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Abstract. A new method of sea ice model evaluation is
demonstrated. Data from the network of Arctic ice mass bal-
ance buoys (IMBs) are used to estimate distributions of verti-
cal energy fluxes over sea ice in two densely sampled regions
– the North Pole and Beaufort Sea. The resulting dataset cap-
tures seasonal variability in sea ice energy fluxes well, and
it captures spatial variability to a lesser extent. The dataset
is used to evaluate a coupled climate model, HadGEM2-
ES (Hadley Centre Global Environment Model, version 2,
Earth System), in the two regions. The evaluation shows
HadGEM2-ES to simulate too much top melting in summer
and too much basal conduction in winter. These results are
consistent with a previous study of sea ice state and surface
radiation in this model, increasing confidence in the IMB-
based evaluation. In addition, the IMB-based evaluation sug-
gests an additional important cause for excessive winter ice
growth in HadGEM2-ES, a lack of sea ice heat capacity,
which was not detectable in the earlier study.

Uncertainty in the IMB fluxes caused by imperfect
knowledge of ice salinity, snow density and other physical
constants is quantified (as is inaccuracy due to imperfect
sampling of ice thickness) and in most cases is found to be
small relative to the model biases discussed. Hence the IMB-
based evaluation is shown to be a valuable tool with which to
analyse sea ice models and, by extension, better understand
the large spread in coupled model simulations of the present-
day ice state. Reducing this spread is a key task both in
understanding the current rapid decline in Arctic sea ice and
in constraining projections of future Arctic sea ice change.

1 Introduction

Evaluation of sea ice simulations using metrics based on sea
ice extent (e.g. Stroeve et al., 2012; Wang and Overland,
2012) is known to be an imperfect method of assessing mod-
els (Notz, 2015). This is partly because of the very high in-
terannual variability in sea ice extent (Swart et al., 2015) but
also because it does not address the accuracy of the many
variables influencing sea ice extent, in which compensating
errors may be present. Sea ice volume, evaluated for CMIP5
by Stroeve et al. (2014) and Shu et al. (2015), is less sensi-
tive to internal variability (Olonscheck and Notz, 2018) but is
also driven by multiple complex processes and so is equally
susceptible to compensating errors. These issues hinder un-
derstanding of the very large spread in modelled present-day
sea ice simulations. In turn, this increases the uncertainty
in future projections of Arctic sea ice, which has declined
rapidly over the past 30 years both in extent and volume
(Lindsay and Schweiger, 2015; Kwok, 2018). In this study,
we present a new, complementary method of evaluating sea
ice simulation, motivated by the following reasoning.

The proximate driver of sea ice volume is sea ice mass
balance. In turn, sea ice mass balance is driven by energy
balance at the upper and lower surfaces of the snow–ice col-
umn. Energy balance is driven partly by external factors in
the atmosphere (radiative fluxes, upper air temperature) and
ocean (ocean heat flux) but also by sea ice thermodynam-
ics (temperature, albedo and conduction). Finally, the sea
ice thermodynamics, in turn, are partially driven by the sea
ice state itself (area and thickness), closing the two causal
chains known as the thickness–growth feedback and the sur-
face albedo feedback (Fig. 1). Ideally, for any model, the en-
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tire sea ice causal chain would be evaluated, along with the
external drivers, greatly increasing understanding of why a
particular sea ice state is modelled.

Large-scale evaluation of ice mass balance, ice thermody-
namics and energy balance at the lower surface of the ice has
not to date been performed for any model. This is largely
because these quantities cannot yet be measured remotely
but must instead be measured in situ using systems of in-
struments frozen into the ice. In particular, a device called an
ice mass balance buoy (IMB) measures the mass balance at
the upper and lower surfaces of the snow–ice column and the
temperature profiles within the ice, at simultaneous locations
(Perovich and Richter-Menge, 2006). Data from individual
IMBs have been used to estimate sea ice energy fluxes such
as conduction and ocean heat flux in the past (e.g. Perovich
and Elder, 2002; Lei et al., 2014, 2018). However, IMB data
have not yet been used to directly evaluate a climate model,
due to the large disparity in the relevant spatial and temporal
scales.

