Articles | Volume 14, issue 1
https://doi.org/10.5194/gmd-14-107-2021
https://doi.org/10.5194/gmd-14-107-2021
Model description paper
 | 
08 Jan 2021
Model description paper |  | 08 Jan 2021

ClimateNet: an expert-labeled open dataset and deep learning architecture for enabling high-precision analyses of extreme weather

Prabhat, Karthik Kashinath, Mayur Mudigonda, Sol Kim, Lukas Kapp-Schwoerer, Andre Graubner, Ege Karaismailoglu, Leo von Kleist, Thorsten Kurth, Annette Greiner, Ankur Mahesh, Kevin Yang, Colby Lewis, Jiayi Chen, Andrew Lou, Sathyavat Chandran, Ben Toms, Will Chapman, Katherine Dagon, Christine A. Shields, Travis O'Brien, Michael Wehner, and William Collins

Related authors

Testing the reliability of interpretable neural networks in geoscience using the Madden–Julian oscillation
Benjamin A. Toms, Karthik Kashinath, Prabhat, and Da Yang
Geosci. Model Dev., 14, 4495–4508, https://doi.org/10.5194/gmd-14-4495-2021,https://doi.org/10.5194/gmd-14-4495-2021, 2021
Short summary
Detection of atmospheric rivers with inline uncertainty quantification: TECA-BARD v1.0.1
Travis A. O'Brien, Mark D. Risser, Burlen Loring, Abdelrahman A. Elbashandy, Harinarayan Krishnan, Jeffrey Johnson, Christina M. Patricola, John P. O'Brien, Ankur Mahesh, Prabhat, Sarahí Arriaga Ramirez, Alan M. Rhoades, Alexander Charn, Héctor Inda Díaz, and William D. Collins
Geosci. Model Dev., 13, 6131–6148, https://doi.org/10.5194/gmd-13-6131-2020,https://doi.org/10.5194/gmd-13-6131-2020, 2020
Short summary

Related subject area

Earth and space science informatics
The effect of lossy compression of numerical weather prediction data on data analysis: a case study using enstools-compression 2023.11
Oriol Tintó Prims, Robert Redl, Marc Rautenhaus, Tobias Selz, Takumi Matsunobu, Kameswar Rao Modali, and George Craig
Geosci. Model Dev., 17, 8909–8925, https://doi.org/10.5194/gmd-17-8909-2024,https://doi.org/10.5194/gmd-17-8909-2024, 2024
Short summary
GNNWR: an open-source package of spatiotemporal intelligent regression methods for modeling spatial and temporal nonstationarity
Ziyu Yin, Jiale Ding, Yi Liu, Ruoxu Wang, Yige Wang, Yijun Chen, Jin Qi, Sensen Wu, and Zhenhong Du
Geosci. Model Dev., 17, 8455–8468, https://doi.org/10.5194/gmd-17-8455-2024,https://doi.org/10.5194/gmd-17-8455-2024, 2024
Short summary
Random forests with spatial proxies for environmental modelling: opportunities and pitfalls
Carles Milà, Marvin Ludwig, Edzer Pebesma, Cathryn Tonne, and Hanna Meyer
Geosci. Model Dev., 17, 6007–6033, https://doi.org/10.5194/gmd-17-6007-2024,https://doi.org/10.5194/gmd-17-6007-2024, 2024
Short summary
An improved global pressure and zenith wet delay model with optimized vertical correction considering the spatiotemporal variability in multiple height-scale factors
Chunhua Jiang, Xiang Gao, Huizhong Zhu, Shuaimin Wang, Sixuan Liu, Shaoni Chen, and Guangsheng Liu
Geosci. Model Dev., 17, 5939–5959, https://doi.org/10.5194/gmd-17-5939-2024,https://doi.org/10.5194/gmd-17-5939-2024, 2024
Short summary
kNNDM CV: k-fold nearest-neighbour distance matching cross-validation for map accuracy estimation
Jan Linnenbrink, Carles Milà, Marvin Ludwig, and Hanna Meyer
Geosci. Model Dev., 17, 5897–5912, https://doi.org/10.5194/gmd-17-5897-2024,https://doi.org/10.5194/gmd-17-5897-2024, 2024
Short summary

Cited articles

Allen, M. and Ingram, W.: Constraints on Future Changes in Climate and the Hydrologic Cycle, Nature, 419, 224–32, https://doi.org/10.1038/nature01092, 2002. a, b
Bonfanti, C., Stewart, J., Maksimovic, S., Hall, D., Govett, M., Trailovic, L., and Jankov, I.: Detecting Extratropical and Tropical Cyclone Regions of Interest (ROI) in Satellite Data using Deep Learning, available at: https://ui.adsabs.harvard.edu/abs/2018AGUFM.H31H1992B/abstract (last access: 14 December 2020), 2018a. a
Bonfanti, C., Trailovic, L., Stewart, J., and Govett, M.: Machine Learning: Defining Worldwide Cyclone Labels for Training, 2018 21st International Conference on Information Fusion (FUSION), IEEE, https://doi.org/10.23919/ICIF.2018.8455276, 2018b. a
Brenowitz, N. D. and Bretherton, C. S.: Prognostic validation of a neural network unified physics parameterization, Geophys. Res. Lett., 45, 6289–6298, 2018. a
Chapman, W., Subramanian, A., Delle Monache, L., Xie, S., and Ralph, F.: Improving Atmospheric River Forecasts With Machine Learning, Geophys. Res. Lett., 46, 10627–10635, 2019. a
Download
Short summary
Detecting extreme weather events is a crucial step in understanding how they change due to climate change. Deep learning (DL) is remarkable at pattern recognition; however, it works best only when labeled datasets are available. We create ClimateNet – an expert-labeled curated dataset – to train a DL model for detecting weather events and predicting changes in extreme precipitation. This work paves the way for DL-based automated, high-fidelity, and highly precise analytics of climate data.