: depth-integrated models beyond dense-flow avalanches
Refactoring the elastic–viscous–plastic solver from the sea ice model CICE v6.5.1 for improved performance
A new 3D full-Stokes calving algorithm within Elmer/Ice (v9.0)
Evaluation of MITgcm-based ocean reanalysis for the Southern Ocean
Improvements of the land surface configuration to better simulate seasonal snow cover in the European Alps with the CNRM-AROME (cycle 46) convection-permitting regional climate model
A Global land snow scheme (GLASS) v1.0 for the GFDL Earth System Model: Formulation and evaluation at instrumented sites
A novel numerical implementation for the surface energy budget of melting snowpacks and glaciers
SnowPappus v1.0, a blowing-snow model for large-scale applications of the Crocus snow scheme
A stochastic parameterization of ice sheet surface mass balance for the Stochastic Ice-Sheet and Sea-Level System Model (StISSM v1.0)
Graphics-processing-unit-accelerated ice flow solver for unstructured meshes using the Shallow-Shelf Approximation (FastIceFlo v1.0.1)
A three-stage model pipeline predicting regional avalanche danger in Switzerland (RAvaFcast v1.0.0): a decision-support tool for operational avalanche forecasting
A finite-element framework to explore the numerical solution of the coupled problem of heat conduction, water vapor diffusion, and settlement in dry snow (IvoriFEM v0.1.0)
AvaFrame com1DFA (v1.3): a thickness-integrated computational avalanche module – theory, numerics, and testing
Universal differential equations for glacier ice flow modelling
A new model for supraglacial hydrology evolution and drainage for the Greenland Ice Sheet (SHED v1.0)
Modeling sensitivities of thermally and hydraulically driven ice stream surge cycling
A parallel implementation of the confined–unconfined aquifer system model for subglacial hydrology: design, verification, and performance analysis (CUAS-MPI v0.1.0)
Automatic snow type classification of snow micropenetrometer profiles with machine learning algorithms
An empirical model to calculate snow depth from daily snow water equivalent: SWE2HS 1.0
A wind-driven snow redistribution module for Alpine3D v3.3.0: adaptations designed for downscaling ice sheet surface mass balance
SnowQM 1.0: A fast R Package for bias-correcting spatial fields of snow water equivalent using quantile mapping
The CryoGrid community model (version 1.0) – a multi-physics toolbox for climate-driven simulations in the terrestrial cryosphere
Glacier Energy and Mass Balance (GEMB): a model of firn processes for cryosphere research
Sensitivity of NEMO4.0-SI3 model parameters on sea ice budgets in the Southern Ocean
Introducing CRYOWRF v1.0: multiscale atmospheric flow simulations with advanced snow cover modelling
SUHMO: an adaptive mesh refinement SUbglacial Hydrology MOdel v1.0
Improving snow albedo modeling in the E3SM land model (version 2.0) and assessing its impacts on snow and surface fluxes over the Tibetan Plateau
The Multiple Snow Data Assimilation System (MuSA v1.0)
The Stochastic Ice-Sheet and Sea-Level System Model v1.0 (StISSM v1.0)
Improved representation of the contemporary Greenland ice sheet firn layer by IMAU-FDM v1.2G
Modeling the small-scale deposition of snow onto structured Arctic sea ice during a MOSAiC storm using snowBedFoam 1.0.
Benchmarking the vertically integrated ice-sheet model IMAU-ICE (version 2.0)
SnowClim v1.0: high-resolution snow model and data for the western United States
Snow Multidata Mapping and Modeling (S3M) 5.1: a distributed cryospheric model with dry and wet snow, data assimilation, glacier mass balance, and debris-driven melt
MPAS-Seaice (v1.0.0): sea-ice dynamics on unstructured Voronoi meshes
Explicitly modelling microtopography in permafrost landscapes in a land surface model (JULES vn5.4_microtopography)
Geometric remapping of particle distributions in the Discrete Element Model for Sea Ice (DEMSI v0.0)
Mapping high-resolution basal topography of West Antarctica from radar data using non-stationary multiple-point geostatistics (MPS-BedMappingV1)
NEMO-Bohai 1.0: a high-resolution ocean and sea ice modelling system for the Bohai Sea, China
An improved regional coupled modeling system for Arctic sea ice simulation and prediction: a case study for 2018
WIFF1.0: a hybrid machine-learning-based parameterization of wave-induced sea ice floe fracture
The Whole Antarctic Ocean Model (WAOM v1.0): development and evaluation
SNICAR-ADv3: a community tool for modeling spectral snow albedo
A versatile method for computing optimized snow albedo from spectrally fixed radiative variables: VALHALLA v1.0
Ice Algae Model Intercomparison Project phase 2 (IAMIP2)
A Gaussian process emulator for simulating ice sheet–climate interactions on a multi-million-year timescale: CLISEMv1.0
Therese Rieckh, Andreas Born, Alexander Robinson, Robert Law, and Gerrit Gülle
Geosci. Model Dev., 17, 6987–7000, https://doi.org/10.5194/gmd-17-6987-2024, https://doi.org/10.5194/gmd-17-6987-2024, 2024
Short summary
Short summary
We present the open-source model ELSA, which simulates the internal age structure of large ice sheets. It creates layers of snow accumulation at fixed times during the simulation, which are used to model the internal stratification of the ice sheet. Together with reconstructed isochrones from radiostratigraphy data, ELSA can be used to assess ice sheet models and to improve their parameterization. ELSA can be used coupled to an ice sheet model or forced with its output.
Fu Zhao, Xi Liang, Zhongxiang Tian, Ming Li, Na Liu, and Chengyan Liu
Geosci. Model Dev., 17, 6867–6886, https://doi.org/10.5194/gmd-17-6867-2024, https://doi.org/10.5194/gmd-17-6867-2024, 2024
Short summary
Short summary
In this work, we introduce a newly developed Antarctic sea ice forecasting system, namely the Southern Ocean Ice Prediction System (SOIPS). The system is based on a regional sea ice‒ocean‒ice shelf coupled model and can assimilate sea ice concentration observations. By assessing the system's performance in sea ice forecasts, we find that the system can provide reliable Antarctic sea ice forecasts for the next 7 d and has the potential to guide ship navigation in the Antarctic sea ice zone.
Chenhui Ning, Shiming Xu, Yan Zhang, Xuantong Wang, Zhihao Fan, and Jiping Liu
Geosci. Model Dev., 17, 6847–6866, https://doi.org/10.5194/gmd-17-6847-2024, https://doi.org/10.5194/gmd-17-6847-2024, 2024
Short summary
Short summary
Sea ice models are mainly based on non-moving structured grids, which is different from buoy measurements that follow the ice drift. To facilitate Lagrangian analysis, we introduce online tracking of sea ice in Community Ice CodE (CICE). We validate the sea ice tracking with buoys and evaluate the sea ice deformation in high-resolution simulations, which show multi-fractal characteristics. The source code is openly available and can be used in various scientific and operational applications.
Ulrich Strasser, Michael Warscher, Erwin Rottler, and Florian Hanzer
Geosci. Model Dev., 17, 6775–6797, https://doi.org/10.5194/gmd-17-6775-2024, https://doi.org/10.5194/gmd-17-6775-2024, 2024
Short summary
Short summary
openAMUNDSEN is a fully distributed open-source snow-hydrological model for mountain catchments. It includes process representations of an empirical, semi-empirical, and physical nature. It uses temperature, precipitation, humidity, radiation, and wind speed as forcing data and is computationally efficient, of a modular nature, and easily extendible. The Python code is available on GitHub (https://github.com/openamundsen/openamundsen), including documentation (https://doc.openamundsen.org).
Matthias Rauter and Julia Kowalski
Geosci. Model Dev., 17, 6545–6569, https://doi.org/10.5194/gmd-17-6545-2024, https://doi.org/10.5194/gmd-17-6545-2024, 2024
Short summary
Short summary
Snow avalanches can form large powder clouds that substantially exceed the velocity and reach of the dense core. Only a few complex models exist to simulate this phenomenon, and the respective hazard is hard to predict. This work provides a novel flow model that focuses on simple relations while still encapsulating the significant behaviour. The model is applied to reconstruct two catastrophic powder snow avalanche events in Austria.
Till Andreas Soya Rasmussen, Jacob Poulsen, Mads Hvid Ribergaard, Ruchira Sasanka, Anthony P. Craig, Elizabeth C. Hunke, and Stefan Rethmeier
Geosci. Model Dev., 17, 6529–6544, https://doi.org/10.5194/gmd-17-6529-2024, https://doi.org/10.5194/gmd-17-6529-2024, 2024
Short summary
Short summary
Earth system models (ESMs) today strive for better quality based on improved resolutions and improved physics. A limiting factor is the supercomputers at hand and how best to utilize them. This study focuses on the refactorization of one part of a sea ice model (CICE), namely the dynamics. It shows that the performance can be significantly improved, which means that one can either run the same simulations much cheaper or advance the system according to what is needed.