In this study, we use data from the whole IMB network
to perform a large-scale evaluation of sea ice mass balance
and thermodynamics in a coupled climate model. Monthly
mean fluxes of top melt, top conduction, basal conduction
and ocean heat flux are calculated from temperature and ele-
vation data obtained from 104 IMBs released between 1993
and 2015; the resulting observational dataset and the code
used in its production are published alongside this study, with
references given in the Code availability and Data availabil-
ity sections below. This dataset is then used to evaluate the
sea ice in a coupled climate model (HadGEM2-ES, part of
the CMIP5 ensemble) in two densely sampled regions of the
Arctic, the North Pole and the Beaufort Sea. Modelled and
IMB-measured fluxes are restricted to each region in turn:
distributions of fluxes in each month are compared and likely
model biases identified. The results of the IMB-based eval-
uation are compared with a previous evaluation of the sea
ice state and surface radiation in the same model (West et
al., 2019): the results are found both to be consistent with the
results of this study and to enhance understanding of the first
evaluation.

The paper is structured as follows. In Sect. 2, the IMB data
and the process by which vertical energy fluxes are calculated
from the data are described. In Sect. 3, the IMB flux dataset
is described; seasonal, spatial and interannual variability is
discussed, and uncertainty in the IMB fluxes due to various
parameters used in the analysis is examined. In Sect. 4, the
data are used to evaluate HadGEM2-ES, and the results are
interpreted in the context of West et al. (2019). In Sect. 5, the
representativity of the IMB fluxes is discussed. In Sect. 6,
conclusions are presented.

2 Calculating monthly mean energy fluxes from the
IMBs

The ice mass balance buoy (IMB; Perovich and Richter-
Menge, 2006) network is a system of instruments frozen into
a sea ice floe, allowing the simultaneous measurement of
surface and base elevation, internal ice temperature (usually
at 10 cm resolution), and position; many also measure sur-
face air pressure and temperature. A diagram of an IMB is
shown in Fig. 2. An IMB provides, by design, measurements
of sea ice thickness and surface and basal mass balance, via
the measurements of surface and base elevation. Fluxes of
conduction can also be estimated from the ice temperature
data (e.g. Perovich and Elder, 2002), although uncertainty
is considerable due to lack of knowledge of ice salinity. In
particular, the thermodynamics and basal elevation measure-
ments can be combined to estimate ocean heat flux (Lei et
al., 2014).

Data from the 104 IMBs deployed by the Cold Regions
Research and Engineering Laboratory (CRREL) are stored in
a series of comma-delimited CSV (comma-separated value)
files at http://imb-crrel-dartmouth.org/results/ (last access:
April 2020) (Perovich et al., 2020). The buoys were deployed
between 1993 and 2017; spatial coverage is mainly in the
North Pole and Beaufort Sea regions (Fig. 3). The buoys are
identified by the year of deployment followed by a letter, for
example “2012L”. Buoy lifetimes range from 4 d (2015C)
to 20 months (2006C), with an interquartile range of 4–11
months. All buoys report time series of ice base elevation,
snow and/or ice surface elevation, latitude, and longitude, as
well as a collection of ice temperature time series taken at
a number of vertical positions above, within and below the
ice. In general, temperature profiles are reported at very high
temporal resolution, hourly or bi-hourly, and tend to be noisy,
with much high-frequency variability. From 2006 onwards,
elevation data are reported at similarly high resolution but
before 2006 are reported much less frequently, with intervals
of a week or more between measurements.

As most analysis of the data depends on the ability to per-
form arithmetic operations on different series, it was neces-
sary to produce data series at consistent points in time for
each buoy. To this end, modified elevation data series were
produced at times coincident with the temperature measure-
ments, using either interpolation (where there were fewer
than three measurements in the 2 d period centred on the time
in question) or a binomially weighted mean (where there
were three or more measurements in this period). This reg-
ularization process is illustrated in Fig. 4. Although a more
advanced optimal interpolation scheme would likely produce
more accurate time series, inspection of individual data se-
ries shows that the current scheme produces data that are
sufficiently realistic for the purposes of this study. For exam-
ple, linear interpolation produces unrealistic sharp changes
in the time derivative of elevation, but the effect of these on
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Figure 1. Schematic demonstrating the causal links between the ice thickness and extent and the mass balance at the top and basal surfaces
of the sea ice.

Figure 2. Diagram of the main components of an IMB, with layers
used in this study for calculation of fluxes at the base of the ice
indicated. Adapted from Fig. 1a of Planck et al. (2019).

monthly mean elevation change, the derived variable used in
this study, is likely to be very small.

The set of elevation measurements provided also varies be-
tween buoys, necessitating some processing before full regu-
lar time series of surface elevation, snow thickness, interface
elevation, ice thickness and base elevation can be obtained.

