Articles | Volume 14, issue 1
https://doi.org/10.5194/gmd-14-107-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/gmd-14-107-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
ClimateNet: an expert-labeled open dataset and deep learning architecture for enabling high-precision analyses of extreme weather
Prabhat
Lawrence Berkeley National Laboratory, Berkeley, CA, USA
Department of Earth and Planetary Science, University of California, Berkeley, CA, USA
Karthik Kashinath
CORRESPONDING AUTHOR
Lawrence Berkeley National Laboratory, Berkeley, CA, USA
Mayur Mudigonda
Terrafuse, Berkeley, CA, USA
Department of Earth and Planetary Science, University of California, Berkeley, CA, USA
Lukas Kapp-Schwoerer
ETH Zurich, Zürich, Switzerland
Andre Graubner
ETH Zurich, Zürich, Switzerland
Ege Karaismailoglu
ETH Zurich, Zürich, Switzerland
Leo von Kleist
ETH Zurich, Zürich, Switzerland
Thorsten Kurth
NVIDIA, Santa Clara, CA, USA
Annette Greiner
Lawrence Berkeley National Laboratory, Berkeley, CA, USA
Ankur Mahesh
Department of Earth and Planetary Science, University of California, Berkeley, CA, USA
Lawrence Berkeley National Laboratory, Berkeley, CA, USA
Kevin Yang
Department of Earth and Planetary Science, University of California, Berkeley, CA, USA
Colby Lewis
Department of Earth and Planetary Science, University of California, Berkeley, CA, USA
Jiayi Chen
Department of Earth and Planetary Science, University of California, Berkeley, CA, USA
Andrew Lou
Department of Earth and Planetary Science, University of California, Berkeley, CA, USA
Sathyavat Chandran
Department of Computer Science, Rice University, Houston, TX, USA
Ben Toms
Department of Atmospheric Science, Colorado State University, Fort Collins, CO, USA
Will Chapman
Scripps Institution of Oceanography, University of California, San Diego, La Jolla, CA, USA
Katherine Dagon
National Center for Atmospheric Research, Boulder, CO, USA
Christine A. Shields
National Center for Atmospheric Research, Boulder, CO, USA
Travis O'Brien
Department of Atmospheric Science, Indiana University, Bloomington, IN, USA
Lawrence Berkeley National Laboratory, Berkeley, CA, USA
Michael Wehner
Lawrence Berkeley National Laboratory, Berkeley, CA, USA
William Collins
Lawrence Berkeley National Laboratory, Berkeley, CA, USA
Department of Earth and Planetary Science, University of California, Berkeley, CA, USA
Related authors
Benjamin A. Toms, Karthik Kashinath, Prabhat, and Da Yang
Geosci. Model Dev., 14, 4495–4508, https://doi.org/10.5194/gmd-14-4495-2021, https://doi.org/10.5194/gmd-14-4495-2021, 2021
Short summary
Short summary
We test whether a type of machine learning called neural networks can be used trustfully within the geosciences. We do so by challenging the networks to understand the spatial patterns of a commonly studied geoscientific phenomenon. The neural networks can correctly identify the spatial patterns, which lends confidence that similar networks can be used for more uncertain problems. The results of this study may give geoscientists confidence when using neural networks in their research.
Travis A. O'Brien, Mark D. Risser, Burlen Loring, Abdelrahman A. Elbashandy, Harinarayan Krishnan, Jeffrey Johnson, Christina M. Patricola, John P. O'Brien, Ankur Mahesh, Prabhat, Sarahí Arriaga Ramirez, Alan M. Rhoades, Alexander Charn, Héctor Inda Díaz, and William D. Collins
Geosci. Model Dev., 13, 6131–6148, https://doi.org/10.5194/gmd-13-6131-2020, https://doi.org/10.5194/gmd-13-6131-2020, 2020
Short summary
Short summary
Researchers utilize various algorithms to identify extreme weather features in climate data, and we seek to answer this question: given a
plausibleweather event detector, how does uncertainty in the detector impact scientific results? We generate a suite of statistical models that emulate expert identification of weather features. We find that the connection between El Niño and atmospheric rivers – a specific extreme weather type – depends systematically on the design of the detector.
Ankur Mahesh, Travis O'Brien, Burlen Loring, Abdelrahman Elbashandy, William Boos, and William Collins
EGUsphere, https://doi.org/10.5194/egusphere-2023-763, https://doi.org/10.5194/egusphere-2023-763, 2023
Short summary
Short summary
Atmospheric rivers (ARs) are extreme weather events that can alleviate drought or cause billions of dollars in flood damage. We train convolutional neural networks (CNNs) to detect ARs with an estimate of uncertainty. We present a framework to generalize these CNNs to a variety of datasets of past, present, and future climate. Using a simplified simulation of the Earth's atmosphere, we validate the CNNs. We explore ARs' role in maintaining energy balance in the earth system.
Arjun Babu Nellikkattil, Travis Allen O’Brien, Danielle Lemmon, June-Yi Lee, and Jung-Eun Chu
EGUsphere, https://doi.org/10.5194/egusphere-2023-592, https://doi.org/10.5194/egusphere-2023-592, 2023
Short summary
Short summary
The exponential increases in the climate and weather data demand computationally efficient and mathematically sound feature extraction algorithms to identify phenomenons such as atmospheric rivers, cyclones, sea surface temperature fronts, jet streams, etc. In this study, we present an innovative generalized framework for extracting two and three-dimensional features from gridded datasets using the local geometric shape of the input fields.
Michelle L. Maclennan, Jan T. M. Lenaerts, Christine A. Shields, Andrew O. Hoffman, Nander Wever, Megan Thompson-Munson, Andrew C. Winters, Erin C. Pettit, Theodore A. Scambos, and Jonathan D. Wille
The Cryosphere, 17, 865–881, https://doi.org/10.5194/tc-17-865-2023, https://doi.org/10.5194/tc-17-865-2023, 2023
Short summary
Short summary
Atmospheric rivers are air masses that transport large amounts of moisture and heat towards the poles. Here, we use a combination of weather observations and models to quantify the amount of snowfall caused by atmospheric rivers in West Antarctica which is about 10 % of the total snowfall each year. We then examine a unique event that occurred in early February 2020, when three atmospheric rivers made landfall over West Antarctica in rapid succession, leading to heavy snowfall and surface melt.
Sjoukje Y. Philip, Sarah F. Kew, Geert Jan van Oldenborgh, Faron S. Anslow, Sonia I. Seneviratne, Robert Vautard, Dim Coumou, Kristie L. Ebi, Julie Arrighi, Roop Singh, Maarten van Aalst, Carolina Pereira Marghidan, Michael Wehner, Wenchang Yang, Sihan Li, Dominik L. Schumacher, Mathias Hauser, Rémy Bonnet, Linh N. Luu, Flavio Lehner, Nathan Gillett, Jordis S. Tradowsky, Gabriel A. Vecchi, Chris Rodell, Roland B. Stull, Rosie Howard, and Friederike E. L. Otto
Earth Syst. Dynam., 13, 1689–1713, https://doi.org/10.5194/esd-13-1689-2022, https://doi.org/10.5194/esd-13-1689-2022, 2022
Short summary
Short summary
In June 2021, the Pacific Northwest of the US and Canada saw record temperatures far exceeding those previously observed. This attribution study found such a severe heat wave would have been virtually impossible without human-induced climate change. Assuming no nonlinear interactions, such events have become at least 150 times more common, are about 2 °C hotter and will become even more common as warming continues. Therefore, adaptation and mitigation are urgently needed to prepare society.
Mari R. Tye, Katherine Dagon, Maria J. Molina, Jadwiga H. Richter, Daniele Visioni, Ben Kravitz, and Simone Tilmes
Earth Syst. Dynam., 13, 1233–1257, https://doi.org/10.5194/esd-13-1233-2022, https://doi.org/10.5194/esd-13-1233-2022, 2022
Short summary
Short summary
We examined the potential effect of stratospheric aerosol injection (SAI) on extreme temperature and precipitation. SAI may cause daytime temperatures to cool but nighttime to warm. Daytime cooling may occur in all seasons across the globe, with the largest decreases in summer. In contrast, nighttime warming may be greatest at high latitudes in winter. SAI may reduce the frequency and intensity of extreme rainfall. The combined changes may exacerbate drying over parts of the global south.
Ashesh Chattopadhyay, Mustafa Mustafa, Pedram Hassanzadeh, Eviatar Bach, and Karthik Kashinath
Geosci. Model Dev., 15, 2221–2237, https://doi.org/10.5194/gmd-15-2221-2022, https://doi.org/10.5194/gmd-15-2221-2022, 2022
Short summary
Short summary
There is growing interest in data-driven weather forecasting, i.e., to predict the weather by using a deep neural network that learns from the evolution of past atmospheric patterns. Here, we propose three components to add to the current data-driven weather forecast models to improve their performance. These components involve a feature that incorporates physics into the neural network, a method to add data assimilation, and an algorithm to use several different time intervals in the forecast.
Claudia Tebaldi, Kalyn Dorheim, Michael Wehner, and Ruby Leung
Earth Syst. Dynam., 12, 1427–1501, https://doi.org/10.5194/esd-12-1427-2021, https://doi.org/10.5194/esd-12-1427-2021, 2021
Short summary
Short summary
We address the question of how large an initial condition ensemble of climate model simulations should be if we are concerned with accurately projecting future changes in temperature and precipitation extremes. We find that for most cases (and both models considered), an ensemble of 20–25 members is sufficient for many extreme metrics, spatial scales and time horizons. This may leave computational resources to tackle other uncertainties in climate model simulations with our ensembles.
