Articles | Volume 13, issue 10
https://doi.org/10.5194/gmd-13-4845-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/gmd-13-4845-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Using Arctic ice mass balance buoys for evaluation of modelled ice energy fluxes
Met Office Hadley Centre, FitzRoy Road, Exeter EX1 3PB, UK
Mat Collins
College of Engineering, Mathematics and Physical Sciences, University of Exeter, Stocker Rd, Exeter EX4 4PY, UK
Ed Blockley
Met Office Hadley Centre, FitzRoy Road, Exeter EX1 3PB, UK
Related authors
Alex E. West and Edward W. Blockley
Geosci. Model Dev., 18, 3041–3064, https://doi.org/10.5194/gmd-18-3041-2025, https://doi.org/10.5194/gmd-18-3041-2025, 2025
Short summary
Short summary
This study uses ice mass balance buoys – temperature- and height-measuring devices frozen into sea ice – to find how well climate models simulate (1) melt and growth of Arctic sea ice and (2) conduction of heat through Arctic sea ice. This may help understand why models produce varying amounts of sea ice in the present day. We find that models tend to show more melt, growth or conduction for a given ice thickness than the buoys, although the difference is smaller for models with more physically realistic thermodynamics.
Ed Blockley, Emma Fiedler, Jeff Ridley, Luke Roberts, Alex West, Dan Copsey, Daniel Feltham, Tim Graham, David Livings, Clement Rousset, David Schroeder, and Martin Vancoppenolle
Geosci. Model Dev., 17, 6799–6817, https://doi.org/10.5194/gmd-17-6799-2024, https://doi.org/10.5194/gmd-17-6799-2024, 2024
Short summary
Short summary
This paper documents the sea ice model component of the latest Met Office coupled model configuration, which will be used as the physical basis for UK contributions to CMIP7. Documentation of science options used in the configuration are given along with a brief model evaluation. This is the first UK configuration to use NEMO’s new SI3 sea ice model. We provide details on how SI3 was adapted to work with Met Office coupling methodology and documentation of coupling processes in the model.
Alex West, Edward Blockley, and Matthew Collins
The Cryosphere, 16, 4013–4032, https://doi.org/10.5194/tc-16-4013-2022, https://doi.org/10.5194/tc-16-4013-2022, 2022
Short summary
Short summary
In this study we explore a method of examining model differences in ice volume by looking at the seasonal ice growth and melt. We use simple physical relationships to judge how model differences in key variables affect ice growth and melt and apply these to three case study models with ice volume ranging from very thin to very thick. Results suggest that differences in snow and melt pond cover in early summer are most important in causing the sea ice differences for these models.
Forrest M. Hoffman, Birgit Hassler, Ranjini Swaminathan, Jared Lewis, Bouwe Andela, Nathaniel Collier, Dóra Hegedűs, Jiwoo Lee, Charlotte Pascoe, Mika Pflüger, Martina Stockhause, Paul Ullrich, Min Xu, Lisa Bock, Felicity Chun, Bettina K. Gier, Douglas I. Kelley, Axel Lauer, Julien Lenhardt, Manuel Schlund, Mohanan G. Sreeush, Katja Weigel, Ed Blockley, Rebecca Beadling, Romain Beucher, Demiso D. Dugassa, Valerio Lembo, Jianhua Lu, Swen Brands, Jerry Tjiputra, Elizaveta Malinina, Brian Mederios, Enrico Scoccimarro, Jeremy Walton, Philip Kershaw, André L. Marquez, Malcolm J. Roberts, Eleanor O’Rourke, Elisabeth Dingley, Briony Turner, Helene Hewitt, and John P. Dunne
EGUsphere, https://doi.org/10.5194/egusphere-2025-2685, https://doi.org/10.5194/egusphere-2025-2685, 2025
This preprint is open for discussion and under review for Geoscientific Model Development (GMD).