Some later buoys do not report surface elevation directly but
report snow–ice interface elevation and snow depth, which
must be summed to obtain the surface elevation. A more dif-
ficult problem is presented by the earlier buoys, which tend
to produce data of surface and base elevation only. Snow–
ice interface elevation must therefore be deduced from sur-
face and base elevation, by a process illustrated in Fig. 5.
Iterating through the times of observation t1, . . ., tn, the inter-
face elevation zint (t1)= 0 m by construction, as the thermis-
tor string is always referenced to the snow–ice interface at the
time of deployment. At time ti , if zint (ti−1)≤ zsfc (ti), where
zsfc (ti) represents surface elevation of the snow–ice column,
we set zint (ti)= zint (ti−1); but if zint (ti−1) > zsfc (ti), we set
zint (ti)= zsfc (ti). In this way, the interface elevation changes
only when top melting of ice is detected, i.e. when the sur-
face elevation is judged to fall below the interface elevation
estimated for the previous time of observation.

This method would fail in the presence of ice flooding
and snow–ice formation (e.g. as documented by Provost et
al., 2017). However, while snow–ice formation is known to
occur in some areas sampled by the IMBs (particularly in
the North Pole region, e.g. Rösel et al., 2018), it is almost
certainly a rare event in the IMB dataset. This is because
the snow layer is almost always sufficiently thin relative to
the ice layer that snow–ice formation is unlikely from hydro-
static principles. There are four instances when snow depth
becomes sufficiently large that snow–ice formation is a pos-
sibility, but these are always associated with failure of other
sensors, such that the associated data do not reach the final
dataset produced in this study.
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Figure 3. The tracks of Arctic ice mass balance buoys from 1993 to 2015, with months of coverage indicated by the coloured shading. The
North Pole and Beaufort Sea regions used in the analysis are shown by the thin black lines.

Processing the temperature data is also necessary. In-
stances of air, ice or ocean temperature data that are obvi-
ously wrong occur very frequently, usually characterized by
sudden step changes in the temperature measurements at sin-
gle – or multiple – layers that are inconsistent with simulta-
neous measurements in other layers, often to physically unre-
alistic values. The incorrect values can be caused by failure
of the sensors or the datalogger or by an inability to com-
municate data to the receiving satellite (Donald K. Perovich,
personal communication, 2019). In most cases, wrong values
occurred in large groups that were difficult to identify with
automatic data processing and, therefore, had to be identified
by inspection and removed. From the processed temperature
and elevation data, monthly mean fluxes of top melt, top con-
duction, basal conduction and ocean heat flux were produced
in the following way. Throughout this study, the sign con-
vention is that a positive value denotes a downwards flux and
vice versa.

Top melting of ice and/or snow. This flux, commonly re-
ported by models, represents the total energy gain by sea ice
(snow) in a grid cell over the course of a month associated
with melting of ice (snow) at the upper surface. It is estimated
from the IMBs using the surface elevation series. A change
between two adjacent daily data points in surface elevation
is judged due to top melting if and only if the change is neg-
ative and the surface temperature is above a threshold value
(−2 ◦C). The energy gain associated with the melting is cal-
culated by multiplying the elevation change by ice or snow
density, depending on whether the snow depth is nonzero,
and by specific latent heat of fusion of ice (all parameters are
defined below). The daily top melt estimates are then aver-
aged to obtain monthly mean top melt.

Top conductive flux. This flux is defined as the conduction
from the snow and/or ice surface into the ice interior. In this
study it is calculated using temperatures in the top 50 cm of
the snow–ice column. Where this layer lies entirely within
snow (ice) the conductive flux is calculated as the tempera-
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Figure 4. Illustration of the regularization process using four se-
lected IMB data series. (a, b, c, d) Raw data; (e, f, g, h) time series
regularized to temperature measurement points.

ture gradient across the layer, determined by a linear fit, by
snow (ice) conductivity: values of snow and ice conductivity
used are defined below.

In many cases, however, the top 50 cm is located partly
within snow and partly within ice. Because snow conductiv-
ity tends to be much lower than ice conductivity, the snow–
ice interface is usually associated with a sharp change in gra-
dient that renders a linear fit meaningless. In these cases, the
top conductive flux is determined by a linear fit through the
same layer, using an “adjusted” temperature profile:

Tadj(z)=

{
µT (z)+ (1−µ)Tint−ref z > zint
T (z) z ≤ zint,

(1)

where zint is the elevation of the snow–ice interface, Tint−ref
is temperature 5 cm below the interface, and µ= kice

/
ksnow

– where kice and ksnow are ice and snow conductivity respec-
tively. Physically, Tadj represents the temperature profile that
the snow–ice column would have if the snow was converted
to ice, Tint−ref remained the same and the vertical conductive

Figure 5. Two examples of estimating snow–ice interface from a
regularized snow surface data series. The interface remains at a con-
stant level unless the surface falls below this level, in which case the
interface falls with the surface.

fluxes remained the same. The effect of the adjustment is to
“straighten” the profile by rotating the profile section located
in the snow about Tint−ref, by a factor determined by the ra-
tio of conductivities µ. A linear fit is then taken through a
layer 0–50 cm below the snow surface and multiplied by kice
to produce estimates of instantaneous top conductive flux.
These are then averaged to obtain monthly means. The pro-
cess is illustrated in Fig. 6.