Benjamin A. Toms, Karthik Kashinath, Prabhat, and Da Yang
Geosci. Model Dev., 14, 4495–4508, https://doi.org/10.5194/gmd-14-4495-2021, https://doi.org/10.5194/gmd-14-4495-2021, 2021
Short summary
Short summary
We test whether a type of machine learning called neural networks can be used trustfully within the geosciences. We do so by challenging the networks to understand the spatial patterns of a commonly studied geoscientific phenomenon. The neural networks can correctly identify the spatial patterns, which lends confidence that similar networks can be used for more uncertain problems. The results of this study may give geoscientists confidence when using neural networks in their research.
Katherine Dagon, Benjamin M. Sanderson, Rosie A. Fisher, and David M. Lawrence
Adv. Stat. Clim. Meteorol. Oceanogr., 6, 223–244, https://doi.org/10.5194/ascmo-6-223-2020, https://doi.org/10.5194/ascmo-6-223-2020, 2020
Short summary
Short summary
Uncertainties in land model projections are important to understand in order to build confidence in Earth system modeling. In this paper, we introduce a framework for estimating uncertain land model parameters with machine learning. This method increases the computational efficiency of this process relative to traditional hand tuning approaches and provides objective methods to assess the results. We further identify key processes and parameters that are important for accurate land modeling.
Travis A. O'Brien, Mark D. Risser, Burlen Loring, Abdelrahman A. Elbashandy, Harinarayan Krishnan, Jeffrey Johnson, Christina M. Patricola, John P. O'Brien, Ankur Mahesh, Prabhat, Sarahí Arriaga Ramirez, Alan M. Rhoades, Alexander Charn, Héctor Inda Díaz, and William D. Collins
Geosci. Model Dev., 13, 6131–6148, https://doi.org/10.5194/gmd-13-6131-2020, https://doi.org/10.5194/gmd-13-6131-2020, 2020
Short summary
Short summary
Researchers utilize various algorithms to identify extreme weather features in climate data, and we seek to answer this question: given a
plausibleweather event detector, how does uncertainty in the detector impact scientific results? We generate a suite of statistical models that emulate expert identification of weather features. We find that the connection between El Niño and atmospheric rivers – a specific extreme weather type – depends systematically on the design of the detector.
Mark D. Risser and Michael F. Wehner
Adv. Stat. Clim. Meteorol. Oceanogr., 6, 115–139, https://doi.org/10.5194/ascmo-6-115-2020, https://doi.org/10.5194/ascmo-6-115-2020, 2020
Short summary
Short summary
Evaluation of modern high-resolution global climate models often does not account for the geographic location of the underlying weather station data. In this paper, we quantify the impact of geographic sampling on the relative performance of climate model representations of precipitation extremes over the United States. We find that properly accounting for the geographic sampling of weather stations can significantly change the assessment of model performance.
Yangyang Xu, Lei Lin, Simone Tilmes, Katherine Dagon, Lili Xia, Chenrui Diao, Wei Cheng, Zhili Wang, Isla Simpson, and Lorna Burnell
Earth Syst. Dynam., 11, 673–695, https://doi.org/10.5194/esd-11-673-2020, https://doi.org/10.5194/esd-11-673-2020, 2020
Short summary
Short summary
Two geoengineering schemes to mitigate global warming, (a) capturing atmospheric CO2 and (b) injecting stratospheric sulfur gas, are compared. Based on two sets of large-ensemble model experiments, we show that sulfur injection will effectively mitigate projected terrestrial drying over the Americas, and the mitigation benefit will emerge more quickly than with carbon capture. Innovative means of sulfur injection should continue to be explored as one potential low-cost climate solution.
Grzegorz Muszynski, Karthik Kashinath, Vitaliy Kurlin, Michael Wehner, and Prabhat
Geosci. Model Dev., 12, 613–628, https://doi.org/10.5194/gmd-12-613-2019, https://doi.org/10.5194/gmd-12-613-2019, 2019
Short summary
Short summary
We present the automated method for recognizing atmospheric rivers in climate data, i.e., climate model output and reanalysis product. The method is based on topological data analysis and machine learning, both of which are powerful tools that the climate science community often does not use. An advantage of the proposed method is that it is free of selection of subjective threshold conditions on a physical variable. This method is also suitable for rapidly analyzing large amounts of data.
Christine A. Shields, Jonathan J. Rutz, Lai-Yung Leung, F. Martin Ralph, Michael Wehner, Brian Kawzenuk, Juan M. Lora, Elizabeth McClenny, Tashiana Osborne, Ashley E. Payne, Paul Ullrich, Alexander Gershunov, Naomi Goldenson, Bin Guan, Yun Qian, Alexandre M. Ramos, Chandan Sarangi, Scott Sellars, Irina Gorodetskaya, Karthik Kashinath, Vitaliy Kurlin, Kelly Mahoney, Grzegorz Muszynski, Roger Pierce, Aneesh C. Subramanian, Ricardo Tome, Duane Waliser, Daniel Walton, Gary Wick, Anna Wilson, David Lavers, Prabhat, Allison Collow, Harinarayan Krishnan, Gudrun Magnusdottir, and Phu Nguyen
Geosci. Model Dev., 11, 2455–2474, https://doi.org/10.5194/gmd-11-2455-2018, https://doi.org/10.5194/gmd-11-2455-2018, 2018
Short summary
Short summary
ARTMIP (Atmospheric River Tracking Method Intercomparison Project) is a community effort with the explicit goal of understanding the uncertainties, and the implications of those uncertainties, in atmospheric river science solely due to detection algorithm. ARTMIP strives to quantify these differences and provide guidance on appropriate algorithmic choices for the science question posed. Project goals, experimental design, and preliminary results are provided.
Monika J. Barcikowska, Scott J. Weaver, Frauke Feser, Simone Russo, Frederik Schenk, Dáithí A. Stone, Michael F. Wehner, and Matthias Zahn
Earth Syst. Dynam., 9, 679–699, https://doi.org/10.5194/esd-9-679-2018, https://doi.org/10.5194/esd-9-679-2018, 2018
Michael Wehner, Dáithí Stone, Dann Mitchell, Hideo Shiogama, Erich Fischer, Lise S. Graff, Viatcheslav V. Kharin, Ludwig Lierhammer, Benjamin Sanderson, and Harinarayan Krishnan
Earth Syst. Dynam., 9, 299–311, https://doi.org/10.5194/esd-9-299-2018, https://doi.org/10.5194/esd-9-299-2018, 2018
Short summary
Short summary
The United Nations Framework Convention on Climate Change challenged the scientific community to describe the impacts of stabilizing the global temperature at its 21st Conference of Parties. A specific target of 1.5 °C above preindustrial levels had not been seriously considered by the climate modeling community prior to the Paris Agreement. This paper analyzes heat waves in simulations designed for this target. We find there are reductions in extreme temperature compared to a 2 °C target.
Michael F. Wehner, Kevin A. Reed, Burlen Loring, Dáithí Stone, and Harinarayan Krishnan
Earth Syst. Dynam., 9, 187–195, https://doi.org/10.5194/esd-9-187-2018, https://doi.org/10.5194/esd-9-187-2018, 2018
Short summary
Short summary
The United Nations Framework Convention on Climate Change invited the scientific community to explore the impacts of a world in which anthropogenic global warming is stabilized at only 1.5 °C above preindustrial average temperatures. We present a projection of future tropical cyclone statistics for both 1.5 and 2.0 °C stabilized warming scenarios using a high-resolution global climate model. We find more frequent and intense tropical cyclones, but a reduction in weaker storms.
Benjamin M. Sanderson, Yangyang Xu, Claudia Tebaldi, Michael Wehner, Brian O'Neill, Alexandra Jahn, Angeline G. Pendergrass, Flavio Lehner, Warren G. Strand, Lei Lin, Reto Knutti, and Jean Francois Lamarque
Earth Syst. Dynam., 8, 827–847, https://doi.org/10.5194/esd-8-827-2017, https://doi.org/10.5194/esd-8-827-2017, 2017
Short summary
Short summary
We present the results of a set of climate simulations designed to simulate futures in which the Earth's temperature is stabilized at the levels referred to in the 2015 Paris Agreement. We consider the necessary future emissions reductions and the aspects of extreme weather which differ significantly between the 2 and 1.5 °C climate in the simulations.
Benjamin M. Sanderson, Michael Wehner, and Reto Knutti
Geosci. Model Dev., 10, 2379–2395, https://doi.org/10.5194/gmd-10-2379-2017, https://doi.org/10.5194/gmd-10-2379-2017, 2017
Short summary
Short summary
How should climate model simulations be combined to produce an overall assessment that reflects both their performance and their interdependencies? This paper presents a strategy for weighting climate model output such that models that are replicated or models that perform poorly in a chosen set of metrics are appropriately weighted. We perform sensitivity tests to show how the method results depend on variables and parameter values.
Christine A. Shields and Jeffrey T. Kiehl
Clim. Past Discuss., https://doi.org/10.5194/cp-2017-42, https://doi.org/10.5194/cp-2017-42, 2017
Manuscript not accepted for further review
Short summary
Short summary
The megamonsoon is analyzed for the late Permian (~251Ma) period in Earth's deep climatic past using a sophisticated global climate model that simulates interactions between the atmosphere, ocean, land, and sea ice. We show the location of the megamonsoon is dependent on the location of the warmest sea surface temperatures in tropical and subtropical regions and not the land-sea temperature gradient by performing experiments with geography that impact both atmospheric and oceanic simulations.
