Articles | Volume 13, issue 10
https://doi.org/10.5194/gmd-13-4845-2020
https://doi.org/10.5194/gmd-13-4845-2020
Methods for assessment of models
 | 
09 Oct 2020
Methods for assessment of models |  | 09 Oct 2020

Using Arctic ice mass balance buoys for evaluation of modelled ice energy fluxes

Alex West, Mat Collins, and Ed Blockley

Related authors

The sea ice component of GC5: coupling SI3 to HadGEM3 using conductive fluxes
Ed Blockley, Emma Fiedler, Jeff Ridley, Luke Roberts, Alex West, Dan Copsey, Daniel Feltham, Tim Graham, David Livings, Clement Rousset, David Schroeder, and Martin Vancoppenolle
Geosci. Model Dev., 17, 6799–6817, https://doi.org/10.5194/gmd-17-6799-2024,https://doi.org/10.5194/gmd-17-6799-2024, 2024
Short summary
CMIP6 models overestimate sea ice melt, growth & conduction relative to ice mass balance buoy estimates
Alex Edward West and Edward William Blockley
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2024-121,https://doi.org/10.5194/gmd-2024-121, 2024
Revised manuscript accepted for GMD
Short summary
Understanding model spread in sea ice volume by attribution of model differences in seasonal ice growth and melt
Alex West, Edward Blockley, and Matthew Collins
The Cryosphere, 16, 4013–4032, https://doi.org/10.5194/tc-16-4013-2022,https://doi.org/10.5194/tc-16-4013-2022, 2022
Short summary
Induced surface fluxes: a new framework for attributing Arctic sea ice volume balance biases to specific model errors
Alex West, Mat Collins, Ed Blockley, Jeff Ridley, and Alejandro Bodas-Salcedo
The Cryosphere, 13, 2001–2022, https://doi.org/10.5194/tc-13-2001-2019,https://doi.org/10.5194/tc-13-2001-2019, 2019
Short summary
The sea ice model component of HadGEM3-GC3.1
Jeff K. Ridley, Edward W. Blockley, Ann B. Keen, Jamie G. L. Rae, Alex E. West, and David Schroeder
Geosci. Model Dev., 11, 713–723, https://doi.org/10.5194/gmd-11-713-2018,https://doi.org/10.5194/gmd-11-713-2018, 2018
Short summary

Related subject area

Cryosphere
Towards deep-learning solutions for classification of automated snow height measurements (CleanSnow v1.0.2)
Jan Svoboda, Marc Ruesch, David Liechti, Corinne Jones, Michele Volpi, Michael Zehnder, and Jürg Schweizer
Geosci. Model Dev., 18, 1829–1849, https://doi.org/10.5194/gmd-18-1829-2025,https://doi.org/10.5194/gmd-18-1829-2025, 2025
Short summary
Quantitative sub-ice and marine tracing of Antarctic sediment provenance (TASP v1.0)
James W. Marschalek, Edward Gasson, Tina van de Flierdt, Claus-Dieter Hillenbrand, Martin J. Siegert, and Liam Holder
Geosci. Model Dev., 18, 1673–1708, https://doi.org/10.5194/gmd-18-1673-2025,https://doi.org/10.5194/gmd-18-1673-2025, 2025
Short summary
Tuning parameters of a sea ice model using machine learning
Anton Korosov, Yue Ying, and Einar Ólason
Geosci. Model Dev., 18, 885–904, https://doi.org/10.5194/gmd-18-885-2025,https://doi.org/10.5194/gmd-18-885-2025, 2025
Short summary
WRF-Chem simulations of snow nitrate and other physicochemical properties in northern China
Xia Wang, Tao Che, Xueyin Ruan, Shanna Yue, Jing Wang, Chun Zhao, and Lei Geng
Geosci. Model Dev., 18, 651–670, https://doi.org/10.5194/gmd-18-651-2025,https://doi.org/10.5194/gmd-18-651-2025, 2025
Short summary
Clustering simulated snow profiles to form avalanche forecast regions
Simon Horton, Florian Herla, and Pascal Haegeli
Geosci. Model Dev., 18, 193–209, https://doi.org/10.5194/gmd-18-193-2025,https://doi.org/10.5194/gmd-18-193-2025, 2025
Short summary

Cited articles

Alexandrov, V., Sandven, S., Wahlin, J., and Johannessen, O. M.: The relation between sea ice thickness and freeboard in the Arctic, The Cryosphere, 4, 373–380, https://doi.org/10.5194/tc-4-373-2010, 2010. 
Bitz, C. M.: Some Aspects of Uncertainty in Predicting Sea Ice Thinning, in: Arctic Sea Ice Decline: Observations, Projections, Mechanisms, and Implications, edited by: DeWeaver, E. T., Bitz, C. M., and Tremblay, L.-B., American Geophysical Union, Washington, D.C., https://doi.org/10.1029/180GM06, 2008. 
Bitz, C. M. and Lipscomb, W. H.: An energy-conserving thermodynamic model of sea ice, J. Geophys. Res., 104, 15669–15677, https://doi.org/10.1029/1999JC900100, 1999. 
Bliss, A. C., Steele, M., Peng, G., Meier, W. N., and Dickinson, S.: Regional variability of Arctic sea ice seasonal change climate indicators from a passive microwave climate data record, Environ. Res. Lett., 14, 045003, https://doi.org/10.1088/1748-9326/aafb84, 2019. 
Download
Short summary
This study calculates sea ice energy fluxes from data produced by ice mass balance buoys...
Share