Short summary
Short summary
As Earth system models become more complex, rapid and comprehensive evaluation through comparison with observational data is necessary. The upcoming Assessment Fast Track for the Seventh Phase of the Coupled Model Intercomparison Project (CMIP7) will require fast analysis. This paper describes a new Rapid Evaluation Framework (REF) that was developed for the Assessment Fast Track that will be run at the Earth System Grid Federation (ESGF) to inform the community about the performance of models.
Davi Mignac, Jennifer Waters, Daniel J. Lea, Matthew J. Martin, James While, Anthony T. Weaver, Arthur Vidard, Catherine Guiavarc'h, Dave Storkey, David Ford, Edward W. Blockley, Jonathan Baker, Keith Haines, Martin R. Price, Michael J. Bell, and Richard Renshaw
Geosci. Model Dev., 18, 3405–3425, https://doi.org/10.5194/gmd-18-3405-2025, https://doi.org/10.5194/gmd-18-3405-2025, 2025
Short summary
Short summary
We describe major improvements of the Met Office's global ocean–sea ice forecasting system. The models and the way observations are used to improve the forecasts were changed, which led to a significant error reduction of 1 d forecasts. The new system performance in past conditions, where subsurface observations are scarce, was improved with more consistent ocean heat content estimates. The new system will be of better use for climate studies and will provide improved forecasts for end users.
Laurent Bertino, Patrick Heimbach, Ed Blockley, and Einar Ólason
State Planet, 5-opsr, 14, https://doi.org/10.5194/sp-5-opsr-14-2025, https://doi.org/10.5194/sp-5-opsr-14-2025, 2025
Short summary
Short summary
Forecasts of sea ice are in high demand in the polar regions, and they are also quickly improving and becoming more easily accessible to non-experts. We provide here a brief status of the short-term forecasting services – typically 10 d ahead – and an outlook of their upcoming developments.
Alex E. West and Edward W. Blockley
Geosci. Model Dev., 18, 3041–3064, https://doi.org/10.5194/gmd-18-3041-2025, https://doi.org/10.5194/gmd-18-3041-2025, 2025
Short summary
Short summary
This study uses ice mass balance buoys – temperature- and height-measuring devices frozen into sea ice – to find how well climate models simulate (1) melt and growth of Arctic sea ice and (2) conduction of heat through Arctic sea ice. This may help understand why models produce varying amounts of sea ice in the present day. We find that models tend to show more melt, growth or conduction for a given ice thickness than the buoys, although the difference is smaller for models with more physically realistic thermodynamics.
Catherine Guiavarc'h, David Storkey, Adam T. Blaker, Ed Blockley, Alex Megann, Helene Hewitt, Michael J. Bell, Daley Calvert, Dan Copsey, Bablu Sinha, Sophia Moreton, Pierre Mathiot, and Bo An
Geosci. Model Dev., 18, 377–403, https://doi.org/10.5194/gmd-18-377-2025, https://doi.org/10.5194/gmd-18-377-2025, 2025
Short summary
Short summary
The Global Ocean and Sea Ice configuration version 9 (GOSI9) is the new UK hierarchy of model configurations based on the Nucleus for European Modelling of the Ocean (NEMO) and available at three resolutions. It will be used for various applications, e.g. weather forecasting and climate prediction. It improves upon the previous version by reducing global temperature and salinity biases and enhancing the representation of Arctic sea ice and the Antarctic Circumpolar Current.