Basal conductive flux. This flux is defined as the con-
duction from the ice base into the ice interior. As an im-
portant component of the energy balance at the ice base,
it has frequently been estimated from individual buoys in
ocean heat flux calculations. Typically, temperature gradi-
ents at the ice base are small due to higher salinities here
(e.g. Schwarzacher, 1959), with correspondingly higher heat
capacities and lower conductivities; hence previous studies
have commonly used a reference layer of a fixed thickness
above which the basal conduction is estimated. In this study
we use the approach of Lei et al. (2014) and calculate the
basal conduction by taking temperature gradients across a
layer 40–70 cm above the ice base, illustrated in Fig. 2. In
Sect. 3.3 we examine the sensitivity of the derived fluxes
to changes in the elevation of this reference layer, amongst
other parameters. As above, the instantaneous values were
averaged to a monthly mean.
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Figure 6. Illustrating the process of estimating conductive flux across the top 50 cm of the snow–ice column, in the case that the snow–
ice interface lies within this layer. Panel (a) shows the raw temperature profile; taking a linear fit through these points does not produce a
meaningful result because of the sharp “corner” associated with the change in medium. Panel (b) shows the adjusted temperature profile; the
temperatures that would be expected if the snow layer were ice, temperature below the interface and conductive fluxes remaining the same.
The adjusted profile eliminates the corner, and a linear fit can be taken. In panel (b), kice denotes ice conductivity, ksnow snow conductivity
and α an arbitrary constant of proportionality.

Ocean heat flux. This flux is defined as the diffusive heat
flux arriving at the ice base from the ocean beneath. In the-
ory, it can be calculated as the residual of the basal conduc-
tive flux and the latent heat of melting and/or freezing at the
ice base. However, using the basal conductive flux as defined
above it is necessary also to take into account the sensible
heat uptake of the intervening layer (the “buffer zone”), 0–
40 cm above the ice base, illustrated in Fig. 2. The ocean heat
flux can then be written as

Focn = Fcondbot−Fsens−Flat (2)

as in Lei et al. (2014).
The basal conductive flux Fcondbot is defined as above.

Monthly mean Fsens, the sensible heat flux in the 0–40 cm
layer, is calculated as the average of daily heat uptake rates
obtained by taking linear fits through all temperature points
within 1 d of a given time instant for all vertical points in this
layer, summing these (weighted according to layer thickness)
and multiplying by ice density and heat capacity, defined be-
low. Finally, monthly mean latent heat of melting at the ice

base, Flat, is calculated from the base elevation time series,
by multiplying daily differences in elevation by specific la-
tent heat of fusion.

The calculation of thermodynamic parameters is now de-
scribed. In this study, we take the approach of using a “stan-
dard” set of thermodynamic parameters to calculate the main
dataset of energy fluxes, demonstrated in Sect. 3.1 and 3.2
below, and subsequently evaluate sensitivity to the values of
these parameters in Sect. 3.3. Ice density ρice, snow density
ρsnow and latent heat of melting qfus are set to 917 kg m−2,
330kg m−2 and 3.34× 105 J kg−1 respectively, the standard
values used by the sea ice model CICE (Hunke et al., 2013).

Ice conductivity is defined after Maykut and Untersteiner
(1971) as

kice = kfresh+
βS

T
, (3)

where S and T are ice salinity and temperature respectively,
kfresh = 2.03 W m−1 K−1, the conductivity of fresh ice, and
β = 0.13 W m−1 is an empirically determined constant rep-
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resenting the effect of brine pockets on conductivity. For the
calculation of the top conductive flux, a practical salinity of
1.0 is used, while the temperature used is that of the snow–ice
interface. For the calculation of the basal conductive flux, a
practical salinity of 4.0 is used, multiplied by the mean value
of 1

/
T , where the average is taken over the time period in

question and the layer 40–70 cm above the ice base.
Specific heat capacity is defined after Ono (1967) as

cice = cfresh+
qfreshµS

T 2 , (4)

where cfresh = 2106 J kg−1 K−1 is the specific heat capacity
of fresh ice, qfresh = 3.34×105 J kg−1 the specific latent heat
of fusion of fresh ice, and µ= 0.054 K the ratio between wa-
ter salinity and freezing temperature. In calculating sensible
heat uptake at the ice base, again a practical salinity of 4.0 is
used, multiplied by the mean value of 1

/
T 2 , where the av-

erage is taken over the time period in question and the layer
0–40 cm above the ice base.

