Articles | Volume 14, issue 10
Geosci. Model Dev., 14, 5915–5925, 2021
https://doi.org/10.5194/gmd-14-5915-2021
Geosci. Model Dev., 14, 5915–5925, 2021
https://doi.org/10.5194/gmd-14-5915-2021

Development and technical paper 30 Sep 2021

Development and technical paper | 30 Sep 2021

GP-SWAT (v1.0): a two-level graph-based parallel simulation tool for the SWAT model

Dejian Zhang et al.

Related subject area

Hydrology
Development of a coupled simulation framework representing the lake and river continuum of mass and energy (TCHOIR v1.0)
Daisuke Tokuda, Hyungjun Kim, Dai Yamazaki, and Taikan Oki
Geosci. Model Dev., 14, 5669–5693, https://doi.org/10.5194/gmd-14-5669-2021,https://doi.org/10.5194/gmd-14-5669-2021, 2021
Short summary
Hydrostreamer v1.0 – improved streamflow predictions for local applications from an ensemble of downscaled global runoff products
Marko Kallio, Joseph H. A. Guillaume, Vili Virkki, Matti Kummu, and Kirsi Virrantaus
Geosci. Model Dev., 14, 5155–5181, https://doi.org/10.5194/gmd-14-5155-2021,https://doi.org/10.5194/gmd-14-5155-2021, 2021
Short summary
Model cascade from meteorological drivers to river flood hazard: flood-cascade v1.0
Peter Uhe, Daniel Mitchell, Paul D. Bates, Nans Addor, Jeff Neal, and Hylke E. Beck
Geosci. Model Dev., 14, 4865–4890, https://doi.org/10.5194/gmd-14-4865-2021,https://doi.org/10.5194/gmd-14-4865-2021, 2021
Short summary
DecTree v1.0 – chemistry speedup in reactive transport simulations: purely data-driven and physics-based surrogates
Marco De Lucia and Michael Kühn
Geosci. Model Dev., 14, 4713–4730, https://doi.org/10.5194/gmd-14-4713-2021,https://doi.org/10.5194/gmd-14-4713-2021, 2021
Short summary
Understanding each other's models: an introduction and a standard representation of 16 global water models to support intercomparison, improvement, and communication
Camelia-Eliza Telteu, Hannes Müller Schmied, Wim Thiery, Guoyong Leng, Peter Burek, Xingcai Liu, Julien Eric Stanislas Boulange, Lauren Seaby Andersen, Manolis Grillakis, Simon Newland Gosling, Yusuke Satoh, Oldrich Rakovec, Tobias Stacke, Jinfeng Chang, Niko Wanders, Harsh Lovekumar Shah, Tim Trautmann, Ganquan Mao, Naota Hanasaki, Aristeidis Koutroulis, Yadu Pokhrel, Luis Samaniego, Yoshihide Wada, Vimal Mishra, Junguo Liu, Petra Döll, Fang Zhao, Anne Gädeke, Sam S. Rabin, and Florian Herz
Geosci. Model Dev., 14, 3843–3878, https://doi.org/10.5194/gmd-14-3843-2021,https://doi.org/10.5194/gmd-14-3843-2021, 2021
Short summary

Cited articles

Cai, X., Yang, Z.-L., Fisher, J. B., Zhang, X., Barlage, M., and Chen, F.: Integration of nitrogen dynamics into the Noah-MP land surface model v1.1 for climate and environmental predictions, Geosci. Model Dev., 9, 1–15, https://doi.org/10.5194/gmd-9-1-2016, 2016. 
Chandra, R., Azam, D., Kapoor, A., and Müller, R. D.: Surrogate-assisted Bayesian inversion for landscape and basin evolution models, Geosci. Model Dev., 13, 2959–2979, https://doi.org/10.5194/gmd-13-2959-2020, 2020. 
Ercan, M. B., Goodall, J. L., Castronova, A. M., Humphrey, M., and Beekwilder, N.: Calibration of SWAT models using the cloud, Environ. Modell. Softw., 62, 188–196, https://doi.org/10.1016/j.envsoft.2014.09.002, 2014. 
Fang, Y., Chen, X., Gomez Velez, J., Zhang, X., Duan, Z., Hammond, G. E., Goldman, A. E., Garayburu-Caruso, V. A., and Graham, E. B.: A multirate mass transfer model to represent the interaction of multicomponent biogeochemical processes between surface water and hyporheic zones (SWAT-MRMT-R 1.0), Geosci. Model Dev., 13, 3553–3569, https://doi.org/10.5194/gmd-13-3553-2020, 2020. 
Gorgan, D., Bacu, V., Mihon, D., Rodila, D., Abbaspour, K., and Rouholahnejad, E.: Grid based calibration of SWAT hydrological models, Nat. Hazards Earth Syst. Sci., 12, 2411–2423, https://doi.org/10.5194/nhess-12-2411-2012, 2012. 
Download
Short summary
GP-SWAT is a two-layer model parallelization tool for a SWAT model based on the graph-parallel Pregel algorithm. It can be employed to perform both individual and iterative model parallelization, endowing it with a range of possible applications and great flexibility in maximizing performance. As a flexible and scalable tool, it can run in diverse environments, ranging from a commodity computer with a Microsoft Windows, Mac or Linux OS to a Spark cluster consisting of a large number of nodes.