Colin G. Jones, Fanny Adloff, Ben B. B. Booth, Peter M. Cox, Veronika Eyring, Pierre Friedlingstein, Katja Frieler, Helene T. Hewitt, Hazel A. Jeffery, Sylvie Joussaume, Torben Koenigk, Bryan N. Lawrence, Eleanor O'Rourke, Malcolm J. Roberts, Benjamin M. Sanderson, Roland Séférian, Samuel Somot, Pier Luigi Vidale, Detlef van Vuuren, Mario Acosta, Mats Bentsen, Raffaele Bernardello, Richard Betts, Ed Blockley, Julien Boé, Tom Bracegirdle, Pascale Braconnot, Victor Brovkin, Carlo Buontempo, Francisco Doblas-Reyes, Markus Donat, Italo Epicoco, Pete Falloon, Sandro Fiore, Thomas Frölicher, Neven S. Fučkar, Matthew J. Gidden, Helge F. Goessling, Rune Grand Graversen, Silvio Gualdi, José M. Gutiérrez, Tatiana Ilyina, Daniela Jacob, Chris D. Jones, Martin Juckes, Elizabeth Kendon, Erik Kjellström, Reto Knutti, Jason Lowe, Matthew Mizielinski, Paola Nassisi, Michael Obersteiner, Pierre Regnier, Romain Roehrig, David Salas y Mélia, Carl-Friedrich Schleussner, Michael Schulz, Enrico Scoccimarro, Laurent Terray, Hannes Thiemann, Richard A. Wood, Shuting Yang, and Sönke Zaehle
Earth Syst. Dynam., 15, 1319–1351, https://doi.org/10.5194/esd-15-1319-2024, https://doi.org/10.5194/esd-15-1319-2024, 2024
Short summary
Short summary
We propose a number of priority areas for the international climate research community to address over the coming decade. Advances in these areas will both increase our understanding of past and future Earth system change, including the societal and environmental impacts of this change, and deliver significantly improved scientific support to international climate policy, such as future IPCC assessments and the UNFCCC Global Stocktake.
Ed Blockley, Emma Fiedler, Jeff Ridley, Luke Roberts, Alex West, Dan Copsey, Daniel Feltham, Tim Graham, David Livings, Clement Rousset, David Schroeder, and Martin Vancoppenolle
Geosci. Model Dev., 17, 6799–6817, https://doi.org/10.5194/gmd-17-6799-2024, https://doi.org/10.5194/gmd-17-6799-2024, 2024
Short summary
Short summary
This paper documents the sea ice model component of the latest Met Office coupled model configuration, which will be used as the physical basis for UK contributions to CMIP7. Documentation of science options used in the configuration are given along with a brief model evaluation. This is the first UK configuration to use NEMO’s new SI3 sea ice model. We provide details on how SI3 was adapted to work with Met Office coupling methodology and documentation of coupling processes in the model.
Jane P. Mulcahy, Colin G. Jones, Steven T. Rumbold, Till Kuhlbrodt, Andrea J. Dittus, Edward W. Blockley, Andrew Yool, Jeremy Walton, Catherine Hardacre, Timothy Andrews, Alejandro Bodas-Salcedo, Marc Stringer, Lee de Mora, Phil Harris, Richard Hill, Doug Kelley, Eddy Robertson, and Yongming Tang
Geosci. Model Dev., 16, 1569–1600, https://doi.org/10.5194/gmd-16-1569-2023, https://doi.org/10.5194/gmd-16-1569-2023, 2023
Short summary
Short summary
Recent global climate models simulate historical global mean surface temperatures which are too cold, possibly to due to excessive aerosol cooling. This raises questions about the models' ability to simulate important climate processes and reduces confidence in future climate predictions. We present a new version of the UK Earth System Model, which has an improved aerosols simulation and a historical temperature record. Interestingly, the long-term response to CO2 remains largely unchanged.
Alex West, Edward Blockley, and Matthew Collins
The Cryosphere, 16, 4013–4032, https://doi.org/10.5194/tc-16-4013-2022, https://doi.org/10.5194/tc-16-4013-2022, 2022
Short summary
Short summary
In this study we explore a method of examining model differences in ice volume by looking at the seasonal ice growth and melt. We use simple physical relationships to judge how model differences in key variables affect ice growth and melt and apply these to three case study models with ice volume ranging from very thin to very thick. Results suggest that differences in snow and melt pond cover in early summer are most important in causing the sea ice differences for these models.