Daniel J. Lunt, Matthew Huber, Eleni Anagnostou, Michiel L. J. Baatsen, Rodrigo Caballero, Rob DeConto, Henk A. Dijkstra, Yannick Donnadieu, David Evans, Ran Feng, Gavin L. Foster, Ed Gasson, Anna S. von der Heydt, Chris J. Hollis, Gordon N. Inglis, Stephen M. Jones, Jeff Kiehl, Sandy Kirtland Turner, Robert L. Korty, Reinhardt Kozdon, Srinath Krishnan, Jean-Baptiste Ladant, Petra Langebroek, Caroline H. Lear, Allegra N. LeGrande, Kate Littler, Paul Markwick, Bette Otto-Bliesner, Paul Pearson, Christopher J. Poulsen, Ulrich Salzmann, Christine Shields, Kathryn Snell, Michael Stärz, James Super, Clay Tabor, Jessica E. Tierney, Gregory J. L. Tourte, Aradhna Tripati, Garland R. Upchurch, Bridget S. Wade, Scott L. Wing, Arne M. E. Winguth, Nicky M. Wright, James C. Zachos, and Richard E. Zeebe
Geosci. Model Dev., 10, 889–901, https://doi.org/10.5194/gmd-10-889-2017, https://doi.org/10.5194/gmd-10-889-2017, 2017
Short summary
Short summary
In this paper we describe the experimental design for a set of simulations which will be carried out by a range of climate models, all investigating the climate of the Eocene, about 50 million years ago. The intercomparison of model results is called 'DeepMIP', and we anticipate that we will contribute to the next IPCC report through an analysis of these simulations and the geological data to which we will compare them.
Daniel Mitchell, Krishna AchutaRao, Myles Allen, Ingo Bethke, Urs Beyerle, Andrew Ciavarella, Piers M. Forster, Jan Fuglestvedt, Nathan Gillett, Karsten Haustein, William Ingram, Trond Iversen, Viatcheslav Kharin, Nicholas Klingaman, Neil Massey, Erich Fischer, Carl-Friedrich Schleussner, John Scinocca, Øyvind Seland, Hideo Shiogama, Emily Shuckburgh, Sarah Sparrow, Dáithí Stone, Peter Uhe, David Wallom, Michael Wehner, and Rashyd Zaaboul
Geosci. Model Dev., 10, 571–583, https://doi.org/10.5194/gmd-10-571-2017, https://doi.org/10.5194/gmd-10-571-2017, 2017
Short summary
Short summary
This paper provides an experimental design to assess impacts of a world that is 1.5 °C warmer than at pre-industrial levels. The design is a new way to approach impacts from the climate community, and aims to answer questions related to the recent Paris Agreement. In particular the paper provides a method for studying extreme events under relatively high mitigation scenarios.
Leo J. Donner, Travis A. O'Brien, Daniel Rieger, Bernhard Vogel, and William F. Cooke
Atmos. Chem. Phys., 16, 12983–12992, https://doi.org/10.5194/acp-16-12983-2016, https://doi.org/10.5194/acp-16-12983-2016, 2016
Short summary
Short summary
Uncertainties in both climate forcing and sensitivity limit the extent to which climate projections can meet society's needs for actionable climate science. Advances in observing and modeling atmospheric vertical velocities provide a potential breakthrough in understanding climate forcing and sensitivity, with concurrent reductions in uncertainty.
S. Jeon, Prabhat, S. Byna, J. Gu, W. D. Collins, and M. F. Wehner
Adv. Stat. Clim. Meteorol. Oceanogr., 1, 45–57, https://doi.org/10.5194/ascmo-1-45-2015, https://doi.org/10.5194/ascmo-1-45-2015, 2015
Short summary
Short summary
This paper investigates the influence of atmospheric rivers on spatial coherence of extreme precipitation under a changing climate. We use our TECA software developed for detecting atmospheric river events and apply statistical techniques based on extreme value theory to characterize the spatial dependence structure between precipitation extremes within the events. The results show that extreme rainfall caused by atmospheric river events is less spatially correlated under the warming scenario.
W. D. Collins, A. P. Craig, J. E. Truesdale, A. V. Di Vittorio, A. D. Jones, B. Bond-Lamberty, K. V. Calvin, J. A. Edmonds, S. H. Kim, A. M. Thomson, P. Patel, Y. Zhou, J. Mao, X. Shi, P. E. Thornton, L. P. Chini, and G. C. Hurtt
Geosci. Model Dev., 8, 2203–2219, https://doi.org/10.5194/gmd-8-2203-2015, https://doi.org/10.5194/gmd-8-2203-2015, 2015
Short summary
Short summary
The integrated Earth system model (iESM) has been developed as a
new tool for projecting the joint human-climate system. The
iESM is based upon coupling an integrated assessment model (IAM)
and an Earth system model (ESM) into a common modeling
infrastructure. By introducing heretofore-omitted
feedbacks between natural and societal drivers in iESM, we can improve
scientific understanding of the human-Earth system
dynamics.
D. R. Feldman, W. D. Collins, and J. L. Paige
Geosci. Model Dev., 8, 1943–1954, https://doi.org/10.5194/gmd-8-1943-2015, https://doi.org/10.5194/gmd-8-1943-2015, 2015
Short summary
Short summary
This work describes a new type of observational simulator for directly comparing measurements and models that takes advantage of all of the information in spectrally resolved top-of-atmosphere data. It describes how to model how the spectrum of the Earth, both in the shortwave and the long wave, changes in response to climate forcings, and provides a path towards inline observational simulation for the upcoming Coupled Model Intercomparison Project – Phase 6.
A. V. Di Vittorio, L. P. Chini, B. Bond-Lamberty, J. Mao, X. Shi, J. Truesdale, A. Craig, K. Calvin, A. Jones, W. D. Collins, J. Edmonds, G. C. Hurtt, P. Thornton, and A. Thomson
Biogeosciences, 11, 6435–6450, https://doi.org/10.5194/bg-11-6435-2014, https://doi.org/10.5194/bg-11-6435-2014, 2014
Short summary
Short summary
Economic models provide scenarios of land use and greenhouse gas emissions to earth system models to project global change. We found, and partially addressed, inconsistencies in land cover between an economic and an earth system model that effectively alter a prescribed scenario, causing significant differences in projected terrestrial carbon and atmospheric CO2 between prescribed and altered scenarios. We outline a solution to this current problem in scenario-based global change projections.
J. A. Holm, J. Q. Chambers, W. D. Collins, and N. Higuchi
Biogeosciences, 11, 5773–5794, https://doi.org/10.5194/bg-11-5773-2014, https://doi.org/10.5194/bg-11-5773-2014, 2014
C. D. Koven, W. J. Riley, Z. M. Subin, J. Y. Tang, M. S. Torn, W. D. Collins, G. B. Bonan, D. M. Lawrence, and S. C. Swenson
Biogeosciences, 10, 7109–7131, https://doi.org/10.5194/bg-10-7109-2013, https://doi.org/10.5194/bg-10-7109-2013, 2013
W.-C. Hsieh, W. D. Collins, Y. Liu, J. C. H. Chiang, C.-L. Shie, K. Caldeira, and L. Cao
Atmos. Chem. Phys., 13, 7489–7510, https://doi.org/10.5194/acp-13-7489-2013, https://doi.org/10.5194/acp-13-7489-2013, 2013
A. J. Conley, J.-F. Lamarque, F. Vitt, W. D. Collins, and J. Kiehl
Geosci. Model Dev., 6, 469–476, https://doi.org/10.5194/gmd-6-469-2013, https://doi.org/10.5194/gmd-6-469-2013, 2013
Y. L. Roberts, P. Pilewskie, B. C. Kindel, D. R. Feldman, and W. D. Collins
Atmos. Chem. Phys., 13, 3133–3147, https://doi.org/10.5194/acp-13-3133-2013, https://doi.org/10.5194/acp-13-3133-2013, 2013
Related subject area
Earth and space science informatics
Hazard assessment modeling and software development of earthquake-triggered landslides in the Sichuan–Yunnan area, China
Ensemble of optimised machine learning algorithms for predicting surface soil moisture content at global scale
A generalized spatial autoregressive neural network method for three-dimensional spatial interpolation
The Common Community Physics Package (CCPP) Framework v6
Overcoming barriers to enable convergence research by integrating ecological and climate sciences: The NCAR-NEON system Version 1
Causal deep learning models for studying the Earth system
Machine Learning for numerical weather and climate modelling: a review
A methodological framework for improving the performance of data-driven models: a case study for daily runoff prediction in the Maumee domain, USA
SHAFTS (v2022.3): a deep-learning-based Python package for simultaneous extraction of building height and footprint from sentinel imagery
Bayesian atmospheric correction over land: Sentinel-2/MSI and Landsat 8/OLI
Twenty-five years of the IPCC Data Distribution Centre at the DKRZ and the Reference Data Archive for CMIP data
Effectiveness and computational efficiency of absorbing boundary conditions for full-waveform inversion
LAND-SUITE V1.0: a suite of tools for statistically based landslide susceptibility zonation
Towards physics-inspired data-driven weather forecasting: integrating data assimilation with a deep spatial-transformer-based U-NET in a case study with ERA5
Fast infrared radiative transfer calculations using graphics processing units: JURASSIC-GPU v2.0
CSDMS: a community platform for numerical modeling of Earth surface processes
A new methodological framework for geophysical sensor combinations associated with machine learning algorithms to understand soil attributes
Model calibration using ESEm v1.1.0 – an open, scalable Earth system emulator
Turbidity maximum zone index: a novel model for remote extraction of the turbidity maximum zone in different estuaries
dh2loop 1.0: an open-source Python library for automated processing and classification of geological logs
Copula-based synthetic data augmentation for machine-learning emulators
Automated geological map deconstruction for 3D model construction using map2loop 1.0 and map2model 1.0
A spatially explicit approach to simulate urban heat mitigation with InVEST (v3.8.0)
S-SOM v1.0: a structural self-organizing map algorithm for weather typing
Using Shapley additive explanations to interpret extreme gradient boosting predictions of grassland degradation in Xilingol, China
Current status on the need for improved accessibility to climate models code
A spatiotemporal weighted regression model (STWR v1.0) for analyzing local nonstationarity in space and time
A new end-to-end workflow for the Community Earth System Model (version 2.0) for the Coupled Model Intercomparison Project Phase 6 (CMIP6)
HyLands 1.0: a hybrid landscape evolution model to simulate the impact of landslides and landslide-derived sediment on landscape evolution
Comparative analysis of atmospheric radiative transfer models using the Atmospheric Look-up table Generator (ALG) toolbox (version 2.0)
Fast domain-aware neural network emulation of a planetary boundary layer parameterization in a numerical weather forecast model
VISIR-1.b: ocean surface gravity waves and currents for energy-efficient navigation
Topological data analysis and machine learning for recognizing atmospheric river patterns in large climate datasets
Global hydro-climatic biomes identified via multitask learning
A run control framework to streamline profiling, porting, and tuning simulation runs and provenance tracking of geoscientific applications
An improved logistic regression model based on a spatially weighted technique (ILRBSWT v1.0) and its application to mineral prospectivity mapping
High-performance software framework for the calculation of satellite-to-satellite data matchups (MMS version 1.2)
A data model of the Climate and Forecast metadata conventions (CF-1.6) with a software implementation (cf-python v2.1)
Reverse engineering model structures for soil and ecosystem respiration: the potential of gene expression programming
A high-fidelity multiresolution digital elevation model for Earth systems
CPMIP: measurements of real computational performance of Earth system models in CMIP6
Automatic delineation of geomorphological slope units with r.slopeunits v1.0 and their optimization for landslide susceptibility modeling
Community Intercomparison Suite (CIS) v1.4.0: a tool for intercomparing models and observations
Asynchronous communication in spectral-element and discontinuous Galerkin methods for atmospheric dynamics – a case study using the High-Order Methods Modeling Environment (HOMME-homme_dg_branch)
GO2OGS 1.0: a versatile workflow to integrate complex geological information with fault data into numerical simulation models
An open and extensible framework for spatially explicit land use change modelling: the lulcc R package
Plant functional type classification for earth system models: results from the European Space Agency's Land Cover Climate Change Initiative
Non-singular spherical harmonic expressions of geomagnetic vector and gradient tensor fields in the local north-oriented reference frame
An approach to enhance pnetCDF performance in environmental modeling applications
A strategy for GIS-based 3-D slope stability modelling over large areas
Xiaoyi Shao, Siyuan Ma, and Chong Xu
Geosci. Model Dev., 16, 5113–5129, https://doi.org/10.5194/gmd-16-5113-2023, https://doi.org/10.5194/gmd-16-5113-2023, 2023
Short summary
Short summary
Scientific understandings of the distribution of coseismic landslides, followed by emergency and medium- and long-term risk assessment, can reduce landslide risk. The aim of this study is to propose an improved three-stage spatial prediction strategy and develop corresponding hazard assessment software called Mat.LShazard V1.0, which provides a new application tool for coseismic landslide disaster prevention and mitigation in different stages.