Iain Wheel, Douglas I. Benn, Anna J. Crawford, Joe Todd, and Thomas Zwinger
Geosci. Model Dev., 17, 5759–5777, https://doi.org/10.5194/gmd-17-5759-2024, https://doi.org/10.5194/gmd-17-5759-2024, 2024
Short summary
Short summary
Calving, the detachment of large icebergs from glaciers, is one of the largest uncertainties in future sea level rise projections. This process is poorly understood, and there is an absence of detailed models capable of simulating calving. A new 3D calving model has been developed to better understand calving at glaciers where detailed modelling was previously limited. Importantly, the new model is very flexible. By allowing for unrestricted calving geometries, it can be applied at any location.
Yoshihiro Nakayama, Alena Malyarenko, Hong Zhang, Ou Wang, Matthis Auger, Ian Fenty, Matthew Mazloff, Köhl Armin, and Dimitris Menemenlis
EGUsphere, https://doi.org/10.5194/egusphere-2024-727, https://doi.org/10.5194/egusphere-2024-727, 2024
Short summary
Short summary
Global and basin-scale ocean reanalyses are becoming easily accessible. Yet, such ocean reanalyses are optimized for their entire model domains and their ability to simulate the Southern Ocean requires evaluations. We conduct intercomparison analyses of Massachusetts Institute of Technology general circulation model (MITgcm)-based ocean reanalyses. They generally perform well for the open ocean, but open ocean temporal variability and Antarctic continental shelves require improvements.
Diego Monteiro, Cécile Caillaud, Matthieu Lafaysse, Adrien Napoly, Mathieu Fructus, Antoinette Alias, and Samuel Morin
EGUsphere, https://doi.org/10.5194/egusphere-2024-249, https://doi.org/10.5194/egusphere-2024-249, 2024
Short summary
Short summary
Modeling snow cover in climate and weather forecasting models is a challenge, even for high-resolution models. Recent simulations with CNRM-AROME have shown difficulties in representing snow in the European Alps. Using remote sensing data and in situ observations, we evaluate modifications of the land surface configuration in order to improve it. We propose a new surface configuration enabling a more realistic simulation of snow cover, relevant for climate and weather forecasting applications.
Enrico Zorzetto, Sergey Malyshev, Paul Ginoux, and Elena Shevliakova
EGUsphere, https://doi.org/10.5194/egusphere-2024-506, https://doi.org/10.5194/egusphere-2024-506, 2024
Short summary
Short summary
We describe a new snow scheme developed for use in global climate models, which simulates the interactions of snowpack with vegetation, atmosphere, and soil. We test the new snow model over a set of sites where in-situ observations are available. We find that, when compared to a simpler snow model, this model improves predictions of seasonal snow and of soil temperature under the snowpack, important variables for simulating both the hydrological cycle and the global climate system.
Kévin Fourteau, Julien Brondex, Fanny Brun, and Marie Dumont
Geosci. Model Dev., 17, 1903–1929, https://doi.org/10.5194/gmd-17-1903-2024, https://doi.org/10.5194/gmd-17-1903-2024, 2024
Short summary
Short summary
In this paper, we provide a novel numerical implementation for solving the energy exchanges at the surface of snow and ice. By combining the strong points of previous models, our solution leads to more accurate and robust simulations of the energy exchanges, surface temperature, and melt while preserving a reasonable computation time.
Matthieu Baron, Ange Haddjeri, Matthieu Lafaysse, Louis Le Toumelin, Vincent Vionnet, and Mathieu Fructus
Geosci. Model Dev., 17, 1297–1326, https://doi.org/10.5194/gmd-17-1297-2024, https://doi.org/10.5194/gmd-17-1297-2024, 2024
Short summary
Short summary
Increasing the spatial resolution of numerical systems simulating snowpack evolution in mountain areas requires representing small-scale processes such as wind-induced snow transport. We present SnowPappus, a simple scheme coupled with the Crocus snow model to compute blowing-snow fluxes and redistribute snow among grid points at 250 m resolution. In terms of numerical cost, it is suitable for large-scale applications. We present point-scale evaluations of fluxes and snow transport occurrence.
Lizz Ultee, Alexander A. Robel, and Stefano Castruccio
Geosci. Model Dev., 17, 1041–1057, https://doi.org/10.5194/gmd-17-1041-2024, https://doi.org/10.5194/gmd-17-1041-2024, 2024
Short summary
Short summary
The surface mass balance (SMB) of an ice sheet describes the net gain or loss of mass from ice sheets (such as those in Greenland and Antarctica) through interaction with the atmosphere. We developed a statistical method to generate a wide range of SMB fields that reflect the best understanding of SMB processes. Efficiently sampling the variability of SMB will help us understand sources of uncertainty in ice sheet model projections.
Anjali Sandip, Ludovic Räss, and Mathieu Morlighem
Geosci. Model Dev., 17, 899–909, https://doi.org/10.5194/gmd-17-899-2024, https://doi.org/10.5194/gmd-17-899-2024, 2024
Short summary
Short summary
We solve momentum balance for unstructured meshes to predict ice flow for real glaciers using a pseudo-transient method on graphics processing units (GPUs) and compare it to a standard central processing unit (CPU) implementation. We justify the GPU implementation by applying the price-to-performance metric for up to million-grid-point spatial resolutions. This study represents a first step toward leveraging GPU processing power, enabling more accurate polar ice discharge predictions.
Alessandro Maissen, Frank Techel, and Michele Volpi
EGUsphere, https://doi.org/10.5194/egusphere-2023-2948, https://doi.org/10.5194/egusphere-2023-2948, 2024
Short summary
Short summary
By harnessing AI-models, this work enables processing large amounts of data, including weather conditions, snowpack characteristics, and historical avalanche data, to predict human-like avalanche forecasts in Switzerland. Our proposed model can significantly assist avalanche forecasters in their decision-making process, and thereby facilitating more efficient and accurate predictions crucial for ensuring safety in Switzerland's avalanche-prone regions.
Julien Brondex, Kévin Fourteau, Marie Dumont, Pascal Hagenmuller, Neige Calonne, François Tuzet, and Henning Löwe
Geosci. Model Dev., 16, 7075–7106, https://doi.org/10.5194/gmd-16-7075-2023, https://doi.org/10.5194/gmd-16-7075-2023, 2023
Short summary
Short summary
Vapor diffusion is one of the main processes governing snowpack evolution, and it must be accounted for in models. Recent attempts to represent vapor diffusion in numerical models have faced several difficulties regarding computational cost and mass and energy conservation. Here, we develop our own finite-element software to explore numerical approaches and enable us to overcome these difficulties. We illustrate the capability of these approaches on established numerical benchmarks.
Matthias Tonnel, Anna Wirbel, Felix Oesterle, and Jan-Thomas Fischer
Geosci. Model Dev., 16, 7013–7035, https://doi.org/10.5194/gmd-16-7013-2023, https://doi.org/10.5194/gmd-16-7013-2023, 2023
Short summary
Short summary
Avaframe - the open avalanche framework - provides open-source tools to simulate and investigate snow avalanches. It is utilized for multiple purposes, the two main applications being hazard mapping and scientific research of snow processes. We present the theory, conversion to a computer model, and testing for one of the core modules used for simulations of a particular type of avalanche, the so-called dense-flow avalanches. Tests check and confirm the applicability of the utilized method.
Jordi Bolibar, Facundo Sapienza, Fabien Maussion, Redouane Lguensat, Bert Wouters, and Fernando Pérez
Geosci. Model Dev., 16, 6671–6687, https://doi.org/10.5194/gmd-16-6671-2023, https://doi.org/10.5194/gmd-16-6671-2023, 2023
Short summary
Short summary
We developed a new modelling framework combining numerical methods with machine learning. Using this approach, we focused on understanding how ice moves within glaciers, and we successfully learnt a prescribed law describing ice movement for 17 glaciers worldwide as a proof of concept. Our framework has the potential to discover important laws governing glacier processes, aiding our understanding of glacier physics and their contribution to water resources and sea-level rise.
Prateek Gantayat, Alison F. Banwell, Amber A. Leeson, James M. Lea, Dorthe Petersen, Noel Gourmelen, and Xavier Fettweis
Geosci. Model Dev., 16, 5803–5823, https://doi.org/10.5194/gmd-16-5803-2023, https://doi.org/10.5194/gmd-16-5803-2023, 2023
Short summary
Short summary
We developed a new supraglacial hydrology model for the Greenland Ice Sheet. This model simulates surface meltwater routing, meltwater drainage, supraglacial lake (SGL) overflow, and formation of lake ice. The model was able to reproduce 80 % of observed lake locations and provides a good match between the observed and modelled temporal evolution of SGLs.
Kevin Hank, Lev Tarasov, and Elisa Mantelli
Geosci. Model Dev., 16, 5627–5652, https://doi.org/10.5194/gmd-16-5627-2023, https://doi.org/10.5194/gmd-16-5627-2023, 2023
Short summary
Short summary
Physically meaningful modeling of geophysical system instabilities is numerically challenging, given the potential effects of purely numerical artifacts. Here we explore the sensitivity of ice stream surge activation to numerical and physical model aspects. We find that surge characteristics exhibit a resolution dependency but converge at higher horizontal grid resolutions and are significantly affected by the incorporation of bed thermal and sub-glacial hydrology models.