Emma K. Fiedler, Matthew J. Martin, Ed Blockley, Davi Mignac, Nicolas Fournier, Andy Ridout, Andrew Shepherd, and Rachel Tilling
The Cryosphere, 16, 61–85, https://doi.org/10.5194/tc-16-61-2022, https://doi.org/10.5194/tc-16-61-2022, 2022
Short summary
Short summary
Sea ice thickness (SIT) observations derived from CryoSat-2 satellite measurements have been successfully used to initialise an ocean and sea ice forecasting model (FOAM). Other centres have previously used gridded and averaged SIT observations for this purpose, but we demonstrate here for the first time that SIT measurements along the satellite orbit track can be used. Validation of the resulting modelled SIT demonstrates improvements in the model performance compared to a control.
Emily A. Hill, Sebastian H. R. Rosier, G. Hilmar Gudmundsson, and Matthew Collins
The Cryosphere, 15, 4675–4702, https://doi.org/10.5194/tc-15-4675-2021, https://doi.org/10.5194/tc-15-4675-2021, 2021
Short summary
Short summary
Using an ice flow model and uncertainty quantification methods, we provide probabilistic projections of future sea level rise from the Filchner–Ronne region of Antarctica. We find that it is most likely that this region will contribute negatively to sea level rise over the next 300 years, largely as a result of increased surface mass balance. We identify parameters controlling ice shelf melt and snowfall contribute most to uncertainties in projections.
Andrew Yool, Julien Palmiéri, Colin G. Jones, Lee de Mora, Till Kuhlbrodt, Ekatarina E. Popova, A. J. George Nurser, Joel Hirschi, Adam T. Blaker, Andrew C. Coward, Edward W. Blockley, and Alistair A. Sellar
Geosci. Model Dev., 14, 3437–3472, https://doi.org/10.5194/gmd-14-3437-2021, https://doi.org/10.5194/gmd-14-3437-2021, 2021
Short summary
Short summary
The ocean plays a key role in modulating the Earth’s climate. Understanding this role is critical when using models to project future climate change. Consequently, it is necessary to evaluate their realism against the ocean's observed state. Here we validate UKESM1, a new Earth system model, focusing on the realism of its ocean physics and circulation, as well as its biological cycles and productivity. While we identify biases, generally the model performs well over a wide range of properties.
Qun Liu, Matthew Collins, Penelope Maher, Stephen I. Thomson, and Geoffrey K. Vallis
Geosci. Model Dev., 14, 2801–2826, https://doi.org/10.5194/gmd-14-2801-2021, https://doi.org/10.5194/gmd-14-2801-2021, 2021
Short summary
Short summary
Clouds play an vital role in Earth's energy budget, and even a small change in cloud fields can have a large impact on the climate system. They also bring lots of uncertainties to climate models. Here we implement a simple diagnostic cloud scheme in order to reproduce the general radiative properties of clouds. The scheme can capture some key features of the cloud fraction and cloud radiative properties and thus provide a useful tool to explore unsolved problems relating to clouds.
Ann Keen, Ed Blockley, David A. Bailey, Jens Boldingh Debernard, Mitchell Bushuk, Steve Delhaye, David Docquier, Daniel Feltham, François Massonnet, Siobhan O'Farrell, Leandro Ponsoni, José M. Rodriguez, David Schroeder, Neil Swart, Takahiro Toyoda, Hiroyuki Tsujino, Martin Vancoppenolle, and Klaus Wyser
The Cryosphere, 15, 951–982, https://doi.org/10.5194/tc-15-951-2021, https://doi.org/10.5194/tc-15-951-2021, 2021
Short summary
Short summary
We compare the mass budget of the Arctic sea ice in a number of the latest climate models. New output has been defined that allows us to compare the processes of sea ice growth and loss in a more detailed way than has previously been possible. We find that that the models are strikingly similar in terms of the major processes causing the annual growth and loss of Arctic sea ice and that the budget terms respond in a broadly consistent way as the climate warms during the 21st century.