Qianqian Han, Yijian Zeng, Lijie Zhang, Calimanut-Ionut Cira, Egor Prikaziuk, Ting Duan, Chao Wang, Brigitta Szabó, Salvatore Manfreda, Ruodan Zhuang, and Bob Su
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2023-83, https://doi.org/10.5194/gmd-2023-83, 2023
Revised manuscript accepted for GMD
Short summary
Short summary
Using machine learning, we estimated global surface soil moisture for understanding water, energy, and carbon exchanges. Ensemble models outperformed individual algorithms in predicting soil moisture under different climates. The best performing ensemble model included K-nearest neighbors, random forest, and extreme gradient boosting. These findings have implications for hydrological and climatological applications such as water cycle monitoring, irrigation management, and crop yield prediction.
Junda Zhan, Sensen Wu, Jin Qi, Jindi Zeng, Mengjiao Qin, Yuanyuan Wang, and Zhenhong Du
Geosci. Model Dev., 16, 2777–2794, https://doi.org/10.5194/gmd-16-2777-2023, https://doi.org/10.5194/gmd-16-2777-2023, 2023
Short summary
Short summary
We develop a generalized spatial autoregressive neural network model used for three-dimensional spatial interpolation. Taking the different changing trend of geographic elements along various directions into consideration, the model defines spatial distance in a generalized way and integrates it into the process of spatial interpolation with the theories of spatial autoregression and neural network. Compared with traditional methods, the model achieves better performance and is more adaptable.
Dominikus Heinzeller, Ligia Bernardet, Grant Firl, Man Zhang, Xia Sun, and Michael Ek
Geosci. Model Dev., 16, 2235–2259, https://doi.org/10.5194/gmd-16-2235-2023, https://doi.org/10.5194/gmd-16-2235-2023, 2023
Short summary
Short summary
The Common Community Physics Package is a collection of physical atmospheric parameterizations for use in Earth system models and a framework that couples the physics to a host model’s dynamical core. A primary goal for this effort is to facilitate research and development of physical parameterizations and physics–dynamics coupling methods while offering capabilities for numerical weather prediction operations, for example in the upcoming implementation of the Global Forecast System (GFS) v17.
Danica L. Lombardozzi, William R. Wieder, Negin Sobhani, Gordon B. Bonan, David Durden, Dawn Lenz, Michael SanClements, Samantha Weintraub-Leff, Edward Ayres, Christopher R. Florian, Kyla Dahlin, Sanjiv Kumar, Abigail L. S. Swann, Claire Zarakas, Charles Vardeman, and Valerio Pascucci
EGUsphere, https://doi.org/10.5194/egusphere-2023-271, https://doi.org/10.5194/egusphere-2023-271, 2023
Short summary
Short summary
We present a novel cyberinfrastructure system that uses National Ecological Observatory Network measurements to run Community Terrestrial System Model point simulations in a containerized system. The simple interface and tutorials expand access to data and models used in Earth system research by removing technical barriers and facilitating research, educational opportunities, and community engagement. The NCAR-NEON system enables convergence of climate and ecological sciences.
Tobias Tesch, Stefan Kollet, and Jochen Garcke
Geosci. Model Dev., 16, 2149–2166, https://doi.org/10.5194/gmd-16-2149-2023, https://doi.org/10.5194/gmd-16-2149-2023, 2023
Short summary
Short summary
A recent statistical approach for studying relations in the Earth system is to train deep learning (DL) models to predict Earth system variables given one or several others and use interpretable DL to analyze the relations learned by the models. Here, we propose to combine the approach with a theorem from causality research to ensure that the deep learning model learns causal rather than spurious relations. As an example, we apply the method to study soil-moisture–precipitation coupling.
Catherine Odelia de Burgh-Day and Tennessee Leeuwenburg
EGUsphere, https://doi.org/10.5194/egusphere-2023-350, https://doi.org/10.5194/egusphere-2023-350, 2023
Short summary
Short summary
Machine learning (ML) is an increasingly popular tool in the field of weather and climate modelling. It has been used to improve many components of these models, and even the entire model. While ML has been used in this space for a long time, it is only recently that ML approaches have become competitive with more traditional approaches. In this review, we have summarized the use of ML in weather and climate modelling over time, and have also provided an overview of key ML concepts and terms.
Yao Hu, Chirantan Ghosh, and Siamak Malakpour-Estalaki
Geosci. Model Dev., 16, 1925–1936, https://doi.org/10.5194/gmd-16-1925-2023, https://doi.org/10.5194/gmd-16-1925-2023, 2023
Short summary
Short summary
Data-driven models (DDMs) gain popularity in earth and environmental systems, thanks in large part to advancements in data collection techniques and artificial intelligence (AI). The performance of these models is determined by the underlying machine learning (ML) algorithms. In this study, we develop a framework to improve the model performance by optimizing ML algorithms and demonstrate the effectiveness of the framework using a DDM to predict edge-of-field runoff in the Maumee domain, USA.
Ruidong Li, Ting Sun, Fuqiang Tian, and Guang-Heng Ni
Geosci. Model Dev., 16, 751–778, https://doi.org/10.5194/gmd-16-751-2023, https://doi.org/10.5194/gmd-16-751-2023, 2023
Short summary
Short summary
We developed SHAFTS (Simultaneous building Height And FootprinT extraction from Sentinel imagery), a multi-task deep-learning-based Python package, to estimate average building height and footprint from Sentinel imagery. Evaluation in 46 cities worldwide shows that SHAFTS achieves significant improvement over existing machine-learning-based methods.
Feng Yin, Philip E. Lewis, and Jose L. Gómez-Dans
Geosci. Model Dev., 15, 7933–7976, https://doi.org/10.5194/gmd-15-7933-2022, https://doi.org/10.5194/gmd-15-7933-2022, 2022
Short summary
Short summary
The proposed SIAC atmospheric correction method provides consistent surface reflectance estimations from medium spatial-resolution satellites (Sentinel 2 and Landsat 8) with per-pixel uncertainty information. The outputs from SIAC have been validated against a wide range of ground measurements, and it shows that SIAC can provide accurate estimations of both surface reflectance and atmospheric parameters, with meaningful uncertainty information.
Martina Stockhause and Michael Lautenschlager
Geosci. Model Dev., 15, 6047–6058, https://doi.org/10.5194/gmd-15-6047-2022, https://doi.org/10.5194/gmd-15-6047-2022, 2022
Short summary
Short summary
The Data Distribution Centre (DDC) of the Intergovernmental Panel on Climate Change (IPCC) celebrates its 25th anniversary in 2022. DDC Partner DKRZ has supported the IPCC Assessments and preserved the quality-assured, citable climate model data underpinning the Assessment Reports over these years over the long term. With the introduction of the IPCC FAIR Guidelines into the current AR6, the value of DDC services has been recognized. However, DDC sustainability remains unresolved.
Daiane Iglesia Dolci, Felipe A. G. Silva, Pedro S. Peixoto, and Ernani V. Volpe
Geosci. Model Dev., 15, 5857–5881, https://doi.org/10.5194/gmd-15-5857-2022, https://doi.org/10.5194/gmd-15-5857-2022, 2022
Short summary
Short summary
We investigate and compare the theoretical and computational characteristics of several absorbing boundary conditions (ABCs) for the full-waveform inversion (FWI) problem. The different ABCs are implemented in an optimized computational framework called Devito. The computational efficiency and memory requirements of the ABC methods are evaluated in the forward and adjoint wave propagators, from simple to realistic velocity models.