Ice salinity must also be taken into account when calculat-
ing latent heat of freezing and melting. The energy required
to melt a given volume of sea ice at temperature T , from Bitz
and Lipscomb (1999) is

q (S,T )= ρc0 (Tm− T )+ ρqfresh

(
1+

µS

T

)
. (5)

At the lower surface of the ice, q is calculated by setting
T =−1.8 ◦C and S = 4.0 as above. At the upper surface of
the ice, T is usually extremely close to 0 ◦C when melting is
taking place, meaning that a choice of S that is both consis-
tent and physically realistic in all cases is difficult to make.
Instead, it is assumed that the ice at the upper surface is fresh
and q = qfresh is used.

The monthly heat fluxes calculated above are subject to
several sources of uncertainty. These are evaluated in detail
in Sect. 3.3 below, but the issues are briefly summarized here.
Firstly, there is significant uncertainty due to lack of knowl-
edge of ice salinity, which affects the fluxes through the ice
conductivity and heat capacity. Secondly, the manner of de-
pendence of ice conductivity on salinity is also subject to
uncertainty, with an alternative formulation to Maykut and
Untersteiner being proposed by Pringle (2007). Thirdly, both
snow and ice density are subject to uncertainty, affecting the
diagnosis of melting and freezing fluxes at the top and basal
surfaces of the ice from elevation changes (as well as sen-
sible heat uptake in the lowest layer of the ice). Finally, the
reference layers chosen to evaluate conductive and heat up-
take fluxes are themselves a parameter of the analysis and as
such represent an additional source of uncertainty.

Examination of the monthly mean energy fluxes reveals
several ways in which unrealistic estimates might be pro-
duced. Firstly, in a small minority of months, top or basal
ice temperature is warmer than the melting point associated
with the assumed salinity (1 at the top of the ice and 4 at the

base), resulting in the conduction or sensible heat uptake be-
ing very large or undefined. For these months, the salinity is
set instead to the highest physically allowable value, given
the maximum temperature attained.

A second problem relates to the formation of false bot-
toms under sea ice, as documented by Notz (2003), in which
meltwater refreezes upon meeting cold seawater at a tem-
perature below its own melting point. This process visibly
occurs during the period of operation of some buoys (for ex-
ample 2015A, demonstrated in Fig. S1 in the Supplement),
associated with sudden step changes in base elevation. These
result in very large negative monthly mean ocean heat fluxes
being calculated during the month of formation and corre-
spondingly large positive fluxes during the month of dissi-
pation. These fluxes are physically unrealistic, as the large
changes in elevation usually represent the freezing and melt-
ing of only a very thin layer of ice, with liquid seawater re-
maining in between this layer and the main body of the ice
column. In some cases, it may be possible to estimate true
ocean-to-ice heat flux simply by interpolating base elevation
between the apparent times of formation and dissipation, but
this approach is likely to be inaccurate for long-lived false
bottoms. For the purposes of this study all affected ocean
heat fluxes were simply removed from the dataset, as they
were relatively few in number.

3 Description of monthly mean flux distributions from
the IMBs

3.1 Seasonal and spatial variability

Throughout the description of the IMB-estimated fluxes here
– and the model evaluation below – the convention used
is that positive numbers denote downwards fluxes and vice
versa. The distributions of monthly mean fluxes of top melt-
ing, top conduction, basal conduction and ocean heat flux
are summarized in Table 1. The IMBs provide 463 monthly
mean values of top melt in total, ranging from 31 values in
March and August to 53 in May. The seasonal cycle reaches
its maximum in July, when top melting of 29.9±17.8 W m−2

is observed. Strong top melting is also evident in June (16.8±
11.0 W m−2), but top melting tends to be considerably lower
in August (8.1± 6.7 W m−2). In all 3 summer months, the
distribution is positively skewed, with a small number of very
high values (for example, the highest top melt value recorded
is 79.9 W m−2, for buoy 1993A in July 1993). Values for the
rest of the year are zero or near zero. Throughout the year,
standard deviation of the distributions is of a similar order of
magnitude to the mean, showing a high degree of spatial and
interannual variability.

Top conductive flux, a component of the surface energy
balance, is the means by which the ice loses energy to the at-
mosphere in the presence of atmospheric cooling during the
Arctic winter. It depends not only strongly upon atmospheric
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Table 1. Mean and standard deviations of fluxes measured from the IMB data (in W m−2), in each month of the year. For each flux, the
convention is that downwards indicates positive.