Cited articles
Alexandrov, V., Sandven, S., Wahlin, J., and Johannessen, O. M.: The relation between sea ice thickness and freeboard in the Arctic, The Cryosphere, 4, 373–380, https://doi.org/10.5194/tc-4-373-2010, 2010.
Bitz, C. M.: Some Aspects of Uncertainty in Predicting Sea Ice Thinning, in:
Arctic Sea Ice Decline: Observations, Projections, Mechanisms, and
Implications, edited by: DeWeaver, E. T., Bitz, C. M., and Tremblay, L.-B., American Geophysical Union, Washington, D.C., https://doi.org/10.1029/180GM06, 2008.
Bitz, C. M. and Lipscomb, W. H.: An energy-conserving thermodynamic model of
sea ice, J. Geophys. Res., 104, 15669–15677, https://doi.org/10.1029/1999JC900100, 1999.
Bliss, A. C., Steele, M., Peng, G., Meier, W. N., and Dickinson, S.: Regional variability of Arctic sea ice seasonal change climate indicators from a passive microwave climate data record, Environ. Res. Lett., 14, 045003, https://doi.org/10.1088/1748-9326/aafb84, 2019.
Collins, W. J., Bellouin, N., Doutriaux-Boucher, M., Gedney, N., Halloran, P., Hinton, T., Hughes, J., Jones, C. D., Joshi, M., Liddicoat, S., Martin, G., O'Connor, F., Rae, J., Senior, C., Sitch, S., Totterdell, I., Wiltshire, A., and Woodward, S.: Development and evaluation of an Earth-System model – HadGEM2, Geosci. Model Dev., 4, 1051–1075, https://doi.org/10.5194/gmd-4-1051-2011, 2011.
Cox, G. F. N. and Weeks, W. F.: Equations for Determining the Gas and Brine
Volume in Sea Ice Samples, J. Glaciol., 29, 306–316, https://doi.org/10.3189/S0022143000008364, 1983.
Ebert, E. E., Schramm, J. L., and Curry, J. C.: Disposition of solar
radiation in sea ice and the upper ocean, J. Geophys. Res., 100, 15965–15975, https://doi.org/10.1029/95JC01672, 1995.
Hunke, E. C. and Dukowicz, J. K.: An Elastic–Viscous–Plastic Model for Sea
Ice Dynamics, J. Phys. Oceanogr., 27, 1849–1867, https://doi.org/10.1175/1520-0485(1997)027<1849:AEVPMF>2.0.CO;2, 1997.
Keen, A. and Blockley, E.: Investigating future changes in the volume budget of the Arctic sea ice in a coupled climate model, The Cryosphere, 12, 2855–2868, https://doi.org/10.5194/tc-12-2855-2018, 2018.
Kwok, R.: Arctic sea ice thickness, volume, and multiyear ice coverage:
losses and coupled variability (1958–2018), Environ. Res. Lett., 13, 105005, https://doi.org/10.1088/1748-9326/aae3ec, 2018.
Lei, R., Li, N., Heil, P., Cheng, B., Zhang, Z., and Sun, B.: Multiyear sea
ice thermal regimes and oceanic heat flux derived from an ice mass balance
buoy in the Arctic Ocean, J. Geophys. Res.-Oceans, 119, 537–547, https://doi.org/10.1002/2012JC008731, 2014.
Lei, R., Cheng, B., Heil, P., Vihma, T., Wang, J., Ji, Q., and Zhang, Z.:
Seasonal and Interannual Variations of Sea Ice Mass Balance From the Central
Arctic to the Greenland Sea, J. Geophys. Res.-Oceans, 123, 2422–2439, https://doi.org/10.1002/2017JC013548, 2018.
Lindsay, R. and Schweiger, A.: Arctic sea ice thickness loss determined using subsurface, aircraft, and satellite observations, The Cryosphere, 9, 269–283, https://doi.org/10.5194/tc-9-269-2015, 2015.