Yannic Fischler, Thomas Kleiner, Christian Bischof, Jeremie Schmiedel, Roiy Sayag, Raban Emunds, Lennart Frederik Oestreich, and Angelika Humbert
Geosci. Model Dev., 16, 5305–5322, https://doi.org/10.5194/gmd-16-5305-2023, https://doi.org/10.5194/gmd-16-5305-2023, 2023
Short summary
Short summary
Water underneath ice sheets affects the motion of glaciers. This study presents a newly developed code, CUAS-MPI, that simulates subglacial hydrology. It is designed for supercomputers and is hence a parallelized code. We measure the performance of this code for simulations of the entire Greenland Ice Sheet and find that the code works efficiently. Moreover, we validated the code to ensure the correctness of the solution. CUAS-MPI opens new possibilities for simulations of ice sheet hydrology.
Julia Kaltenborn, Amy R. Macfarlane, Viviane Clay, and Martin Schneebeli
Geosci. Model Dev., 16, 4521–4550, https://doi.org/10.5194/gmd-16-4521-2023, https://doi.org/10.5194/gmd-16-4521-2023, 2023
Short summary
Short summary
Snow layer segmentation and snow grain classification are essential diagnostic tasks for cryospheric applications. A SnowMicroPen (SMP) can be used to that end; however, the manual classification of its profiles becomes infeasible for large datasets. Here, we evaluate how well machine learning models automate this task. Of the 14 models trained on the MOSAiC SMP dataset, the long short-term memory model performed the best. The findings presented here facilitate and accelerate SMP data analysis.
Johannes Aschauer, Adrien Michel, Tobias Jonas, and Christoph Marty
Geosci. Model Dev., 16, 4063–4081, https://doi.org/10.5194/gmd-16-4063-2023, https://doi.org/10.5194/gmd-16-4063-2023, 2023
Short summary
Short summary
Snow water equivalent is the mass of water stored in a snowpack. Based on exponential settling functions, the empirical snow density model SWE2HS is presented to convert time series of daily snow water equivalent into snow depth. The model has been calibrated with data from Switzerland and validated with independent data from the European Alps. A reference implementation of SWE2HS is available as a Python package.
Eric Keenan, Nander Wever, Jan T. M. Lenaerts, and Brooke Medley
Geosci. Model Dev., 16, 3203–3219, https://doi.org/10.5194/gmd-16-3203-2023, https://doi.org/10.5194/gmd-16-3203-2023, 2023
Short summary
Short summary
Ice sheets gain mass via snowfall. However, snowfall is redistributed by the wind, resulting in accumulation differences of up to a factor of 5 over distances as short as 5 km. These differences complicate estimates of ice sheet contribution to sea level rise. For this reason, we have developed a new model for estimating wind-driven snow redistribution on ice sheets. We show that, over Pine Island Glacier in West Antarctica, the model improves estimates of snow accumulation variability.
Adrien Michel, Johannes Aschauer, Tobias Jonas, Stefanie Gubler, Sven Kotlarski, and Christoph Marty
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2022-298, https://doi.org/10.5194/gmd-2022-298, 2023
Revised manuscript accepted for GMD
Short summary
Short summary
We present a method to correct snow cover maps (represented in terms of snow water equivalent) to match better quality maps. The correction can then be extended backwards and forwards in time for periods when better quality maps are not available. The method is fast and gives good results. It is then applied to obtain a climatology of the snow cover in Switzerland over the last 60 years at a resolution of one day and one kilometre. This is the first time that such a dataset has been produced.
Sebastian Westermann, Thomas Ingeman-Nielsen, Johanna Scheer, Kristoffer Aalstad, Juditha Aga, Nitin Chaudhary, Bernd Etzelmüller, Simon Filhol, Andreas Kääb, Cas Renette, Louise Steffensen Schmidt, Thomas Vikhamar Schuler, Robin B. Zweigel, Léo Martin, Sarah Morard, Matan Ben-Asher, Michael Angelopoulos, Julia Boike, Brian Groenke, Frederieke Miesner, Jan Nitzbon, Paul Overduin, Simone M. Stuenzi, and Moritz Langer
Geosci. Model Dev., 16, 2607–2647, https://doi.org/10.5194/gmd-16-2607-2023, https://doi.org/10.5194/gmd-16-2607-2023, 2023
Short summary
Short summary
The CryoGrid community model is a new tool for simulating ground temperatures and the water and ice balance in cold regions. It is a modular design, which makes it possible to test different schemes to simulate, for example, permafrost ground in an efficient way. The model contains tools to simulate frozen and unfrozen ground, snow, glaciers, and other massive ice bodies, as well as water bodies.
Alex S. Gardner, Nicole-Jeanne Schlegel, and Eric Larour
Geosci. Model Dev., 16, 2277–2302, https://doi.org/10.5194/gmd-16-2277-2023, https://doi.org/10.5194/gmd-16-2277-2023, 2023
Short summary
Short summary
This is the first description of the open-source Glacier Energy and Mass Balance (GEMB) model. GEMB models the ice sheet and glacier surface–atmospheric energy and mass exchange, as well as the firn state. The model is evaluated against the current state of the art and in situ observations and is shown to perform well.
Yafei Nie, Chengkun Li, Martin Vancoppenolle, Bin Cheng, Fabio Boeira Dias, Xianqing Lv, and Petteri Uotila
Geosci. Model Dev., 16, 1395–1425, https://doi.org/10.5194/gmd-16-1395-2023, https://doi.org/10.5194/gmd-16-1395-2023, 2023
Short summary
Short summary
State-of-the-art Earth system models simulate the observed sea ice extent relatively well, but this is often due to errors in the dynamic and other processes in the simulated sea ice changes cancelling each other out. We assessed the sensitivity of these processes simulated by the coupled ocean–sea ice model NEMO4.0-SI3 to 18 parameters. The performance of the model in simulating sea ice change processes was ultimately improved by adjusting the three identified key parameters.
Varun Sharma, Franziska Gerber, and Michael Lehning
Geosci. Model Dev., 16, 719–749, https://doi.org/10.5194/gmd-16-719-2023, https://doi.org/10.5194/gmd-16-719-2023, 2023
Short summary
Short summary
Most current generation climate and weather models have a relatively simplistic description of snow and snow–atmosphere interaction. One reason for this is the belief that including an advanced snow model would make the simulations too computationally demanding. In this study, we bring together two state-of-the-art models for atmosphere (WRF) and snow cover (SNOWPACK) and highlight both the feasibility and necessity of such coupled models to explore underexplored phenomena in the cryosphere.
Anne M. Felden, Daniel F. Martin, and Esmond G. Ng
Geosci. Model Dev., 16, 407–425, https://doi.org/10.5194/gmd-16-407-2023, https://doi.org/10.5194/gmd-16-407-2023, 2023
Short summary
Short summary
We present and validate a novel subglacial hydrology model, SUHMO, based on an adaptive mesh refinement framework. We propose the addition of a pseudo-diffusion to recover the wall melting in channels. Computational performance analysis demonstrates the efficiency of adaptive mesh refinement on large-scale hydrologic problems. The adaptive mesh refinement approach will eventually enable better ice bed boundary conditions for ice sheet simulations at a reasonable computational cost.
Dalei Hao, Gautam Bisht, Karl Rittger, Edward Bair, Cenlin He, Huilin Huang, Cheng Dang, Timbo Stillinger, Yu Gu, Hailong Wang, Yun Qian, and L. Ruby Leung
Geosci. Model Dev., 16, 75–94, https://doi.org/10.5194/gmd-16-75-2023, https://doi.org/10.5194/gmd-16-75-2023, 2023
Short summary
Short summary
Snow with the highest albedo of land surface plays a vital role in Earth’s surface energy budget and water cycle. This study accounts for the impacts of snow grain shape and mixing state of light-absorbing particles with snow on snow albedo in the E3SM land model. The findings advance our understanding of the role of snow grain shape and mixing state of LAP–snow in land surface processes and offer guidance for improving snow simulations and radiative forcing estimates in Earth system models.
Esteban Alonso-González, Kristoffer Aalstad, Mohamed Wassim Baba, Jesús Revuelto, Juan Ignacio López-Moreno, Joel Fiddes, Richard Essery, and Simon Gascoin
Geosci. Model Dev., 15, 9127–9155, https://doi.org/10.5194/gmd-15-9127-2022, https://doi.org/10.5194/gmd-15-9127-2022, 2022
Short summary
Short summary
Snow cover plays an important role in many processes, but its monitoring is a challenging task. The alternative is usually to simulate the snowpack, and to improve these simulations one of the most promising options is to fuse simulations with available observations (data assimilation). In this paper we present MuSA, a data assimilation tool which facilitates the implementation of snow monitoring initiatives, allowing the assimilation of a wide variety of remotely sensed snow cover information.