Mauro Rossi, Txomin Bornaetxea, and Paola Reichenbach
Geosci. Model Dev., 15, 5651–5666, https://doi.org/10.5194/gmd-15-5651-2022, https://doi.org/10.5194/gmd-15-5651-2022, 2022
Short summary
Short summary
LAND-SUITE is a software package designed to support landslide susceptibility zonation. The software integrates, extends, and completes LAND-SE (Rossi et al., 2010; Rossi and Reichenbach, 2016). The software is implemented in R, a free software environment for statistical computing and graphics, and gives expert users the possibility to perform easier, more flexible, and more informed statistically based landslide susceptibility applications and zonations.
Ashesh Chattopadhyay, Mustafa Mustafa, Pedram Hassanzadeh, Eviatar Bach, and Karthik Kashinath
Geosci. Model Dev., 15, 2221–2237, https://doi.org/10.5194/gmd-15-2221-2022, https://doi.org/10.5194/gmd-15-2221-2022, 2022
Short summary
Short summary
There is growing interest in data-driven weather forecasting, i.e., to predict the weather by using a deep neural network that learns from the evolution of past atmospheric patterns. Here, we propose three components to add to the current data-driven weather forecast models to improve their performance. These components involve a feature that incorporates physics into the neural network, a method to add data assimilation, and an algorithm to use several different time intervals in the forecast.
Paul F. Baumeister and Lars Hoffmann
Geosci. Model Dev., 15, 1855–1874, https://doi.org/10.5194/gmd-15-1855-2022, https://doi.org/10.5194/gmd-15-1855-2022, 2022
Short summary
Short summary
The efficiency of the numerical simulation of radiative transport is shown on modern server-class graphics cards (GPUs). The low-cost prefactor on GPUs compared to general-purpose processors (CPUs) enables future large retrieval campaigns for multi-channel data from infrared sounders aboard low-orbit satellites. The validated research software JURASSIC is available in the public domain.
Gregory E. Tucker, Eric W. H. Hutton, Mark D. Piper, Benjamin Campforts, Tian Gan, Katherine R. Barnhart, Albert J. Kettner, Irina Overeem, Scott D. Peckham, Lynn McCready, and Jaia Syvitski
Geosci. Model Dev., 15, 1413–1439, https://doi.org/10.5194/gmd-15-1413-2022, https://doi.org/10.5194/gmd-15-1413-2022, 2022
Short summary
Short summary
Scientists use computer simulation models to understand how Earth surface processes work, including floods, landslides, soil erosion, river channel migration, ocean sedimentation, and coastal change. Research benefits when the software for simulation modeling is open, shared, and coordinated. The Community Surface Dynamics Modeling System (CSDMS) is a US-based facility that supports research by providing community support, computing tools and guidelines, and educational resources.
Danilo César de Mello, Gustavo Vieira Veloso, Marcos Guedes de Lana, Fellipe Alcantara de Oliveira Mello, Raul Roberto Poppiel, Diego Ribeiro Oquendo Cabrero, Luis Augusto Di Loreto Di Raimo, Carlos Ernesto Gonçalves Reynaud Schaefer, Elpídio Inácio Fernandes Filho, Emilson Pereira Leite, and José Alexandre Melo Demattê
Geosci. Model Dev., 15, 1219–1246, https://doi.org/10.5194/gmd-15-1219-2022, https://doi.org/10.5194/gmd-15-1219-2022, 2022
Short summary
Short summary
We used soil parent material, terrain attributes, and geophysical data from the soil surface to test and compare different and unprecedented geophysical sensor combination, as well as different machine learning algorithms to model and predict several soil attributes. Also, we analyzed the importance of pedoenvironmental variables. The soil attributes were modeled throughout different machine learning algorithms and related to different geophysical sensor combinations.
Duncan Watson-Parris, Andrew Williams, Lucia Deaconu, and Philip Stier
Geosci. Model Dev., 14, 7659–7672, https://doi.org/10.5194/gmd-14-7659-2021, https://doi.org/10.5194/gmd-14-7659-2021, 2021
Short summary
Short summary
The Earth System Emulator (ESEm) provides a fast and flexible framework for emulating a wide variety of Earth science datasets and tools for constraining (or tuning) models of any complexity. Three distinct use cases are presented that demonstrate the utility of ESEm and provide some insight into the use of machine learning for emulation in these different settings. The open-source Python package is freely available so that it might become a valuable tool for the community.
Chongyang Wang, Li Wang, Danni Wang, Dan Li, Chenghu Zhou, Hao Jiang, Qiong Zheng, Shuisen Chen, Kai Jia, Yangxiaoyue Liu, Ji Yang, Xia Zhou, and Yong Li
Geosci. Model Dev., 14, 6833–6846, https://doi.org/10.5194/gmd-14-6833-2021, https://doi.org/10.5194/gmd-14-6833-2021, 2021
Short summary
Short summary
The turbidity maximum zone (TMZ) is a special phenomenon in estuaries worldwide. However, the extraction methods and criteria used to describe the TMZ vary significantly both spatially and temporally. This study proposes an new index, the turbidity maximum zone index, based on the corresponding relationship of total suspended solid concentration and Chl a concentration, which could better extract TMZs in different estuaries and on different dates.
Ranee Joshi, Kavitha Madaiah, Mark Jessell, Mark Lindsay, and Guillaume Pirot
Geosci. Model Dev., 14, 6711–6740, https://doi.org/10.5194/gmd-14-6711-2021, https://doi.org/10.5194/gmd-14-6711-2021, 2021
Short summary
Short summary
We have developed a software that allows the user to extract and standardize drill hole information from legacy datasets and/or different drilling campaigns. It also provides functionality to upscale the lithological information. These functionalities were possible by developing thesauri to identify and group geological terminologies together.
David Meyer, Thomas Nagler, and Robin J. Hogan
Geosci. Model Dev., 14, 5205–5215, https://doi.org/10.5194/gmd-14-5205-2021, https://doi.org/10.5194/gmd-14-5205-2021, 2021
Short summary
Short summary
A major limitation in training machine-learning emulators is often caused by the lack of data. This paper presents a cheap way to increase the size of training datasets using statistical techniques and thereby improve the performance of machine-learning emulators.
Mark Jessell, Vitaliy Ogarko, Yohan de Rose, Mark Lindsay, Ranee Joshi, Agnieszka Piechocka, Lachlan Grose, Miguel de la Varga, Laurent Ailleres, and Guillaume Pirot
Geosci. Model Dev., 14, 5063–5092, https://doi.org/10.5194/gmd-14-5063-2021, https://doi.org/10.5194/gmd-14-5063-2021, 2021
Short summary
Short summary
We have developed software that allows the user to extract sufficient information from unmodified digital maps and associated datasets that we are able to use to automatically build 3D geological models. By automating the process we are able to remove human bias from the procedure, which makes the workflow reproducible.
Martí Bosch, Maxence Locatelli, Perrine Hamel, Roy P. Remme, Jérôme Chenal, and Stéphane Joost
Geosci. Model Dev., 14, 3521–3537, https://doi.org/10.5194/gmd-14-3521-2021, https://doi.org/10.5194/gmd-14-3521-2021, 2021
Short summary
Short summary
The article presents a novel approach to simulate urban heat mitigation from land use/land cover data based on three biophysical mechanisms: tree shade, evapotranspiration and albedo. An automated procedure is proposed to calibrate the model parameters to best fit temperature observations from monitoring stations. A case study in Lausanne, Switzerland, shows that the approach outperforms regressions based on satellite data and provides valuable insights into design heat mitigation policies.
Quang-Van Doan, Hiroyuki Kusaka, Takuto Sato, and Fei Chen
Geosci. Model Dev., 14, 2097–2111, https://doi.org/10.5194/gmd-14-2097-2021, https://doi.org/10.5194/gmd-14-2097-2021, 2021
Short summary
Short summary
This study proposes a novel structural self-organizing map (S-SOM) algorithm. The superiority of S-SOM is that it can better recognize the difference (or similarity) among spatial (or temporal) data used for training and thus improve the clustering quality compared to traditional SOM algorithms.
Batunacun, Ralf Wieland, Tobia Lakes, and Claas Nendel
Geosci. Model Dev., 14, 1493–1510, https://doi.org/10.5194/gmd-14-1493-2021, https://doi.org/10.5194/gmd-14-1493-2021, 2021
Short summary
Short summary
Extreme gradient boosting (XGBoost) can provide alternative insights that conventional land-use models are unable to generate. Shapley additive explanations (SHAP) can interpret the results of the purely data-driven approach. XGBoost achieved similar and robust simulation results. SHAP values were useful for analysing the complex relationship between the different drivers of grassland degradation.
Juan A. Añel, Michael García-Rodríguez, and Javier Rodeiro
Geosci. Model Dev., 14, 923–934, https://doi.org/10.5194/gmd-14-923-2021, https://doi.org/10.5194/gmd-14-923-2021, 2021
Short summary
Short summary
This work shows that it continues to be hard, if not impossible, to obtain some of the most used climate models worldwide. We reach this conclusion through a systematic study and encourage all development teams and research centres to make public the models they use to produce scientific results.
Xiang Que, Xiaogang Ma, Chao Ma, and Qiyu Chen
Geosci. Model Dev., 13, 6149–6164, https://doi.org/10.5194/gmd-13-6149-2020, https://doi.org/10.5194/gmd-13-6149-2020, 2020
Short summary
Short summary
This paper presents a spatiotemporal weighted regression (STWR) model for exploring nonstationary spatiotemporal processes in nature and socioeconomics. A value change rate is introduced in the temporal kernel, which presents significant model fitting and accuracy in both simulated and real-world data. STWR fully incorporates observed data in the past and outperforms geographic temporal weighted regression (GTWR) and geographic weighted regression (GWR) models in several experiments.