Loeb, N. G., Wielicki, B. A., Doelling, D. R., Louis Smith, G., Keyes, D.
F., Kato, S., Manalo-Smith, N., and Wong, T.: Toward Optimal Closure of the
Earth's Top-of-Atmosphere Radiation Budget, J. Climate, 22, 748–766, https://doi.org/10.1175/2008JCLI2637.1, 2009.
Markus, T., Stroeve, J. C., and Miller, J.: Recent changes in Arctic sea ice
melt onset, freezeup, and melt season length, J. Geophys. Res., 114, C12024, https://doi.org/10.1029/2009JC005436, 2009.
Maykut, G. A. and Untersteiner, N.: Some results from a time-dependent
thermodynamic model of sea ice, J. Geophys. Res., 76, 1550–1575, https://doi.org/10.1029/JC076i006p01550, 1971.
McLaren, A. J., Banks, H. T., Durman, C. F., Gregory, J. M., Johns, T. C.,
Keen, A. B., Ridley, J. K., Roberts, M. J., Lipscomb, W. H., Connolley, W.
M., and Laxon, S. W.: Evaluation of the sea ice simulation in a new coupled
atmosphere-ocean climate model (HadGEM1), J. Geophys. Res., 111, C12014, https://doi.org/10.1029/2005JC003033, 2006.
National Snow and Ice Data Center (comp.): Submarine Upward Looking Sonar
Ice Draft Profile Data and Statistics, Version 1, NSIDC: National Snow and Ice Data Center, Boulder, Colorado, USA, https://doi.org/10.7265/N54Q7RWK, 2019.
Notz, D.: How well must climate models agree with observations?, Philos. T.
Roy. Soc. A, 373, 20140164, https://doi.org/10.1098/rsta.2014.0164,
Notz, D., McPhee, M. G., Worster, M. G., Maykut, G. A., Schlunzen, K. H., and
Eicken, H.: Impact of underwater-ice evolution on Arctic summer sea ice, J.
Geophys. Res., 108, 3223, https://doi.org/10.1029/2001JC001173, 2003.
Notz, D., Jahn, A., Holland, M., Hunke, E., Massonnet, F., Stroeve, J., Tremblay, B., and Vancoppenolle, M.: The CMIP6 Sea-Ice Model Intercomparison Project (SIMIP): understanding sea ice through climate-model simulations, Geosci. Model Dev., 9, 3427–3446, https://doi.org/10.5194/gmd-9-3427-2016, 2016.
Olonscheck, D. and Notz, D.: Consistently Estimate Internal Climate
Variability from Climate Model Simulations, J. Climate, 30, 9555–9573,
https://doi.org/10.1175/JCLI-D-16-0428.1, 2018.
Ono, N.: Specific heat and heat of fusion of sea ice, in: Physics of Snow and Ice, edited by: Oura, H., Institute of Low Temperature Science, Hokkaido, Japan, 1, 599–610, 1967.
Perovich, D. and Elder, B.: Estimates of ocean heat flux at SHEBA, Geophys.
Res. Lett., 29, 58-1–58-4, https://doi.org/10.1029/2001GL014171, 2002.
Perovich, D. and Richter-Menge, J. A.: From points to Poles: extrapolating
point measurements of sea-ice mass balance, Ann. Glaciol., 44, 188–192, https://doi.org/10.3189/172756406781811204, 2006.
Perovich, D., Richter-Menge, J. A., Jones, K. F., and Light, B.: Sunlight,
water, and ice: Extreme Arctic sea ice melt during the summer of 2007,
Geophys. Res. Lett., 35, L11501, https://doi.org/10.1029/2008GL034007, 2008.
Perovich, D., Richter-Menge, J., and Polashenski, C.: Observing and
understanding climate change: Monitoring the mass balance, motion, and
thickness of Arctic sea ice, The CRREL-Dartmouth Mass Balance Buoy Program (Cold Regions Research and Engineering Laboratory, Thayer School of Engineering at Dartmouth), available at: http://imb-crrel-dartmouth.org/results/, last access: 20 April 2020.