Vincent Verjans, Alexander A. Robel, Helene Seroussi, Lizz Ultee, and Andrew F. Thompson
Geosci. Model Dev., 15, 8269–8293, https://doi.org/10.5194/gmd-15-8269-2022, https://doi.org/10.5194/gmd-15-8269-2022, 2022
Short summary
Short summary
We describe the development of the first large-scale ice sheet model that accounts for stochasticity in a range of processes. Stochasticity allows the impacts of inherently uncertain processes on ice sheets to be represented. This includes climatic uncertainty, as the climate is inherently chaotic. Furthermore, stochastic capabilities also encompass poorly constrained glaciological processes that display strong variability at fine spatiotemporal scales. We present the model and test experiments.
Max Brils, Peter Kuipers Munneke, Willem Jan van de Berg, and Michiel van den Broeke
Geosci. Model Dev., 15, 7121–7138, https://doi.org/10.5194/gmd-15-7121-2022, https://doi.org/10.5194/gmd-15-7121-2022, 2022
Short summary
Short summary
Firn covers the Greenland ice sheet (GrIS) and can temporarily prevent mass loss. Here, we present the latest version of our firn model, IMAU-FDM, with an application to the GrIS. We improved the density of fallen snow, the firn densification rate and the firn's thermal conductivity. This leads to a higher air content and 10 m temperatures. Furthermore we investigate three case studies and find that the updated model shows greater variability and an increased sensitivity in surface elevation.
Océane Hames, Mahdi Jafari, David Nicholas Wagner, Ian Raphael, David Clemens-Sewall, Chris Polashenski, Matthew D. Shupe, Martin Schneebeli, and Michael Lehning
Geosci. Model Dev., 15, 6429–6449, https://doi.org/10.5194/gmd-15-6429-2022, https://doi.org/10.5194/gmd-15-6429-2022, 2022
Short summary
Short summary
This paper presents an Eulerian–Lagrangian snow transport model implemented in the fluid dynamics software OpenFOAM, which we call snowBedFoam 1.0. We apply this model to reproduce snow deposition on a piece of ridged Arctic sea ice, which was produced during the MOSAiC expedition through scan measurements. The model appears to successfully reproduce the enhanced snow accumulation and deposition patterns, although some quantitative uncertainties were shown.
Constantijn J. Berends, Heiko Goelzer, Thomas J. Reerink, Lennert B. Stap, and Roderik S. W. van de Wal
Geosci. Model Dev., 15, 5667–5688, https://doi.org/10.5194/gmd-15-5667-2022, https://doi.org/10.5194/gmd-15-5667-2022, 2022
Short summary
Short summary
The rate at which marine ice sheets such as the West Antarctic ice sheet will retreat in a warming climate and ocean is still uncertain. Numerical ice-sheet models, which solve the physical equations that describe the way glaciers and ice sheets deform and flow, have been substantially improved in recent years. Here we present the results of several years of work on IMAU-ICE, an ice-sheet model of intermediate complexity, which can be used to study ice sheets of both the past and the future.
Abby C. Lute, John Abatzoglou, and Timothy Link
Geosci. Model Dev., 15, 5045–5071, https://doi.org/10.5194/gmd-15-5045-2022, https://doi.org/10.5194/gmd-15-5045-2022, 2022
Short summary
Short summary
We developed a snow model that can be used to quantify snowpack over large areas with a high degree of spatial detail. We ran the model over the western United States, creating a snow and climate dataset for three time periods. Compared to observations of snowpack, the model captured the key aspects of snow across time and space. The model and dataset will be useful in understanding historical and future changes in snowpack, with relevance to water resources, agriculture, and ecosystems.
Francesco Avanzi, Simone Gabellani, Fabio Delogu, Francesco Silvestro, Edoardo Cremonese, Umberto Morra di Cella, Sara Ratto, and Hervé Stevenin
Geosci. Model Dev., 15, 4853–4879, https://doi.org/10.5194/gmd-15-4853-2022, https://doi.org/10.5194/gmd-15-4853-2022, 2022
Short summary
Short summary
Knowing in real time how much snow and glacier ice has accumulated across the landscape has significant implications for water-resource management and flood control. This paper presents a computer model – S3M – allowing scientists and decision makers to predict snow and ice accumulation during winter and the subsequent melt during spring and summer. S3M has been employed for real-world flood forecasting since the early 2000s but is here being made open source for the first time.
Adrian K. Turner, William H. Lipscomb, Elizabeth C. Hunke, Douglas W. Jacobsen, Nicole Jeffery, Darren Engwirda, Todd D. Ringler, and Jonathan D. Wolfe
Geosci. Model Dev., 15, 3721–3751, https://doi.org/10.5194/gmd-15-3721-2022, https://doi.org/10.5194/gmd-15-3721-2022, 2022
Short summary
Short summary
We present the dynamical core of the MPAS-Seaice model, which uses a mesh consisting of a Voronoi tessellation with polygonal cells. Such a mesh allows variable mesh resolution in different parts of the domain and the focusing of computational resources in regions of interest. We describe the velocity solver and tracer transport schemes used and examine errors generated by the model in both idealized and realistic test cases and examine the computational efficiency of the model.
Noah D. Smith, Eleanor J. Burke, Kjetil Schanke Aas, Inge H. J. Althuizen, Julia Boike, Casper Tai Christiansen, Bernd Etzelmüller, Thomas Friborg, Hanna Lee, Heather Rumbold, Rachael H. Turton, Sebastian Westermann, and Sarah E. Chadburn
Geosci. Model Dev., 15, 3603–3639, https://doi.org/10.5194/gmd-15-3603-2022, https://doi.org/10.5194/gmd-15-3603-2022, 2022
Short summary
Short summary
The Arctic has large areas of small mounds that are caused by ice lifting up the soil. Snow blown by wind gathers in hollows next to these mounds, insulating them in winter. The hollows tend to be wetter, and thus the soil absorbs more heat in summer. The warm wet soil in the hollows decomposes, releasing methane. We have made a model of this, and we have tested how it behaves and whether it looks like sites in Scandinavia and Siberia. Sometimes we get more methane than a model without mounds.
Adrian K. Turner, Kara J. Peterson, and Dan Bolintineanu
Geosci. Model Dev., 15, 1953–1970, https://doi.org/10.5194/gmd-15-1953-2022, https://doi.org/10.5194/gmd-15-1953-2022, 2022
Short summary
Short summary
We developed a technique to remap sea ice tracer quantities between circular discrete element distributions. This is needed for a global discrete element method sea ice model being developed jointly by Los Alamos National Laboratory and Sandia National Laboratories that has the potential to better utilize newer supercomputers with graphics processing units and better represent sea ice dynamics. This new remapping technique ameliorates the effect of element distortion created by sea ice ridging.
Zhen Yin, Chen Zuo, Emma J. MacKie, and Jef Caers
Geosci. Model Dev., 15, 1477–1497, https://doi.org/10.5194/gmd-15-1477-2022, https://doi.org/10.5194/gmd-15-1477-2022, 2022
Short summary
Short summary
We provide a multiple-point geostatistics approach to probabilistically learn from training images to fill large-scale irregular geophysical data gaps. With a repository of global topographic training images, our approach models high-resolution basal topography and quantifies the geospatial uncertainty. It generated high-resolution topographic realizations to investigate the impact of basal topographic uncertainty on critical subglacial hydrological flow patterns associated with ice velocity.
Yu Yan, Wei Gu, Andrea M. U. Gierisch, Yingjun Xu, and Petteri Uotila
Geosci. Model Dev., 15, 1269–1288, https://doi.org/10.5194/gmd-15-1269-2022, https://doi.org/10.5194/gmd-15-1269-2022, 2022
Short summary
Short summary
In this study, we developed NEMO-Bohai, an ocean–ice model for the Bohai Sea, China. This study presented the scientific design and technical choices of the parameterizations for the NEMO-Bohai model. The model was calibrated and evaluated with in situ and satellite observations of ocean and sea ice. NEMO-Bohai is intended to be a valuable tool for long-term ocean and ice simulations and climate change studies.
Chao-Yuan Yang, Jiping Liu, and Dake Chen
Geosci. Model Dev., 15, 1155–1176, https://doi.org/10.5194/gmd-15-1155-2022, https://doi.org/10.5194/gmd-15-1155-2022, 2022
Short summary
Short summary
We present an improved coupled modeling system for Arctic sea ice prediction. We perform Arctic sea ice prediction experiments with improved/updated physical parameterizations, which show better skill in predicting sea ice state as well as atmospheric and oceanic state in the Arctic compared with its predecessor. The improved model also shows extended predictive skill of Arctic sea ice after the summer season. This provides an added value of this prediction system for decision-making.
Christopher Horvat and Lettie A. Roach
Geosci. Model Dev., 15, 803–814, https://doi.org/10.5194/gmd-15-803-2022, https://doi.org/10.5194/gmd-15-803-2022, 2022
Short summary
Short summary
Sea ice is a composite of individual pieces, called floes, ranging in horizontal size from meters to kilometers. Variations in sea ice geometry are often forced by ocean waves, a process that is an important target of global climate models as it affects the rate of sea ice melting. Yet directly simulating these interactions is computationally expensive. We present a neural-network-based model of wave–ice fracture that allows models to incorporate their effect without added computational cost.
