Articles | Volume 14, issue 10
https://doi.org/10.5194/gmd-14-5915-2021
https://doi.org/10.5194/gmd-14-5915-2021
Development and technical paper
 | 
30 Sep 2021
Development and technical paper |  | 30 Sep 2021

GP-SWAT (v1.0): a two-level graph-based parallel simulation tool for the SWAT model

Dejian Zhang, Bingqing Lin, Jiefeng Wu, and Qiaoying Lin

Related authors

Exploring the Potential Processes Controls for Changes of Precipitation-Runoff Relationships in Non-stationary Environments
Tian Lan, Tongfang Li, Hongbo Zhang, Jiefeng Wu, Yongqin David Chen, and Chong-Yu Xu
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2024-118,https://doi.org/10.5194/hess-2024-118, 2024
Revised manuscript under review for HESS
Short summary

Related subject area

Hydrology
STORM v.2: A simple, stochastic rainfall model for exploring the impacts of climate and climate change at and near the land surface in gauged watersheds
Manuel F. Rios Gaona, Katerina Michaelides, and Michael Bliss Singer
Geosci. Model Dev., 17, 5387–5412, https://doi.org/10.5194/gmd-17-5387-2024,https://doi.org/10.5194/gmd-17-5387-2024, 2024
Short summary
Fluvial flood inundation and socio-economic impact model based on open data
Lukas Riedel, Thomas Röösli, Thomas Vogt, and David N. Bresch
Geosci. Model Dev., 17, 5291–5308, https://doi.org/10.5194/gmd-17-5291-2024,https://doi.org/10.5194/gmd-17-5291-2024, 2024
Short summary
RoGeR v3.0.5 – a process-based hydrological toolbox model in Python
Robin Schwemmle, Hannes Leistert, Andreas Steinbrich, and Markus Weiler
Geosci. Model Dev., 17, 5249–5262, https://doi.org/10.5194/gmd-17-5249-2024,https://doi.org/10.5194/gmd-17-5249-2024, 2024
Short summary
Coupling a large-scale glacier and hydrological model (OGGM v1.5.3 and CWatM V1.08) – towards an improved representation of mountain water resources in global assessments
Sarah Hanus, Lilian Schuster, Peter Burek, Fabien Maussion, Yoshihide Wada, and Daniel Viviroli
Geosci. Model Dev., 17, 5123–5144, https://doi.org/10.5194/gmd-17-5123-2024,https://doi.org/10.5194/gmd-17-5123-2024, 2024
Short summary
An open-source refactoring of the Canadian Small Lakes Model for estimates of evaporation from medium-sized reservoirs
M. Graham Clark and Sean K. Carey
Geosci. Model Dev., 17, 4911–4922, https://doi.org/10.5194/gmd-17-4911-2024,https://doi.org/10.5194/gmd-17-4911-2024, 2024
Short summary

Cited articles

Cai, X., Yang, Z.-L., Fisher, J. B., Zhang, X., Barlage, M., and Chen, F.: Integration of nitrogen dynamics into the Noah-MP land surface model v1.1 for climate and environmental predictions, Geosci. Model Dev., 9, 1–15, https://doi.org/10.5194/gmd-9-1-2016, 2016. 
Chandra, R., Azam, D., Kapoor, A., and Müller, R. D.: Surrogate-assisted Bayesian inversion for landscape and basin evolution models, Geosci. Model Dev., 13, 2959–2979, https://doi.org/10.5194/gmd-13-2959-2020, 2020. 
Ercan, M. B., Goodall, J. L., Castronova, A. M., Humphrey, M., and Beekwilder, N.: Calibration of SWAT models using the cloud, Environ. Modell. Softw., 62, 188–196, https://doi.org/10.1016/j.envsoft.2014.09.002, 2014. 
Fang, Y., Chen, X., Gomez Velez, J., Zhang, X., Duan, Z., Hammond, G. E., Goldman, A. E., Garayburu-Caruso, V. A., and Graham, E. B.: A multirate mass transfer model to represent the interaction of multicomponent biogeochemical processes between surface water and hyporheic zones (SWAT-MRMT-R 1.0), Geosci. Model Dev., 13, 3553–3569, https://doi.org/10.5194/gmd-13-3553-2020, 2020. 
Gorgan, D., Bacu, V., Mihon, D., Rodila, D., Abbaspour, K., and Rouholahnejad, E.: Grid based calibration of SWAT hydrological models, Nat. Hazards Earth Syst. Sci., 12, 2411–2423, https://doi.org/10.5194/nhess-12-2411-2012, 2012. 
Download
Short summary
GP-SWAT is a two-layer model parallelization tool for a SWAT model based on the graph-parallel Pregel algorithm. It can be employed to perform both individual and iterative model parallelization, endowing it with a range of possible applications and great flexibility in maximizing performance. As a flexible and scalable tool, it can run in diverse environments, ranging from a commodity computer with a Microsoft Windows, Mac or Linux OS to a Spark cluster consisting of a large number of nodes.