Pirazzini, R.: Factors controlling the surface energy budget over snow and
ice, Finnish Meteorological Institute, Contributions No. 75, p. 22, 2008.
Planck, C. J., Whitlock, J., Polashenski, C., and Perovich, D.: The evolution of the seasonal Ice Mass Balance Buoy, Cold Reg. Sci. Technol., 165, 102792, https://doi.org/10.1016/j.coldregions.2019.102792, 2019.
Pringle, D. J., Eicken, H., Trodahl, H. J., and Backstrom, L. G. E.: Thermal
conductivity of landfast Antarctic and Arctic sea ice, J. Geophys. Res., 112, C04017, https://doi.org/10.1029/2006JC003641, 2007.
Provost, C., Sennéchael, N., Miguet, J., Itkin, P., Rösel, A., Koenig, Z., Villacieros‐Robineau, N., and Granskog, M. A.: Observations of flooding and snow‐ice formation in a thinner Arctic sea‐ice regime during the N‐ICE2015 campaign: Influence of basal ice melt and storms, J. Geophys. Res.-Oceans, 122, 7115–7134, https://doi.org/10.1002/2016JC012011, 2017.
Rösel, A., Itkin, P., King, J., Divine, D., Wang, C., Granskog, M. A.,
Krumpen, T., and Gerland, S.: Thin Sea Ice, Thick Snow, and Widespread Negative Freeboard Observed during NICE-2015 north of Svalbard, J. Geophys. Res.-Oceans, 123, 1156–1176, https://doi.org/10.1002/2017JC012865, 2018.
Rothrock, D. A., Percival, D. B., and Wensnahan, M.: The decline in arctic
sea ice thickness: Separating the spatial, annual, and interannual
variability in a quarter century of submarine data, J. Geophys. Res., 113, C05003, https://doi.org/10.1029/2007JC004252, 2008.
Schauer, U., Fahrbach, E., Osterhus, S., and Rohardt, G.: Arctic warming
through Fram Strait: Oceanic heat transport from 3 years of measurements, J. Geophys. Res., 109, C06026, https://doi.org/10.1029/2003JC001823, 2004.
Schwarzacher, W.: Pack ice studies in the Arctic Ocean, J. Geophys. Res.,
64, 2357–2367, https://doi.org/10.1029/JZ064i012p02357, 1959.
Semtner Jr., A. J.: A Model for the Thermodynamic Growth of Sea Ice in Numerical Investigations of Climate, J. Phys. Oceanogr., 6, 379–389 https://doi.org/10.1175/1520-0485(1976)006<0379:AMFTTG>2.0.CO;2, 1976.
Shu, Q., Song, Z., and Qiao, F.: Assessment of sea ice simulations in the CMIP5 models, The Cryosphere, 9, 399–409, https://doi.org/10.5194/tc-9-399-2015, 2015.
Steele, M., Zhang, J., and Ermold, W.: Mechanisms of summer Arctic Ocean warming, J. Geophys. Res., 115, C11004, https://doi.org/10.1029/2009JC005849, 2010.
Stroeve, J., Barrett, A., Serreze, M., and Schweiger, A.: Using records from submarine, aircraft and satellites to evaluate climate model simulations of Arctic sea ice thickness, The Cryosphere, 8, 1839–1854, https://doi.org/10.5194/tc-8-1839-2014, 2014.
Stroeve, J. C., Kattsov, V., Barrett, A., Serreze, M., Pavlova, T., Holland,
M. M., and Meier, W. N.: Trends in Arctic sea ice extent from CMIP5, CMIP3
and observations. Geophys. Res. Lett., 39, L16502, https://doi.org/10.1029/2012GL052676, 2012.