Ole Richter, David E. Gwyther, Benjamin K. Galton-Fenzi, and Kaitlin A. Naughten
Geosci. Model Dev., 15, 617–647, https://doi.org/10.5194/gmd-15-617-2022, https://doi.org/10.5194/gmd-15-617-2022, 2022
Short summary
Short summary
Here we present an improved model of the Antarctic continental shelf ocean and demonstrate that it is capable of reproducing present-day conditions. The improvements are fundamental and regard the inclusion of tides and ocean eddies. We conclude that the model is well suited to gain new insights into processes that are important for Antarctic ice sheet retreat and global ocean changes. Hence, the model will ultimately help to improve projections of sea level rise and climate change.
Mark G. Flanner, Julian B. Arnheim, Joseph M. Cook, Cheng Dang, Cenlin He, Xianglei Huang, Deepak Singh, S. McKenzie Skiles, Chloe A. Whicker, and Charles S. Zender
Geosci. Model Dev., 14, 7673–7704, https://doi.org/10.5194/gmd-14-7673-2021, https://doi.org/10.5194/gmd-14-7673-2021, 2021
Short summary
Short summary
We present the technical formulation and evaluation of a publicly available code and web-based model to simulate the spectral albedo of snow. Our model accounts for numerous features of the snow state and ambient conditions, including the the presence of light-absorbing matter like black and brown carbon, mineral dust, volcanic ash, and snow algae. Carbon dioxide snow, found on Mars, is also represented. The model accurately reproduces spectral measurements of clean and contaminated snow.
Florent Veillon, Marie Dumont, Charles Amory, and Mathieu Fructus
Geosci. Model Dev., 14, 7329–7343, https://doi.org/10.5194/gmd-14-7329-2021, https://doi.org/10.5194/gmd-14-7329-2021, 2021
Short summary
Short summary
In climate models, the snow albedo scheme generally calculates only a narrowband or broadband albedo. Therefore, we have developed the VALHALLA method to optimize snow spectral albedo calculations through the determination of spectrally fixed radiative variables. The development of VALHALLA v1.0 with the use of the snow albedo model TARTES and the spectral irradiance model SBDART indicates a considerable reduction in calculation time while maintaining an adequate accuracy of albedo values.
Hakase Hayashida, Meibing Jin, Nadja S. Steiner, Neil C. Swart, Eiji Watanabe, Russell Fiedler, Andrew McC. Hogg, Andrew E. Kiss, Richard J. Matear, and Peter G. Strutton
Geosci. Model Dev., 14, 6847–6861, https://doi.org/10.5194/gmd-14-6847-2021, https://doi.org/10.5194/gmd-14-6847-2021, 2021
Short summary
Short summary
Ice algae are tiny plants like phytoplankton but they grow within sea ice. In polar regions, both phytoplankton and ice algae are the foundation of marine ecosystems and play an important role in taking up carbon dioxide in the atmosphere. However, state-of-the-art climate models typically do not include ice algae, and therefore their role in the climate system remains unclear. This project aims to address this knowledge gap by coordinating a set of experiments using sea-ice–ocean models.
Jonas Van Breedam, Philippe Huybrechts, and Michel Crucifix
Geosci. Model Dev., 14, 6373–6401, https://doi.org/10.5194/gmd-14-6373-2021, https://doi.org/10.5194/gmd-14-6373-2021, 2021
Short summary
Short summary
Ice sheets are an important component of the climate system and interact with the atmosphere through albedo variations and changes in the surface height. On very long timescales, it is impossible to directly couple ice sheet models with climate models and other techniques have to be used. Here we present a novel coupling method between ice sheets and the atmosphere by making use of an emulator to simulate ice sheet–climate interactions for several million years.
Cited articles
Barlett, P. A., MacKay, M. D., and Verseghy, D. L.: Modified snow algorithms
in the Canadian Land Surface Scheme: Model runs and sensitivity analysis at
three boreal forest stands, Atmos. Ocean, 44, 207–222,
https://doi.org/10.3137/ao.440301, 2006.
Barrere, M., Domine, F., Decharme, B., Morin, S., Vionnet, V., and Lafaysse, M.: Evaluating the performance of coupled snow–soil models in SURFEXv8 to simulate the permafrost thermal regime at a high Arctic site, Geosci. Model Dev., 10, 3461–3479, https://doi.org/10.5194/gmd-10-3461-2017, 2017.
Best, M. J., Pryor, M., Clark, D. B., Rooney, G. G., Essery, R. L. H., Ménard, C. B., Edwards, J. M., Hendry, M. A., Porson, A., Gedney, N., Mercado, L. M., Sitch, S., Blyth, E., Boucher, O., Cox, P. M., Grimmond, C. S. B., and Harding, R. J.: The Joint UK Land Environment Simulator (JULES), model description – Part 1: Energy and water fluxes, Geosci. Model Dev., 4, 677–699, https://doi.org/10.5194/gmd-4-677-2011, 2011.
Bittelli, M., Ventura, F., Campbell, G. S., Snyder, R. L., Gallegati, F.,
and Pisa, P. R.: Coupling of heat, water vapor, and liquid water fluxes to
compute evaporation in bare soils, J. Hydrol., 362, 191–205,
https://doi.org/10.1016/j.jhydrol.2008.08.014, 2008.
Boone, A., Samuelsson, P., Gollvik, S., Napoly, A., Jarlan, L., Brun, E., and Decharme, B.: The interactions between soil–biosphere–atmosphere land surface model with a multi-energy balance (ISBA-MEB) option in SURFEXv8 – Part 1: Model description, Geosci. Model Dev., 10, 843–872, https://doi.org/10.5194/gmd-10-843-2017, 2017.
Boone, A. A. and Etchevers, P.: An intercomparison of three snow schemes of
varying complexity coupled to the same land surface model: Local-scale
evaluation at an alpine site, J. Hydrometeorol., 2, 374-394,
https://doi.org/10.1175/1525-7541(2001)002<0374:AIOTSS>2.0.CO;2, 2001.
Che, T., Li, X., Liu, S., Li, H., Xu, Z., Tan, J., Zhang, Y., Ren, Z., Xiao, L., Deng, J., Jin, R., Ma, M., Wang, J., and Yang, X.: Integrated hydrometeorological, snow and frozen-ground observations in the alpine region of the Heihe River Basin, China, Earth Syst. Sci. Data, 11, 1483–1499, https://doi.org/10.5194/essd-11-1483-2019, 2019.
Cuntz, M. and Haverd, V.: Physically Accurate Soil Freeze-Thaw Processes in
a Global Land Surface Scheme, J. Adv. Model. Earth Sy.,
10, 54–77, https://doi.org/10.1002/2017ms001100, 2018.
Dall'Amico, M., Endrizzi, S., Gruber, S., and Rigon, R.: A robust and energy-conserving model of freezing variably-saturated soil, The Cryosphere, 5, 469–484, https://doi.org/10.5194/tc-5-469-2011, 2011.
Decharme, B., Brun, E., Boone, A., Delire, C., Le Moigne, P., and Morin, S.: Impacts of snow and organic soils parameterization on northern Eurasian soil temperature profiles simulated by the ISBA land surface model, The Cryosphere, 10, 853–877, https://doi.org/10.5194/tc-10-853-2016, 2016.
Dente, L., Vekerdy, Z., Wen, J., and Su, Z.: Maqu network for validation of
satellite-derived soil moisture products, Int. J. Appl. Earth Obs. Geoinf., 17,
55–65, https://doi.org/10.1016/j.jag.2011.11.004, 2012.
De Vries, D. A.: Simultaneous transfer of heat and moisture in porous media,
Eos T. Am. Geophys. Un. 39, 909–916,
https://doi.org/10.1029/TR039i005p00909, 1958.
Dickinson, R. E., Henderson-Sellers, A., and Kennedy, P. J.:
Biosphere-atmosphere Transfer Scheme (BATS) Version 1e as Coupled to the
NCAR Community Climate Model (No. NCAR/TN-387+STR), University Corporation
for Atmospheric Research, 1993.
Ding, B., Yang, K., Qin, J., Wang, L., Chen, Y., and He, X.: The dependence
of precipitation types on surface elevation and meteorological conditions
and its parameterization, J. Hydrol., 513, 154–163,
https://doi.org/10.1016/j.jhydrol.2014.03.038, 2014.
Ding, B., Yang, K., Yang, W., He, X., Chen, Y., Lazhu, Guo, X., Wang, L.,
Wu, H., and Yao, T.: Development of a Water and Enthalpy Budget-based
Glacier mass balance Model (WEB-GM) and its preliminary validation, Water
Resour. Res., 53, 3146–3178, https://doi.org/10.1002/2016WR018865, 2017.