Whole Arctic Top melt flux Top conductive flux Basal conductive flux Ocean heat flux

(W m−2)

Number of 463 414 463 414
observations

Mean SD Mean SD Mean SD Mean SD

January 0.0 0.0 −16.2 6.1 −14.0 5.7 1.4 5.0
February 0.0 0.0 −16.9 6.9 −13.7 6.7 0.6 4.2
March 0.0 0.0 −13.5 5.1 −12.7 4.6 1.5 5.6
April 0.0 0.0 −7.5 3.1 −9.7 3.3 2.3 2.7
May 1.1 3.2 −0.5 2.3 −6.2 2.3 3.4 4.0
June 16.8 11.0 3.8 1.8 −2.2 1.6 12.3 16.5
July 29.9 17.8 1.0 1.0 0.5 1.2 18.1 15.3
August 8.1 6.7 −1.1 3.5 1.0 1.1 19.2 23.9
September 0.6 1.2 −6.3 4.5 0.7 1.9 9.4 11.4
October 0.0 0.0 −14.4 8.9 −4.0 11.4 5.4 13.0
November 0.0 0.0 −17.3 7.0 −9.2 9.9 4.6 7.1
December 0.0 0.0 −17.6 6.8 −12.5 6.6 1.3 5.2

conditions but also upon ice and snow thickness, as thinner
ice and snow can support stronger temperature gradients and
conduct energy upwards more quickly. For the top conduc-
tive fluxes, the IMBs provide 414 estimates in total, ranging
from 24 in August to 51 in May. Mean top conductive fluxes
are strongly negative from October to March, reaching a min-
imum value of −17.6± 6.8 W m−2 in December. However,
values are weakly positive in June and July, reflecting warm-
ing of the ice interior.

The basal conductive flux acts to remove energy from the
ice base in winter, allowing ice growth, and to a lesser extent
during late spring and early summer while the ice is warm-
ing, attenuating ice melt. For the basal conductive fluxes the
IMBs provide 463 estimates, ranging from 29 in August to
52 in May. The basal conductive flux displays a seasonal
cycle less amplified than – and displaced slightly later rel-
ative to – that of the top conductive flux, with lowest val-
ues occurring from November to April and a minimum of
−14.0± 5.7 W m−2 occurring in January. The damped re-
sponse relative to the top conductive flux occurs due to the
thermal inertia of sea ice and the principal thermodynamic
forcing occurring at the top surface.

Lastly, for the ocean heat fluxes, the IMBs provide 414 es-
timates, ranging from 25 in August to 49 in May. The highest
values are seen in July and August, with a mean and spread of
18.1±15.3 and 19.2±23.9 W m−2 respectively. The distribu-
tions in these months are, like the top melting flux, strongly
positively skewed, with a small number of exceptionally high
values. Notably, 119 W m−2 is estimated in August 2007 for
buoy 2006C in the Beaufort Sea, as part of a summer of ex-
treme ice melt documented by Perovich et al. (2008). In the

winter, mean values of ocean heat flux are near zero. There
is frequent occurrence of small negative estimates in the dis-
tributions in the winter. These are likely to be spurious and
reflect errors in assumptions made about the salinity and den-
sity at the base of the ice. For most such values, the uncer-
tainty interval resulting from varying the salinity from 0 to
10 encompasses 0 W m−2.

Two regions of the Arctic are relatively densely sampled
by the IMBs: the Beaufort Sea and the North Pole (Fig. 3). In
order to demonstrate that the IMBs are able to capture some
regional variability, especially to aid with model evaluation
in Sect. 4 below, monthly mean fluxes derived from buoy
tracks entirely within these regions were sorted into sepa-
rate datasets, characteristics of which are now described sep-
arately. Mean and standard deviations of the distributions in
the North Pole and Beaufort Sea regions are summarized in
Tables 2 and 3 respectively; boxplots are presented in Fig. 7.
Significance of differences between distributions is measured
using a Welch t test, with a 5 % p-value threshold.

Top melting fluxes are shown in Fig. 7a separately for the
Beaufort Sea and the North Pole regions. In June, the top
melting fluxes measured in the North Pole region range from
1 to 37 W m−2, with a mean of 12± 8 W m−2, while those
measured in the Beaufort Sea range from 10 to 52 W m−2

with a mean of 26± 10 W m−2. The lower distribution in
the North Pole region is consistent with the observed later
onset of surface melting here (Markus et al., 2009) associ-
ated with the higher latitude. In July, measured fluxes range
from 2 to 55 W m−2 in the North Pole region, with a mean
of 23± 14 W m−2, and 11 to 80 W m−2 in the Beaufort Sea
region, with a mean of 41±17 W m−2. In both June and July,

Geosci. Model Dev., 13, 4845–4868, 2020 https://doi.org/10.5194/gmd-13-4845-2020



A. West et al.: Using ice mass balance buoys for model evaluation 4853

Table 2. Means and standard deviations of fluxes measured from the IMB data in the North Pole region (in W m−2), in each month of the
year. For each flux, the convention is that downwards is positive.