Swart, N. C., Fyfe, J. C., Hawkins, E., Kay, J. E., and Jahn, A.: Influence
of internal variability on Arctic sea ice trends, Nat. Clim. Change, 5, 86–89, https://doi.org/10.1038/nclimate2483, 2015.
The HadGEM2 Development Team: G. M. Martin, Bellouin, N., Collins, W. J., Culverwell, I. D., Halloran, P. R., Hardiman, S. C., Hinton, T. J., Jones, C. D., McDonald, R. E., McLaren, A. J., O'Connor, F. M., Roberts, M. J., Rodriguez, J. M., Woodward, S., Best, M. J., Brooks, M. E., Brown, A. R., Butchart, N., Dearden, C., Derbyshire, S. H., Dharssi, I., Doutriaux-Boucher, M., Edwards, J. M., Falloon, P. D., Gedney, N., Gray, L. J., Hewitt, H. T., Hobson, M., Huddleston, M. R., Hughes, J., Ineson, S., Ingram, W. J., James, P. M., Johns, T. C., Johnson, C. E., Jones, A., Jones, C. P., Joshi, M. M., Keen, A. B., Liddicoat, S., Lock, A. P., Maidens, A. V., Manners, J. C., Milton, S. F., Rae, J. G. L., Ridley, J. K., Sellar, A., Senior, C. A., Totterdell, I. J., Verhoef, A., Vidale, P. L., and Wiltshire, A.: The HadGEM2 family of Met Office Unified Model climate configurations, Geosci. Model Dev., 4, 723–757, https://doi.org/10.5194/gmd-4-723-2011, 2011.
Thorndike, A. S., Rothrock, D. A., Maykut, G. A., and Colony, R.: The
thickness distribution of sea ice, J. Geophys. Res., 80, 4501–4513, https://doi.org/10.1029/JC080i033p04501, 1975.
Wang, M. and Overland, J. E.: A sea ice free summer Arctic within 30 years:
An update from CMIP5 models, Geophys. Res. Lett., 39, L18501, https://doi.org/10.1029/2012GL052868, 2012.
West, A. E.: IMBS_MO, Zenodo, https://doi.org/10.5281/zenodo.3975692, 2020a.
West, A. E.: IMBS_Stage2_modeleval_MO, Zenodo, https://doi.org/10.5281/zenodo.3971736, 2020b.
West, A. E.: Figure code for publication 'Using Arctic ice mass balance buoys for evaluation of modelled ice energy fluxes', Zenodo, https://doi.org/10.5281/zenodo.3947782, 2020c.
West, A. E.: Arctic ice mass balance buoy data for use in calculating quantities to evaluate climate models, Version v1_april_2020, Zenodo, https://doi.org/10.5281/zenodo.3773811, 2020d.
West, A. E.: Monthly mean variables derived from Arctic Ice Mass Balance Buoy data, for evaluation of sea ice models, Version v1_april_2020, Zenodo, https://doi.org/10.5281/zenodo.3773997, 2020e.
West, A., Collins, M., Blockley, E., Ridley, J., and Bodas-Salcedo, A.: Induced surface fluxes: a new framework for attributing Arctic sea ice volume balance biases to specific model errors, The Cryosphere, 13, 2001–2022, https://doi.org/10.5194/tc-13-2001-2019, 2019.
Wettlaufer, J. S.: Heat flux at the ice-ocean interface, J. Geophys. Res., 96, 7215–7236, https://doi.org/10.1029/90JC00081, 1991.
Short summary
This study calculates sea ice energy fluxes from data produced by ice mass balance buoys (devices measuring ice elevation and temperature). It is shown how the resulting dataset can be used to evaluate a coupled climate model (HadGEM2-ES), with biases in the energy fluxes seen to be consistent with biases in the sea ice state and surface radiation. This method has potential to improve sea ice model evaluation, so as to better understand spread in model simulations of sea ice state.
This study calculates sea ice energy fluxes from data produced by ice mass balance buoys...