Domine, F., Picard, G., Morin, S., Barrere, M., Madore, J.-B., and Langlois,
A.: Major Issues in Simulating Some Arctic Snowpack Properties Using Current
Detailed Snow Physics Models: Consequences for the Thermal Regime and Water
Budget of Permafrost, J. Adv. Model. Earth Sy., 11,
34–44, https://doi.org/10.1029/2018ms001445, 2019.
Douville, H., Royer, J. F., and Mahfouf, J. F.: A new snow parameterization
for the Météo-France climate model, Clim. Dynam., 12, 21–35,
https://doi.org/10.1007/BF00208760, 1995.
Dutra, E., Balsamo, G., Viterbo, P., Miranda, P. M. A., Beljaars, A., Schar,
C., and Elder, K.: An improved snow scheme for the ECMWF land surface model:
Description and offline validation, J. Hydrometeorol., 11, 899–916,
https://doi.org/10.1175/2010JHM1249.1, 2010.
Dutra, E., Viterbo, P., Miranda, P. M. A., and Balsamo, G.: Complexity of
snow schemes in a climate model and its impact on surface energy and
hydrology, J. Hydrometeorol., 13, 521–538,
https://doi.org/10.1175/JHM-D-11-072.1, 2012.
Ekici, A., Beer, C., Hagemann, S., Boike, J., Langer, M., and Hauck, C.: Simulating high-latitude permafrost regions by the JSBACH terrestrial ecosystem model, Geosci. Model Dev., 7, 631–647, https://doi.org/10.5194/gmd-7-631-2014, 2014.
Etchevers, P., Martin, E., Brown, R., Fierz, C., Lejeune, Y., Bazile, E.,
Boone, A., Dai, Y.-J., Essery, R., Fernandez, A., Gusev, Y., Jordan, R.,
Koren, V., Kowalczyk, E., Nasonova, N. O., Pyles, R. D., Schlosser, A.,
Shmakin, A. B., Smirnova, T. G., Strasser, U., Verseghy, D., Yamazaki, T.,
and Yang, Z.-L.: Validation of the energy budget of an alpine snowpack
simulated by several snow models (SnowMIP project), Ann. Glaciol., 38,
150–158, https://doi.org/10.3189/172756404781814825, 2004.
Flerchinger, G. N.: The Simultaneous Heat and Water (SHAW) Model: Technical Documentation Version 3.0, Northwest Watershed Research Center, USDA Agricultural Research Service, Boise, Idaho, USA, Technical Rep., 43 pp., 2017.
Flerchinger, G. N. and Saxton, K. E.: Simultaneous heat and water model of
a freezing snow-residue-soil system. I. Theory and development, T.
Am. Soc. Agr. Eng., 32, 565–571, 1989.
Gardiner, M. J., Ellis-Evans, J. C., Anderson, M. G., and Tranter, M.:
Snowmelt modelling on Signy Island, South Orkney Islands, Ann. Glaciol., 26,
161–166, https://doi.org/10.3189/1998aog26-1-161-166, 1998.
Gichamo, T. Z. and Tarboton, D. G.: Ensemble Streamflow Forecasting Using
an Energy Balance Snowmelt Model Coupled to a Distributed Hydrologic Model
with Assimilation of Snow and Streamflow Observations, Water Resour. Res., 55,
10813–10838, https://doi.org/10.1029/2019wr025472, 2019.
Günther, D., Marke, T., Essery, R., and Strasser, U.: Uncertainties in
Snowpack Simulations – Assessing the Impact of Model Structure, Parameter
Choice, and Forcing Data Error on Point-Scale Energy Balance Snow Model
Performance, Water Resour. Res., 55, 2779–2800,
https://doi.org/10.1029/2018wr023403, 2019.
Gusev, Y. M. and Nasonova, O. N.: The simulation of heat and water exchange
in the boreal spruce forest by the land-surf ace model SWAP, J. Hydrol., 280,
162–191, https://doi.org/10.1016/S0022-1694(03)00221-X, 2003.
Hagedorn, B., Sletten, R. S., and Hallet, B.: Sublimation and ice
condensation in hyperarid soils: Modeling results using field data from
Victoria Valley, Antarctica, J. Geophys. Res.-Earth,
112, F03017, https://doi.org/10.1029/2006jf000580, 2007.
Hansson, K., Šimůnek, J., Mizoguchi, M., Lundin, L. C., and van
Genuchten, M. T.: Water flow and heat transport in frozen soil: Numerical
solution and freeze-thaw applications, Vadose Zone J., 3, 693–704, 2004.
Harder, P. and Pomeroy, J. W.: Hydrological model uncertainty due to
precipitation-phase partitioning methods, Hydrol. Process., 28, 4311–4327,
https://doi.org/10.1002/hyp.10214, 2014.
Hrbáček, F., Láska, K., and Engel, Z.: Effect of snow cover on
the active-layer thermal regime – a case study from James Ross island,
Antarctic Peninsula, Permafrost Periglac., 27, 307–315, 2016.
Iwata, Y., Hayashi, M., Suzuki, S., Hirota, T., and Hasegawa, S.: Effects of
snow cover on soil freezing, water movement, and snowmelt infiltration: A
paired plot experiment, Water Resour. Res., 46, W09504,
https://doi.org/10.1029/2009WR008070, 2010.
Jambon-Puillet, E., Shahidzadeh, N., and Bonn, D.: Singular sublimation of
ice and snow crystals, Nat. Commun., 9, 4191,
https://doi.org/10.1038/s41467-018-06689-x, 2018.
Jansson, P. E.: CoupModel: Model Use, Calibration, and Validation, T. ASABE, 55, 1337,
https://doi.org/10.13031/2013.42245, 2012.
Jordan, R.: A one-dimensional temperature model for a snow cover: Technical
documentation for SNTHERM. 89, Cold Regions Research and Engineering Lab
Hanover NH, 1991.
Koren, V., Schaake, J., Mitchell, K., Duan, Q. Y., Chen, F., and Baker, J.
M.: A parameterization of snowpack and frozen ground intended for NCEP
weather and climate models, J. Geophys. Res.-Atmos.,
104, 19569–19585, https://doi.org/10.1029/1999JD900232, 1999.
Lawrence, D. M., Fisher, R. A., Koven, C. D., Oleson, K. W., Swenson, S. C.,
Bonan, G., Collier, N., Ghimire, B., van Kampenhout, L., Kennedy, D.,
Kluzek, E., Lawrence, P. J., Li, F., Li, H., Lombardozzi, D., Riley, W. J.,
Sacks, W. J., Shi, M., Vertenstein, M., Wieder, W. R., Xu, C., Ali, A. A.,
Badger, A. M., Bisht, G., van den Broeke, M., Brunke, M. A., Burns, S. P.,
Buzan, J., Clark, M., Craig, A., Dahlin, K., Drewniak, B., Fisher, J. B.,
Flanner, M., Fox, A. M., Gentine, P., Hoffman, F., Keppel-Aleks, G., Knox,
R., Kumar, S., Lenaerts, J., Leung, L. R., Lipscomb, W. H., Lu, Y., Pandey,
A., Pelletier, J. D., Perket, J., Randerson, J. T., Ricciuto, D. M.,
Sanderson, B. M., Slater, A., Subin, Z. M., Tang, J., Thomas, R. Q., Val
Martin, M., and Zeng, X.: The Community Land Model Version 5: Description of
New Features, Benchmarking, and Impact of Forcing Uncertainty, J. Adv. Model.
Earth Sy., 11, 4245–4287, https://doi.org/10.1029/2018MS001583, 2019.
Lehning, M., Bartelt, P., Brown, B., Russi, T., Stöckli, U., and
Zimmerli, M.: SNOWPACK model calculations for avalanche warning based upon a
new network of weather and snow stations, Cold Reg. Sci. Technol., 30,
145–157, https://doi.org/10.1016/S0165-232X(99)00022-1, 1999.
Leroux, N. R. and Pomeroy, J. W.: Modelling capillary hysteresis effects on
preferential flow through melting and cold layered snowpacks, Adv. Water
Resour., 107, 250–264, https://doi.org/10.1016/j.advwatres.2017.06.024, 2017.
Li, D., Wen, L., Long, X., and Chen, S.: Observation Study on Effects of
Snow Cover on Local Micro Meteorological Characteristics in Maqu, Plateau
Meteorol., 36, 330–339,
https://doi.org/10.7522/j.issn.1000-0534.2016.00074, 2017.
Li, H., Li, X., Yang, D., Wang, J., Gao, B., Pan, X., Zhang, Y., and Hao,
X.: Tracing Snowmelt Paths in an Integrated Hydrological Model for
Understanding Seasonal Snowmelt Contribution at Basin Scale, J.
Geophys. Res.-Atmos., 124, 8874–8895,
https://doi.org/10.1029/2019JD030760, 2019.
Li, X.: Integrated hydrometeorological – snow – frozen ground observations
in the alpine region of the Heihe River Basin, China, Cold and Arid Regions
Science Data Center at Lanzhou (CARD) [data set],
https://doi.org/10.3972/hiwater.001.2019.db, 2019.