North Pole region Top melt flux Top conductive flux Basal conductive flux Ocean heat flux

(W m−2)

Number of 196 170 193 165
observations

Mean SD Mean SD Mean SD Mean SD

January 0.0 0.0 −17.7 7.4 −14.3 4.5 0.2 2.9
February 0.0 0.0 −18.9 5.7 −12.2 6.8 −0.2 6.1
March 0.0 0.0 −17.2 4.6 −11.5 6.3 1.3 3.6
April 0.0 0.0 −8.3 3.0 −8.5 4.8 1.4 2.4
May 0.1 0.1 −1.4 1.7 −7.0 2.6 2.5 4.9
June 12.4 8.3 4.4 1.7 −2.7 1.3 7.6 9.7
July 23.4 13.9 0.9 0.9 0.3 1.3 12.5 8.1
August 8.0 6.0 −1.4 3.4 1.0 0.8 13.1 10.2
September 0.2 0.3 −7.7 5.4 0.8 2.1 5.4 6.8
October 0.0 0.1 −18.1 12.7 0.3 2.3 0.3 3.2
November 0.0 0.0 −21.4 11.4 −6.4 4.4 1.4 3.2
December 0.0 0.1 17.7 5.9 −12.7 3.4 0.5 3.0

Table 3. Means and standard deviations of fluxes measured from the IMB data in the Beaufort Sea region (in W m−2), in each month of the
year. For each flux, the convention is that downwards is positive.

Beaufort Sea region Top melt flux Top conductive flux Basal conductive flux Ocean heat flux

(W m−2)

Number of 189 173 202 190
observations

Mean SD Mean SD Mean SD Mean SD

January 0.0 0.0 −15.5 3.3 −14.9 4.6 2.1 5.0
February 0.0 0.0 −15.3 4.9 −13.7 3.5 1.2 2.9
March 0.0 0.0 −11.7 3.8 −12.5 2.3 1.9 6.6
April 0.0 0.0 −6.8 2.5 −9.7 2.1 2.4 2.6
May 1.8 1.6 0.8 1.7 −5.2 1.4 4.7 1.9
June 26.0 10.2 2.9 1.3 −1.6 1.6 18.0 21.1
July 41.1 17.3 1.3 0.9 0.4 0.7 30.6 19.6
August 8.7 8.3 1.6 0.7 0.7 0.9 33.1 34.9
September 0.3 0.3 −4.8 2.8 0.4 1.9 13.3 13.0
October 0.0 0.0 −12.3 3.2 −7.9 16.8 10.4 18.9
November 0.0 0.0 −16.1 3.4 −11.4 12.2 6.3 8.8
December 0.0 0.0 −19.0 5.4 −13.6 7.4 1.7 6.8

distributions of top melt fluxes are significantly different in
the two regions. Measured fluxes of top melting are much
lower in August in both regions.

For the top conductive flux (Fig. 7b), winter fluxes tend
to be slightly higher in magnitude in the North Pole than in
the Beaufort Sea region, although in no winter months are
the distributions significantly different at the 5 % level. In
January, for example, North Pole fluxes range from −32 to
−10 W m−2 with a mean of −18± 7 W m−2, while those in

the Beaufort Sea region range from−20 to−7 W m−2 with a
mean of −15± 7 W m−2. Some notable differences between
the distributions occur in the “shoulder seasons”, particularly
in May and August (when the distributions are significantly
different), with higher values, indicating ice warming, occur-
ring in the Beaufort Sea region. For example, in May, values
in the North Pole region range from −6 to 3 W m−2 with a
mean of −1±2 W m−2, while values in the Beaufort Sea re-
gion range from−2 to 4 W m−2 with a mean of 1±2 W m−2.
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Figure 7. Fluxes of (a) top melting, (b) top conductive flux, (c) basal conductive flux and (d) ocean heat flux, estimated from the IMB
data, shown for North Pole (blue) and Beaufort Sea (red) regions. For each month, flux and region, the distribution is indicated by a boxplot
showing range, interquartile range, median (horizontal lines) and mean (filled circles). For all fluxes, the convention is that downwards is
positive.