Sheri Mickelson, Alice Bertini, Gary Strand, Kevin Paul, Eric Nienhouse, John Dennis, and Mariana Vertenstein
Geosci. Model Dev., 13, 5567–5581, https://doi.org/10.5194/gmd-13-5567-2020, https://doi.org/10.5194/gmd-13-5567-2020, 2020
Short summary
Short summary
Every generation of MIP exercises introduces new layers of complexity and an exponential growth in the amount of data requested. CMIP6 required us to develop a new tool chain and forced us to change our methodologies. The new methods discussed in this paper provided us with an 18 times faster speedup over our existing methods. This allowed us to meet our deadlines and we were able to publish more than half a million data sets on the Earth System Grid Federation (ESGF) for the CMIP6 project.
Benjamin Campforts, Charles M. Shobe, Philippe Steer, Matthias Vanmaercke, Dimitri Lague, and Jean Braun
Geosci. Model Dev., 13, 3863–3886, https://doi.org/10.5194/gmd-13-3863-2020, https://doi.org/10.5194/gmd-13-3863-2020, 2020
Short summary
Short summary
Landslides shape the Earth’s surface and are a dominant source of terrestrial sediment. Rivers, then, act as conveyor belts evacuating landslide-produced sediment. Understanding the interaction among rivers and landslides is important to predict the Earth’s surface response to past and future environmental changes and for mitigating natural hazards. We develop HyLands, a new numerical model that provides a toolbox to explore how landslides and rivers interact over several timescales.
Jorge Vicent, Jochem Verrelst, Neus Sabater, Luis Alonso, Juan Pablo Rivera-Caicedo, Luca Martino, Jordi Muñoz-Marí, and José Moreno
Geosci. Model Dev., 13, 1945–1957, https://doi.org/10.5194/gmd-13-1945-2020, https://doi.org/10.5194/gmd-13-1945-2020, 2020
Short summary
Short summary
The modeling of light propagation through the atmosphere is key to process satellite images and to understand atmospheric processes. However, existing atmospheric models can be complex to use in practical applications. Here we aim at providing a new software tool to facilitate using advanced models and to generate large databases of simulated data. As a test case, we use this tool to analyze differences between several atmospheric models, showing the capabilities of this open-source tool.
Jiali Wang, Prasanna Balaprakash, and Rao Kotamarthi
Geosci. Model Dev., 12, 4261–4274, https://doi.org/10.5194/gmd-12-4261-2019, https://doi.org/10.5194/gmd-12-4261-2019, 2019
Short summary
Short summary
Parameterizations are frequently used in models representing physical phenomena and are often the computationally expensive portions of the code. Using model output from simulations performed using a weather model, we train deep neural networks to provide an accurate alternative to a physics-based parameterization. We demonstrate that a domain-aware deep neural network can successfully simulate the entire diurnal cycle of the boundary layer physics and the results are transferable.
Gianandrea Mannarini and Lorenzo Carelli
Geosci. Model Dev., 12, 3449–3480, https://doi.org/10.5194/gmd-12-3449-2019, https://doi.org/10.5194/gmd-12-3449-2019, 2019
Short summary
Short summary
The VISIR ship-routing model is updated in order to deal with ocean currents.
The optimal tracks we computed through VISIR in the Atlantic ocean show great seasonal and regional variability, following a variable influence of surface gravity waves and currents. We assess how these tracks contribute to voyage energy-efficiency gains through a standard indicator (EEOI) of the International Maritime Organization. Also, the new model features are validated against an exact analytical benchmark.
Grzegorz Muszynski, Karthik Kashinath, Vitaliy Kurlin, Michael Wehner, and Prabhat
Geosci. Model Dev., 12, 613–628, https://doi.org/10.5194/gmd-12-613-2019, https://doi.org/10.5194/gmd-12-613-2019, 2019
Short summary
Short summary
We present the automated method for recognizing atmospheric rivers in climate data, i.e., climate model output and reanalysis product. The method is based on topological data analysis and machine learning, both of which are powerful tools that the climate science community often does not use. An advantage of the proposed method is that it is free of selection of subjective threshold conditions on a physical variable. This method is also suitable for rapidly analyzing large amounts of data.
Christina Papagiannopoulou, Diego G. Miralles, Matthias Demuzere, Niko E. C. Verhoest, and Willem Waegeman
Geosci. Model Dev., 11, 4139–4153, https://doi.org/10.5194/gmd-11-4139-2018, https://doi.org/10.5194/gmd-11-4139-2018, 2018
Short summary
Short summary
Common global land cover and climate classifications are based on vegetation–climatic characteristics derived from observational data, ignoring the interaction between the local climate and biome. Here, we model the interplay between vegetation and local climate by discovering spatial relationships among different locations. The resulting global
hydro-climatic biomescorrespond to regions of coherent climate–vegetation interactions that agree well with traditional global land cover maps.
Wendy Sharples, Ilya Zhukov, Markus Geimer, Klaus Goergen, Sebastian Luehrs, Thomas Breuer, Bibi Naz, Ketan Kulkarni, Slavko Brdar, and Stefan Kollet
Geosci. Model Dev., 11, 2875–2895, https://doi.org/10.5194/gmd-11-2875-2018, https://doi.org/10.5194/gmd-11-2875-2018, 2018
Short summary
Short summary
Next-generation geoscientific models are based on complex model implementations and workflows. Next-generation HPC systems require new programming paradigms and code optimization. In order to meet the challenge of running complex simulations on new massively parallel HPC systems, we developed a run control framework that facilitates code portability, code profiling, and provenance tracking to reduce both the duration and the cost of code migration and development, while ensuring reproducibility.
Daojun Zhang, Na Ren, and Xianhui Hou
Geosci. Model Dev., 11, 2525–2539, https://doi.org/10.5194/gmd-11-2525-2018, https://doi.org/10.5194/gmd-11-2525-2018, 2018
Short summary
Short summary
Geographically weighted regression is a widely used method to deal with spatial heterogeneity, which is common in geostatistics. However, most existing software does not support logistic regression and cannot deal with missing data, which exist extensively in mineral prospectivity mapping. This work generalized logistic regression to spatial statistics based on a spatially weighted technique. The new model also supports an anisotropic local window, which is another innovative point.
Thomas Block, Sabine Embacher, Christopher J. Merchant, and Craig Donlon
Geosci. Model Dev., 11, 2419–2427, https://doi.org/10.5194/gmd-11-2419-2018, https://doi.org/10.5194/gmd-11-2419-2018, 2018
Short summary
Short summary
For calibration and validation purposes it is necessary to detect simultaneous data acquisitions from different spaceborne platforms. We present an algorithm and a software system which implements a general approach to resolve this problem. The multisensor matchup system (MMS) can detect simultaneous acquisitions in a large dataset (> 100 TB) and extract data for matching locations for further analysis. The MMS implements a flexible software infrastructure and allows for high parallelization.
David Hassell, Jonathan Gregory, Jon Blower, Bryan N. Lawrence, and Karl E. Taylor
Geosci. Model Dev., 10, 4619–4646, https://doi.org/10.5194/gmd-10-4619-2017, https://doi.org/10.5194/gmd-10-4619-2017, 2017
Short summary
Short summary
We present a formal data model for version 1.6 of the CF (Climate and Forecast) metadata conventions that provide a description of the physical meaning of geoscientific data and their spatial and temporal properties. We describe the CF conventions and how they lead to our CF data model, and compare it other data models for storing data and metadata. We present cf-python version 2.1: a software implementation of the CF data model capable of manipulating any CF-compliant dataset.
Iulia Ilie, Peter Dittrich, Nuno Carvalhais, Martin Jung, Andreas Heinemeyer, Mirco Migliavacca, James I. L. Morison, Sebastian Sippel, Jens-Arne Subke, Matthew Wilkinson, and Miguel D. Mahecha
Geosci. Model Dev., 10, 3519–3545, https://doi.org/10.5194/gmd-10-3519-2017, https://doi.org/10.5194/gmd-10-3519-2017, 2017
Short summary
Short summary
Accurate representation of land-atmosphere carbon fluxes is essential for future climate projections, although some of the responses of CO2 fluxes to climate often remain uncertain. The increase in available data allows for new approaches in their modelling. We automatically developed models for ecosystem and soil carbon respiration using a machine learning approach. When compared with established respiration models, we found that they are better in prediction as well as offering new insights.
Xinqiao Duan, Lin Li, Haihong Zhu, and Shen Ying
Geosci. Model Dev., 10, 239–253, https://doi.org/10.5194/gmd-10-239-2017, https://doi.org/10.5194/gmd-10-239-2017, 2017
Short summary
Short summary
This article proposes an optimized transformation for topographic datasets. The resulting topographic grid exhibits good surface approximation and quasi-uniform high-quality. Both features of the processed topography build a concrete base from which improved endogenous or exogenous parameters can be derived, and makes it suitable for Earth and environmental simulations.
Venkatramani Balaji, Eric Maisonnave, Niki Zadeh, Bryan N. Lawrence, Joachim Biercamp, Uwe Fladrich, Giovanni Aloisio, Rusty Benson, Arnaud Caubel, Jeffrey Durachta, Marie-Alice Foujols, Grenville Lister, Silvia Mocavero, Seth Underwood, and Garrett Wright
Geosci. Model Dev., 10, 19–34, https://doi.org/10.5194/gmd-10-19-2017, https://doi.org/10.5194/gmd-10-19-2017, 2017
Short summary
Short summary
Climate models are among the most computationally expensive scientific applications in the world. We present a set of measures of computational performance that can be used to compare models that are independent of underlying hardware and the model formulation. They are easy to collect and reflect performance actually achieved in practice. We are preparing a systematic effort to collect these metrics for the world's climate models during CMIP6, the next Climate Model Intercomparison Project.