Mahat, V. and Tarboton, D. G.: Representation of canopy snow interception, unloading and melt in a parsimonious snowmelt model, Hydrol. Process., 28, 6320–6336, https://doi.org/10.1002/hyp.10116, 2014.
Milly, P. C. D.: Moisture and heat transport in hysteretic, inhomogeneous
porous media: A matric head-based formulation and a numerical model, Water
Resour. Res., 18, 489–498, https://doi.org/10.1029/WR018i003p00489, 1982.
Mualem, Y.: A new model for predicting the hydraulic conductivity of
unsaturated porous media, Water Resour. Res., 12, 513–522,
https://doi.org/10.1029/WR012i003p00513, 1976.
Niu, G. Y., Yang, Z. L., Mitchell, K. E., Chen, F., Ek, M. B., Barlage, M.,
Kumar, A., Manning, K., Niyogi, D., Rosero, E., Tewari, M., and Xia, Y.: The
community Noah land surface model with multiparameterization options
(Noah-MP): 1. Model description and evaluation with local-scale
measurements, J. Geophys. Res.-Atmos., 116, D12109,
https://doi.org/10.1029/2010JD015139, 2011.
Painter, S. L., Coon, E. T., Atchley, A. L., Berndt, M., Garimella, R.,
Moulton, J. D., Svyatskiy, D., and Wilson, C. J.: Integrated
surface/subsurface permafrost thermal hydrology: Model formulation and
proof-of-concept simulations, Water Resour. Res., 52, 6062–6077,
https://doi.org/10.1002/2015WR018427, 2016.
Pan, X., Helgason, W., Ireson, A., and Wheater, H.: Field-scale water
balance closure in seasonally frozen conditions, Hydrol Earth Syst Sci, 21,
5401-5413, https://doi.org/10.5194/hess-21-5401-2017, 2017.
Pimentel, R., Herrero, J., Zeng, Y., Su, Z., and Polo, M. J.: Study of Snow
Dynamics at Subgrid Scale in Semiarid Environments Combining Terrestrial
Photography and Data Assimilation Techniques, J. Hydrometeorol., 16, 563–578,
https://doi.org/10.1175/jhm-d-14-0046.1, 2015.
Pitman, A. J., Yang, Z.-L., Cogley, J. G., and Henderson-Sellers, A.:
Description of bare essentials of surface transfer for the Bureau of
Meteorology Research Centre AGCM, Macquarie University, North Ryde, NSW, Australia, BMRC Res. Rep., 117 pp., 1991.
Prunty, L. and Bell, J.: Infiltration rate vs. gas composition and pressure
in soil columns, Soil Sci. Soc. Am. J., 71, 1473–1475,
https://doi.org/10.2136/sssaj2007.0072N, 2007.
Richards, L. A.: Capillary Conduction of Liquids Through Porous Mediums,
Physics, 1, 318–333, https://doi.org/10.1063/1.1745010, 1931.
Rutter, N., Essery, R., Pomeroy, J., Altimir, N., Andreadis, K., Baker, I.,
Barr, A., Bartlett, P., Boone, A., Deng, H., Douville, H., Dutra, E., Elder,
K., Ellis, C., Feng, X., Gelfan, A., Goodbody, A., Gusev, Y., Gustafsson,
D., Hellström, R., Hirabayashi, Y., Hirota, T., Jonas, T., Koren, V.,
Kuragina, A., Lettenmaier, D., Li, W.-P., Luce, C., Martin, E., Nasonova,
O., Pumpanen, J., Pyles, R. D., Samuelsson, P., Sandells, M., Schädler,
G., Shmakin, A., Smirnova, T. G., Stähli, M., Stöckli, R., Strasser,
U., Su, H., Suzuki, K., Takata, K., Tanaka, K., Thompson, E., Vesala, T.,
Viterbo, P., Wiltshire, A., Xia, K., Xue, Y., and Yamazaki, T.: Evaluation
of forest snow processes models (SnowMIP2), J. Geophys. Res.-Atmos., 114, D06111, https://doi.org/10.1029/2008JD011063, 2009.
Scanlon, B. R. and Milly, P. C. D.: Water and heat fluxes in desert soils:
2. Numerical simulations, Water Resour. Res., 30, 721–733,
https://doi.org/10.1029/93WR03252, 1994.
Schulz, O. and de Jong, C.: Snowmelt and sublimation: field experiments and modelling in the High Atlas Mountains of Morocco, Hydrol. Earth Syst. Sci., 8, 1076–1089, https://doi.org/10.5194/hess-8-1076-2004, 2004.
Shrestha, M., Wang, L., Koike, T., Xue, Y., and Hirabayashi, Y.: Improving the snow physics of WEB-DHM and its point evaluation at the SnowMIP sites, Hydrol. Earth Syst. Sci., 14, 2577–2594, https://doi.org/10.5194/hess-14-2577-2010, 2010.
Šimůnek, J., Šejna, M., Saito, H., Sakai, M., and Van Genuchten,
M.: The HYDRUS-1D Software Package for Simulating the One-Dimensional
Movement of Water, Heat, and Multiple Solutes in Variably-Saturated Media, University of California Riverside, Riverside, California, USA, 330 pp.,
2008.
Slater, A. G., Pitman, A. J., and Desborough, C. E.: The validation of a
snow parameterization designed for use in general circulation models, Int. J.
Climatol., 18, 595–617,
https://doi.org/10.1002/(sici)1097-0088(199805)18:6<595::aid-joc275>3.0.co;2-o, 1998.
Strasser, U., Bernhardt, M., Weber, M., Liston, G. E., and Mauser, W.: Is snow sublimation important in the alpine water balance?, The Cryosphere, 2, 53–66, https://doi.org/10.5194/tc-2-53-2008, 2008.
Su, Z., Wen, J., Dente, L., van der Velde, R., Wang, L., Ma, Y., Yang, K., and Hu, Z.: The Tibetan Plateau observatory of plateau scale soil moisture and soil temperature (Tibet-Obs) for quantifying uncertainties in coarse resolution satellite and model products, Hydrol. Earth Syst. Sci., 15, 2303–2316, https://doi.org/10.5194/hess-15-2303-2011, 2011.
Su, Z., De Rosnay, P., Wen, J., Wang, L., and Zeng, Y.: Evaluation of
ECMWF's soil moisture analyses using observations on the Tibetan Plateau,
J. Geophys. Res.-Atmos., 118, 5304–5318,
https://doi.org/10.1002/jgrd.50468, 2013.
Sud, Y. C. and Mocko, D. M.: New Snow-Physics to Complement SSiB Part I:
Design and Evaluation with ISLSCP Initiative I Datasets, J.
Meteorol. Soc. Jpn. Ser. II, 77, 335–348,
https://doi.org/10.2151/jmsj1965.77.1B_335, 1999.
Sultana, R., Hsu, K.-L., Li, J., and Sorooshian, S.: Evaluating the Utah Energy Balance (UEB) snow model in the Noah land-surface model, Hydrol. Earth Syst. Sci., 18, 3553–3570, https://doi.org/10.5194/hess-18-3553-2014, 2014.
Sun, S., Jin, J., and Xue, Y.: A simple snow-atmosphere-soil transfer model,
J. Geophys. Res.-Atmos., 104, 19587–19597,
https://doi.org/10.1029/1999jd900305, 1999.
Swenson, S. C., Lawrence, D. M., and Lee, H.: Improved simulation of the
terrestrial hydrological cycle in permafrost regions by the Community Land
Model, J. Adv. Model. Earth Sy., 4, M08002,
https://doi.org/10.1029/2012MS000165, 2012.
Tarboton, D. G. and Luce, C. H.: Utah Energy Balance Snow Accumulation and
Melt Model (UEB), Computer model technical description and users guide, Utah
Water Research Laboratory and USDA Forest Service Intermountain Research
Station, Logan, Utah, USA, Rep., 64 pp., 1996.
Touma, J. and Vauclin, M.: Experimental and numerical analysis of two-phase
infiltration in a partially saturated soil, Transp. Porous Media, 1,
27–55, https://doi.org/10.1007/BF01036524, 1986.
Ueno, K., Tanaka, K., Tsutsui, H., and Li, M.: Snow Cover Conditions in the
Tibetan Plateau Observed during the Winter of 2003/2004, Arct. Antarct.
Alp. Res., 39, 152–164,
https://doi.org/10.1657/1523-0430(2007)39[152:SCCITT]2.0.CO;2, 2007.
Ueno, K., Sugimoto, S., Tsutsui, H., Taniguchi, K., Hu, Z., and Wu, S.: Role
of patchy snow cover on the planetary boundary layer structure during late
winter observed in the central Tibetan Plateau, J.
Meteorol. Soc. Jpn. Ser. II, 90, 145–155, 2012.
van Genuchten, M. T.: A closed-form equation for predicting the hydraulic
conductivity of unsaturated soils, Soil Sci. Soc. Am. J., 44, 892–898,
https://doi.org/10.2136/SSSAJ1980.03615995004400050002X, 1980.
Verseghy, D. L.: Class – A Canadian land surface scheme for GCMS. I. Soil
model, Int. J. Climatol., 11, 111–133, https://doi.org/10.1002/joc.3370110202,
1991.
Vionnet, V., Brun, E., Morin, S., Boone, A., Faroux, S., Le Moigne, P., Martin, E., and Willemet, J.-M.: The detailed snowpack scheme Crocus and its implementation in SURFEX v7.2, Geosci. Model Dev., 5, 773–791, https://doi.org/10.5194/gmd-5-773-2012, 2012.
Wang, L., Koike, T., Yang, D., and Yang, K.: Improving the hydrology of the
Simple Biosphere Model 2 and its evaluation within the framework of a
distributed hydrological model, Hydrol. Sci. J., 54, 989–1006,
https://doi.org/10.1623/hysj.54.6.989, 2009.
Wang, L., Zhou, J., Qi, J., Sun, L., Yang, K., Tian, L., Lin, Y., Liu, W.,
Shrestha, M., Xue, Y., Koike, T., Ma, Y., Li, X., Chen, Y., Chen, D., Piao,
S., and Lu, H.: Development of a land surface model with coupled snow and
frozen soil physics, Water Resour. Res., 53, 5085–5103,
https://doi.org/10.1002/2017WR020451, 2017.
Wang, T., Ottlé, C., Boone, A., Ciais, P., Brun, E., Morin, S., Krinner,
G., Piao, S., and Peng, S.: Evaluation of an improved intermediate
complexity snow scheme in the ORCHIDEE land surface model, J.
Geophys. Res.-Atmos., 118, 6064–6079,
https://doi.org/10.1002/jgrd.50395, 2013.
Wang, Y., Zeng, Y., Yu, L., Yang, P., Van der Tol, C., Yu, Q., Lü, X., Cai, H., and Su, Z.: Integrated modeling of canopy photosynthesis, fluorescence, and the transfer of energy, mass, and momentum in the soil–plant–atmosphere continuum (STEMMUS–SCOPE v1.0.0), Geosci. Model Dev., 14, 1379–1407, https://doi.org/10.5194/gmd-14-1379-2021, 2021.
Watson, F. G. R., Newman, W. B., Coughlan, J. C., and Garrott, R. A.:
Testing a distributed snowpack simulation model against spatial
observations, J. Hydrol., 328, 453–466,
https://doi.org/10.1016/j.jhydrol.2005.12.012, 2006.
Wicky, J. and Hauck, C.: Numerical modelling of convective heat transport by air flow in permafrost talus slopes, The Cryosphere, 11, 1311–1325, https://doi.org/10.5194/tc-11-1311-2017, 2017.
Yang, Z.-L., Dickinson, R. E., Robock, A., and Vinnikov, K. Y.: Validation
of the Snow Submodel of the Biosphere–Atmosphere Transfer Scheme with
Russian Snow Cover and Meteorological Observational Data, J. Climate, 10,
353–373, https://doi.org/10.1175/1520-0442(1997)010<0353:votsso>2.0.co;2, 1997.
Yi, Y., Kimball, J. S., Rawlins, M. A., Moghaddam, M., and Euskirchen, E. S.: The role of snow cover affecting boreal-arctic soil freeze–thaw and carbon dynamics, Biogeosciences, 12, 5811–5829, https://doi.org/10.5194/bg-12-5811-2015, 2015.
You, Y., Meng, H., Dong, J., and Rudlosky, S.: Time-Lag Correlation Between
Passive Microwave Measurements and Surface Precipitation and Its Impact on
Precipitation Retrieval Evaluation, Geophys. Res. Lett., 46, 8415–8423,
https://doi.org/10.1029/2019gl083426, 2019.
Yu, L., Zeng, Y., Su, Z., Cai, H., and Zheng, Z.: The effect of different evapotranspiration methods on portraying soil water dynamics and ET partitioning in a semi-arid environment in Northwest China, Hydrol. Earth Syst. Sci., 20, 975–990, https://doi.org/10.5194/hess-20-975-2016, 2016.
Yu, L., Zeng, Y., Wen, J., and Su, Z.: Liquid-Vapor-Air Flow in the Frozen
Soil, J. Geophys. Res.-Atmos., 123, 7393–7415,
https://doi.org/10.1029/2018jd028502, 2018a.
Yu, L., Zeng, Y., Su, Z., and Wen, J.: HydroThermal Dynamics of Frozen Soils on the Tibetan Plateau during 2015–2016, 4TU.ResearchData [data set], https://doi.org/10.4121/uuid:cc69b7f2-2448-4379-b638-09327012ce9b, 2018b.
Yu, L., Fatichi, S., Zeng, Y., and Su, Z.: The role of vadose zone physics in the ecohydrological response of a Tibetan meadow to freeze–thaw cycles, The Cryosphere, 14, 4653–4673, https://doi.org/10.5194/tc-14-4653-2020, 2020a.
Yu, L., Zeng, Y., and Su, Z.: STEMMUS-UEB v1.0: Integrated Modeling of
Snowpack and Soil Mass and Energy Transfer with Three Levels of Soil
Physical Process Complexities, Zenodo [code],
https://doi.org/10.5281/zenodo.3975846, 2020b.
Yu, L., Zeng, Y., and Su, Z.: Understanding the mass, momentum, and energy transfer in the frozen soil with three levels of model complexities, Hydrol. Earth Syst. Sci., 24, 4813–4830, https://doi.org/10.5194/hess-24-4813-2020, 2020c.
Zeng, Y. and Su, Z.: STEMMUS source code, GitHub [code], available at: https://github.com/yijianzeng/STEMMUS, last access: 11 December 2020.
Zeng, Y., Su, Z., Wan, L., Yang, Z., Zhang, T., Tian, H., Shi, X., Wang, X., and Cao, W.: Diurnal pattern of the drying front in desert and its application for determining the effective infiltration, Hydrol. Earth Syst. Sci., 13, 703–714, https://doi.org/10.5194/hess-13-703-2009, 2009a.
Zeng, Y., Wan, L., Su, Z., Saito, H., Huang, K., and Wang, X.: Diurnal soil
water dynamics in the shallow vadose zone (field site of China University of
Geosciences, China), Environ. Geol., 58, 11–23,
https://doi.org/10.1007/s00254-008-1485-8, 2009b.
Zeng, Y., Su, Z., Wan, L., and Wen, J.: Numerical analysis of air-water-heat
flow in unsaturated soil: Is it necessary to consider airflow in land
surface models?, J. Geophys. Res.-Atmos., 116, D20107,
https://doi.org/10.1029/2011JD015835, 2011a.
Zeng, Y., Su, Z., Wan, L., and Wen, J.: A simulation analysis of the
advective effect on evaporation using a two-phase heat and mass flow model,
Water Resour. Res., 47, W10529, https://doi.org/10.1029/2011WR010701, 2011b.
Zeng, Y., Su, Z., van der Velde, R., Wang, L., Xu, K., Wang, X., and Wen,
J.: Blending Satellite Observed, Model Simulated, and in Situ Measured Soil
Moisture over Tibetan Plateau, Remote Sensing, 8, 268, https://doi.org/10.3390/rs8030268, 2016.
Zeng, Y. J. and Su, Z. B.: STEMMUS: Simultaneous Transfer of Engery, Mass
and Momentum in Unsaturated Soil,University of
Twente, Faculty of Geo-Information and Earth Observation (ITC), Enschede, ISBN: 978-90-6164-351-7,
2013.
Zhang, T.: Influence of the seasonal snow cover on the ground thermal
regime: An overview, Rev. Geophys., 43, RG4002,
https://doi.org/10.1029/2004rg000157, 2005.
Zhao, H., Zeng, Y., Lv, S., and Su, Z.: Analysis of soil hydraulic and thermal properties for land surface modeling over the Tibetan Plateau, Earth Syst. Sci. Data, 10, 1031–1061, https://doi.org/10.5194/essd-10-1031-2018, 2018a.
Zhao, H., Zeng, Y., and Su, Z.: Soil Hydraulic and Thermal Properties for Land Surface Modelling over the Tibetan Plateau, 4TU.ResearchData [data set], https://doi.org/10.4121/uuid:c712717c-6ac0-47ff-9d58-97f88082ddc0, 2018b.
Zheng, D., Van der Velde, R., Su, Z., Wang, X., Wen, J., Booij, M. J.,
Hoekstra, A. Y., and Chen, Y.: Augmentations to the Noah Model Physics for
Application to the Yellow River Source Area. Part I: Soil Water Flow, J.
Hydrometeorol., 16, 2659–2676, https://doi.org/10.1175/JHM-D-14-0198.1, 2015.
Short summary
We developed an integrated soil–snow–atmosphere model (STEMMUS-UEB) dedicated to the physical description of snow and soil processes with various complexities. With STEMMUS-UEB, we demonstrated that the snowpack affects not only the soil surface moisture conditions (in the liquid and ice phase) and energy-related states (albedo, LE) but also the subsurface soil water and vapor transfer, which contributes to a better understanding of the hydrothermal implications of the snowpack in cold regions.
We developed an integrated soil–snow–atmosphere model (STEMMUS-UEB) dedicated to the physical...