Massimiliano Alvioli, Ivan Marchesini, Paola Reichenbach, Mauro Rossi, Francesca Ardizzone, Federica Fiorucci, and Fausto Guzzetti
Geosci. Model Dev., 9, 3975–3991, https://doi.org/10.5194/gmd-9-3975-2016, https://doi.org/10.5194/gmd-9-3975-2016, 2016
Short summary
Short summary
Slope units are morphological mapping units bounded by drainage and divide lines that maximize within-unit homogeneity and between-unit heterogeneity. We use r.slopeunits, a software for the automatic delination of slope units. We outline an objective procedure to optimize the software input parameters for landslide susceptibility (LS) zonation. Optimization is achieved by maximizing an objective function that simultaneously evaluates terrain aspect segmentation quality and LS model performance.
Duncan Watson-Parris, Nick Schutgens, Nicholas Cook, Zak Kipling, Philip Kershaw, Edward Gryspeerdt, Bryan Lawrence, and Philip Stier
Geosci. Model Dev., 9, 3093–3110, https://doi.org/10.5194/gmd-9-3093-2016, https://doi.org/10.5194/gmd-9-3093-2016, 2016
Short summary
Short summary
In this paper we describe CIS, a new command line tool for the easy visualization, analysis and comparison of a wide variety of gridded and ungridded data sets used in Earth sciences. Users can now use a single tool to not only view plots of satellite, aircraft, station or model data, but also bring them onto the same spatio-temporal sampling. This allows robust, quantitative comparisons to be made easily. CIS is an open-source project and welcomes input from the community.
Benjamin F. Jamroz and Robert Klöfkorn
Geosci. Model Dev., 9, 2881–2892, https://doi.org/10.5194/gmd-9-2881-2016, https://doi.org/10.5194/gmd-9-2881-2016, 2016
Short summary
Short summary
The scalability of computational applications on current and next-generation supercomputers is increasingly limited by the cost of inter-process communication. We implement communication hiding data exchange in the High-Order Methods Modeling Environment (HOMME) for the time integration of the hydrostatic fluid equations using both the spectral-element and discontinuous Galerkin methods. The presented approach produces significant performance and scalability gains in large-scale simulations.
T. Fischer, D. Naumov, S. Sattler, O. Kolditz, and M. Walther
Geosci. Model Dev., 8, 3681–3694, https://doi.org/10.5194/gmd-8-3681-2015, https://doi.org/10.5194/gmd-8-3681-2015, 2015
Short summary
Short summary
We present a workflow to convert geological models into the open-source VTU format for usage in numerical simulation models. Tackling relevant scientific questions or engineering tasks often involves multidisciplinary approaches. Conversion workflows are needed between the diverse tools of the various disciplines. Our approach offers an open-source, platform-independent, robust, and comprehensible method that is potentially useful for a multitude of similar environmental studies.
S. Moulds, W. Buytaert, and A. Mijic
Geosci. Model Dev., 8, 3215–3229, https://doi.org/10.5194/gmd-8-3215-2015, https://doi.org/10.5194/gmd-8-3215-2015, 2015
Short summary
Short summary
The contribution of lulcc is to provide a free and open-source framework for land use change modelling. The software, which is provided as an R package, addresses problems associated with the current paradigm of closed-source, specialised land use change modelling software which disrupt the scientific process. It is an attempt to move the discipline towards open and transparent science and to ensure land use change models are accessible to scientists working across the geosciences.
B. Poulter, N. MacBean, A. Hartley, I. Khlystova, O. Arino, R. Betts, S. Bontemps, M. Boettcher, C. Brockmann, P. Defourny, S. Hagemann, M. Herold, G. Kirches, C. Lamarche, D. Lederer, C. Ottlé, M. Peters, and P. Peylin
Geosci. Model Dev., 8, 2315–2328, https://doi.org/10.5194/gmd-8-2315-2015, https://doi.org/10.5194/gmd-8-2315-2015, 2015
Short summary
Short summary
Land cover is an essential variable in earth system models and determines conditions driving biogeochemical, energy and water exchange between ecosystems and the atmosphere. A methodology is presented for mapping plant functional types used in global vegetation models from a updated land cover classification system and open-source conversion tool, resulting from a consultative process among map producers and modelers engaged in the European Space Agency’s Land Cover Climate Change Initiative.
J. Du, C. Chen, V. Lesur, and L. Wang
Geosci. Model Dev., 8, 1979–1990, https://doi.org/10.5194/gmd-8-1979-2015, https://doi.org/10.5194/gmd-8-1979-2015, 2015
D. C. Wong, C. E. Yang, J. S. Fu, K. Wong, and Y. Gao
Geosci. Model Dev., 8, 1033–1046, https://doi.org/10.5194/gmd-8-1033-2015, https://doi.org/10.5194/gmd-8-1033-2015, 2015
M. Mergili, I. Marchesini, M. Alvioli, M. Metz, B. Schneider-Muntau, M. Rossi, and F. Guzzetti
Geosci. Model Dev., 7, 2969–2982, https://doi.org/10.5194/gmd-7-2969-2014, https://doi.org/10.5194/gmd-7-2969-2014, 2014
Short summary
Short summary
The article deals with strategies to (i) reduce computation time and to (ii) appropriately account for uncertain input parameters when applying an open source GIS sliding surface model to estimate landslide susceptibility for a 90km² study area in central Italy. For (i), the area is split into a large number of tiles, enabling the exploitation of multi-processor computing environments. For (ii), the model is run with various parameter combinations to compute the slope failure probability.
Cited articles
Allen, M. and Ingram, W.: Constraints on Future Changes in Climate and the
Hydrologic Cycle, Nature, 419, 224–32, https://doi.org/10.1038/nature01092, 2002. a, b
Bonfanti, C., Stewart, J., Maksimovic, S., Hall, D., Govett, M., Trailovic, L., and Jankov, I.: Detecting Extratropical and Tropical Cyclone Regions of
Interest (ROI) in Satellite Data using Deep Learning, available at: https://ui.adsabs.harvard.edu/abs/2018AGUFM.H31H1992B/abstract (last access: 14 December 2020),
2018a. a
Bonfanti, C., Trailovic, L., Stewart, J., and Govett, M.: Machine Learning:
Defining Worldwide Cyclone Labels for Training,
2018 21st International Conference on Information Fusion (FUSION), IEEE, https://doi.org/10.23919/ICIF.2018.8455276, 2018b. a
Brenowitz, N. D. and Bretherton, C. S.: Prognostic validation of a neural
network unified physics parameterization, Geophys. Res. Lett., 45,
6289–6298, 2018. a
Chapman, W., Subramanian, A., Delle Monache, L., Xie, S., and Ralph, F.:
Improving Atmospheric River Forecasts With Machine Learning, Geophys.
Res. Lett., 46, 10627–10635, 2019. a
Chavas, D., Lin, N., and Emanuel, K.: A Model for the Complete Radial Structure
of the Tropical Cyclone Wind Field. Part I: Comparison with Observed
Structure, J. Atmos. Sci., 72, 3647–3662,
https://doi.org/10.1175/JAS-D-15-0014.1, 2015. a
Chen, L.-C., Zhu, Y., Papandreou, G., Schroff, F., and Adam, H.:
Encoder-Decoder with Atrous Separable Convolution for Semantic Image
Segmentation, arXiv e-prints, arXiv:1802.02611, 2018. a, b
Chollet, F.: Xception: Deep Learning with Depthwise Separable Convolutions,
arXiv e-prints, arXiv:1610.02357, 2016. a
Dettinger, M. D., Ralph, F. M., Das, T., Neiman, P. J., and Cayan, D. R.:
Atmospheric rivers, floods and the water resources of California, Water, 3,
445–478, 2011. a
Gershunov, A., Shulgina, T., Clemesha, R. E., Guirguis, K., Pierce, D. W.,
Dettinger, M. D., Lavers, D. A., Cayan, D. R., Polade, S. D., Kalansky, J.,
and Ralph, F. M.: Precipitation regime change in Western North America: the role of
Atmospheric Rivers, Sci. Rep., 9, 1–11, 2019. a
Hodges, K. I.: Feature Tracking on the Unit Sphere, Mon. Weather Rev.,
123, 3458–3465, 1995. a
Hong, S., Kim, S., Joh, M., and Song, S.-K.: Globenet: Convolutional neural
networks for typhoon eye tracking from remote sensing imagery, arXiv preprint
arXiv:1708.03417, 2017. a
Kapp-Schwoerer, L., Graubner, A., Karaismailoglu, E., von Kleist, L., and
Greiner, A.: ClimateNet dataset and trained deep learning model, available at: https://portal.nersc.gov/project/ClimateNet/, last access: 14 December 2020. a
Kingma, D. P. and Ba, J.: Adam: A Method for Stochastic Optimization,
arXiv e-prints, arXiv:1412.6980, 2014. a
Knutson, T., Camargo, S. J., Chan, J. C. L., Emanuel, K., Ho, C.-H., Kossin,
J., Mohapatra, M., Satoh, M., Sugi, M., Walsh, K., and Wu, L.: Tropical
Cyclones and Climate Change Assessment: Part II. Projected Response to
Anthropogenic Warming, B. Am. Meteorol. Soc., 101,
E303–E322, https://doi.org/10.1175/BAMS-D-18-0194.1, 2019. a, b
Kurth, T., Treichler, S., Romero, J., Mudigonda, M., Luehr, N., Phillips, E.,
Mahesh, A., Matheson, M., Deslippe, J., Fatica, M., Prabhat, and Houston, M.: Exascale deep
learning for climate analytics, in: Proceedings of the International
Conference for High Performance Computing, Networking, Storage, and Analysis,
p. 51, IEEE Press, 2018. a, b, c, d
LeCun, Y., Bengio, Y., and Hinton, G.: Deep learning, Nature, 521, 436–444, 2015. a
Levine, S., Finn, C., Darrell, T., and Abbeel, P.: End-to-end training of deep visuomotor policies, J. Mach. Learn. Res., 17,
1334–1373, 2016. a
Liu, Y., Racah, E., Correa, J., Khosrowshahi, A., Lavers, D., Kunkel, K.,
Wehner, M., and Collins, W.: Application of deep convolutional neural
networks for detecting extreme weather in climate datasets, arXiv preprint
arXiv:1605.01156, 2016. a
Lotter, W., Sorensen, G., and Cox, D.: A multi-scale CNN and curriculum
learning strategy for mammogram classification, in: Deep Learning in Medical
Image Analysis and Multimodal Learning for Clinical Decision Support,
169–177, Springer, 2017. a
Mahesh, A., O'Brien, T., Collins, W., Prabhat, Kashinath, K., and Mudigonda,
M.: Probabilistic Detection of Extreme Weather Using Deep Learning Methods, 99th Annual Meeting of the American Meteorological Society, 6–10 January 2019, available at:
https://ams.confex.com/ams/2019Annual/webprogram/Paper354370.html (last access: 14 December 2020), 2019a. a
Mahesh, A., Evans, M., Jain, G., Castillo, M., Lima, A., Lunghino, B., Gupta,
H., Gaitan, C., Hunt, J. K., Tavasoli, O., Brown, P. T., and Balaji, V.: Forecasting El Niño
with Convolutional and Recurrent Neural Networks, 33rd Conference on Neural Information Processing Systems (NeurIPS 2019), Vancouver, Canada, 8–14 December 2019b. a
McGovern, A., Elmore, K. L., Gagne, D. J., Haupt, S. E., Karstens, C. D.,
Lagerquist, R., Smith, T., and Williams, J. K.: Using artificial intelligence
to improve real-time decision-making for high-impact weather, B.
Am. Meteorol. Soc., 98, 2073–2090, 2017. a
Mitchell, D., AchutaRao, K., Allen, M., Bethke, I., Beyerle, U., Ciavarella, A., Forster, P. M., Fuglestvedt, J., Gillett, N., Haustein, K., Ingram, W., Iversen, T., Kharin, V., Klingaman, N., Massey, N., Fischer, E., Schleussner, C.-F., Scinocca, J., Seland, Ø., Shiogama, H., Shuckburgh, E., Sparrow, S., Stone, D., Uhe, P., Wallom, D., Wehner, M., and Zaaboul, R.: Half a degree additional warming, prognosis and projected impacts (HAPPI): background and experimental design, Geosci. Model Dev., 10, 571–583, https://doi.org/10.5194/gmd-10-571-2017, 2017. a, b
Neu, U., Akperov, M. G., Bellenbaum, N., Benestad, R., Blender, R., Caballero, R., Cocozza, A., Dacre, H. F., Feng, Y., Fraedrich, K., Grieger, J., Gulev, S., Hanley, J., Hewson, T., Inatsu, M., Keay, K., Kew, S. F., Kindem, I., Leckebusch, G. C., Liberato, M. L. R., Lionello, P., Mokhov, I. I., Pinto, J. G., Raible, C. C., Reale, M., Rudeva, I., Schuster, M., Simmonds, I., Sinclair, M., Sprenger, M., Tilinina, N. D., Trigo, I. F., Ulbrich, S., Ulbrich, U., Wang, X. L., and Wernli, H.: IMILAST: A Community Effort to Intercompare Extratropical Cyclone Detection and Tracking Algorithms, B. Am. Meteorol. Soc., 94, 529–547,
https://doi.org/10.1175/BAMS-D-11-00154.1, 2013. a, b, c, d
NOAA: ENSO Indices, available at: https://www.weather.gov/fwd/indices (last access: 14 December 2020), 2019. a
O'Brien, T. A., Risser, M. D., Loring, B., Elbashandy, A. A., Krishnan, H., Johnson, J., Patricola, C. M., O'Brien, J. P., Mahesh, A., Prabhat, Arriaga Ramirez, S., Rhoades, A. M., Charn, A., Inda Díaz, H., and Collins, W. D.: Detection of Atmospheric Rivers with Inline Uncertainty Quantification: TECA-BARD v1.0, Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2020-55, in review, 2020. a
O'Gorman, P. A. and Dwyer, J. G.: Using machine learning to parameterize moist convection: Potential for modeling of climate, climate change, and extreme
events, J. Adv. Model. Earth Sy., 10, 2548–2563, 2018. a
O’Brien, T. A., Collins, W. D., Rauscher, S. A., and Ringler, T. D.: Reducing
the computational cost of the ECF using a nuFFT: A fast and objective
probability density estimation method, Comput. Stat. Data An., 79, 222–234, https://doi.org/10.1016/j.csda.2014.06.002,
2014. a
Pall, P., Allen, M., and Stone, D. A.: Testing the Clausius–Clapeyron
constraint on changes in extreme precipitation under CO2 warming, Clim.
Dynam., 28, 351–363, 2007. a
Patricola, C. and Wehner, M.: Anthropogenic influences on major tropical
cyclone events, Nature, 563, 339–346, https://doi.org/10.1038/s41586-018-0673-2, 2018. a, b
Racah, E., Beckham, C., Maharaj, T., Ebrahimi Kahou, S., Prabhat, M., and Pal, C.: ExtremeWeather: A large-scale climate dataset for semi-supervised
detection, localization, and understanding of extreme weather events, 31st Conference on Neural Information Processing Systems (NIPS 2017), Long Beach, CA, USA, 3405–3416, 2017. a
Risser, M. D. and Wehner, M. F.: Attributable Human-Induced Changes in the
Likelihood and Magnitude of the Observed Extreme Precipitation during
Hurricane Harvey, Geophys. Res. Lett., 44, 12457–12464,
https://doi.org/10.1002/2017GL075888, 2017. a, b
Russell, B. C., Torralba, A., Murphy, K. P., and Freeman, W. T.: LabelMe: a
database and web-based tool for image annotation, Int. J.
Comput. vision, 77, 157–173, 2008. a
Shields, C. A., Rutz, J. J., Leung, L.-Y., Ralph, F. M., Wehner, M., Kawzenuk, B., Lora, J. M., McClenny, E., Osborne, T., Payne, A. E., Ullrich, P., Gershunov, A., Goldenson, N., Guan, B., Qian, Y., Ramos, A. M., Sarangi, C., Sellars, S., Gorodetskaya, I., Kashinath, K., Kurlin, V., Mahoney, K., Muszynski, G., Pierce, R., Subramanian, A. C., Tome, R., Waliser, D., Walton, D., Wick, G., Wilson, A., Lavers, D., Prabhat, Collow, A., Krishnan, H., Magnusdottir, G., and Nguyen, P.: Atmospheric River Tracking Method Intercomparison Project (ARTMIP): project goals and experimental design, Geosci. Model Dev., 11, 2455–2474, https://doi.org/10.5194/gmd-11-2455-2018, 2018. a, b, c, d
Toms, B. A., Kashinath, K., Prabhat, and Yang, D.: Testing the Reliability of Interpretable Neural Networks in Geoscience Using the Madden-Julian Oscillation, Geosci. Model Dev. Discuss. [preprint], https://doi.org/10.5194/gmd-2020-152, in review, 2020. a
Ullrich, P. A. and Zarzycki, C. M.: TempestExtremes: a framework for scale-insensitive pointwise feature tracking on unstructured grids, Geosci. Model Dev., 10, 1069–1090, https://doi.org/10.5194/gmd-10-1069-2017, 2017. a, b
van Oldenborgh, G. J., van der Wiel, K., Sebastian, A., Singh, R., Arrighi, J., Otto, F., Haustein, K., Li, S., Vecchi, G., and Cullen, H.: Attribution of extreme rainfall from Hurricane Harvey, August 2017, Environ. Res. Lett., 12, 124009, https://doi.org/10.1088/1748-9326/aa9ef2, 2017. a, b
Walsh, K., Lavender, S., Murakami, H., Scoccimarro, E., Caron, L.-P., and
Ghantous, M.: The Tropical Cyclone Climate Model Intercomparison Project,
Springer Netherlands, Dordrecht, 24 pp., https://doi.org/10.1007/978-90-481-9510-7_1,2010. a, b
Wang, S.-Y. S., Zhao, L., Yoon, J.-H., Klotzbach, P., and Gillies, R. R.:
Quantitative attribution of climate effects on Hurricane Harvey's extreme
rainfall in Texas, Environ. Res. Lett., 13, 054014,
https://doi.org/10.1088/1748-9326/aabb85, 018. a, b
Wehner, M. F., Reed, K. A., Li, F., Bacmeister, J., Chen, C.-T., Paciorek, C., Gleckler, P. J., Sperber, K. R., Collins, W. D., Gettelman, A., and Jablonowski, C.: The
effect of horizontal resolution on simulation quality in the Community
Atmospheric Model, CAM5. 1, J. Adv. Model. Earth Sy., 6,
980–997, 2014. a, b
Wehner, M. F., Reed, K. A., Loring, B., Stone, D., and Krishnan, H.: Changes in tropical cyclones under stabilized 1.5 and 2.0 ∘C global warming scenarios as simulated by the Community Atmospheric Model under the HAPPI protocols, Earth Syst. Dynam., 9, 187–195, https://doi.org/10.5194/esd-9-187-2018, 2018. a, b, c, d
Weinshall, D., Cohen, G., and Amir, D.: Curriculum learning by transfer
learning: Theory and experiments with deep networks, arXiv preprint
arXiv:1802.03796, 2018.
a
Zamir, A. R., Sax, A., Shen, W., Guibas, L. J., Malik, J., and Savarese, S.:
Taskonomy: Disentangling task transfer learning, in: Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, IEEE, 3712–3722, 2018. a
Short summary
Detecting extreme weather events is a crucial step in understanding how they change due to climate change. Deep learning (DL) is remarkable at pattern recognition; however, it works best only when labeled datasets are available. We create
ClimateNet– an expert-labeled curated dataset – to train a DL model for detecting weather events and predicting changes in extreme precipitation. This work paves the way for DL-based automated, high-fidelity, and highly precise analytics of climate data.
Detecting extreme weather events is a crucial step in understanding how they change due to...