These differences indicate earlier onset of warming in the
Beaufort Sea and earlier onset of cooling in the North Pole
region, consistent with an earlier onset of surface melt in the
Beaufort Sea.

Less spatial variability is evident for the mean basal con-
ductive flux (Fig. 7c). For example, in December, North
Pole fluxes range from −20 to −7 W m−2 with a mean of
−13± 3 W m−2, while Beaufort Sea fluxes range from −32
to−1 W m−2 with a mean of−14±7 W m−2. Hence the ther-
mal inertia of ice appears to have some damping effect on the
larger variability in thermal forcing evident in the Beaufort
Sea region from the top conductive flux. Winter variability
tends to be higher in the Beaufort Sea than the North Pole,
but this is largely caused by a small number of exception-

ally low fluxes early in the winter associated with end-of-
summer ice thicknesses of 50 cm or lower, notably a value
of −61.7 W m−2 recorded in October 2007 for buoy 2006C.
The faster warming and slower cooling of ice evident in the
shoulder seasons in the Beaufort Sea region for the top con-
ductive flux are also not evident for the basal conductive flux.
In the month of May, for example, basal conductive flux val-
ues range from −13 to 0 W m−2 in the North Pole region
with a mean of−7±3 W m−2, compared to a range of−8 to
−2 W m−2 and mean of −5± 1 W m−2 in the Beaufort Sea
region.

For the ocean heat flux (Fig. 7d), in the summer very high
values tend to be more common in the Beaufort Sea region
than in the North Pole region. For example, in August, North
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Pole region values range from 2 to 38 W m−2 with a mean of
13± 10 W m−2, while the Beaufort Sea region values range
from 7 to 119 W m−2 with a mean of 33± 35 W m−2. It is
likely that these are related to the lower ice fractions and
greater solar heating of the mixed layer in the Beaufort Sea
region.

3.2 Interannual variability

Having examined spatial and seasonal variability in the esti-
mated fluxes, it is natural to consider whether the dataset also
gives useful information about interannual variability. Re-
stricting fluxes to individual years does not give enough data
points (per month) to permit analysis, particularly early in the
period where very often there was only one or two buoys in
operation in any particular year (and in some cases none).
Instead, the period of the IMB operations is divided into
three sections with very roughly equal numbers of data points
for each flux and month: 1993–2006, 2007–2012 and 2013–
2015. The middle period is chosen to contain the 2 years with
the lowest September extents (2007 and 2012, according to
HadISST1.2, Hadley Centre Sea Ice and Sea Surface Tem-
perature data set, version 1.2) in the entire analysis period,
to maximize the chance that interannual variability can be
detected. For each flux and month of year, we compare the
distribution of values estimated for each period (Fig. 8) and
use a Welch t test to judge whether any distributions are sig-
nificantly different at the 5 % level.

For the top melting flux, in no months are the distribu-
tions significantly different, and in July and August means
and standard deviations are very similar. In May, however,
the mean top melting flux is higher in the later period 2013–
2015 (2.7±5.8 W m−2) than in the middle (0.5±1.0 W m−2)
and early (0.5±0.9 W m−2) periods. By contrast, in June the
mean top melting flux is lower in the later period (13.3±
9.6 W m−2) than in the middle (19.0±8.8 W m−2) and early
(13.7 W m−2) periods. The differences could conceivably re-
flect the observed trend towards earlier onset of melt (e.g.
Bliss et al., 2019), but the lack of significance makes draw-
ing conclusions difficult.

Early in the winter, the top conductive flux becomes
higher (less negative) as time passes; for example, in Octo-
ber the distribution means are−17.9±12.5,−13.2±5.1 and
−11.9± 5.6 W m−2 for the periods 1993–2006, 2007–2012
and 2013–2015 respectively. Late in the winter, the trend re-
verses, with top conductive flux becoming lower (more neg-
ative) as time passes: for example, in March the distribu-
tion means are−10.8±4.1,−14.2±5.9,−14.6±4.2 W m−2

for the three periods respectively. However, as with the top
melting fluxes, the distributions are not significantly dif-
ferent. Differences in basal conductive flux are still less
marked, with distributions similar in all months except Octo-
ber, where the middle period displays a much higher (more
negative) mean and greater spread due to the presence of a

small number of extreme values (including that from buoy
2006C, noted above).

For the ocean heat flux, an upward trend is apparent in
the month of July, with means of 10.1±4.4, 20.0±17.0 and
23.6±17.1 W m−2 for the three periods respectively; for the
early and late periods, the distributions are barely signifi-
cantly different. In August, the mean in the middle period
(32.5± 37.0 W m−2) is much higher than that of the early
(14.0± 15.1 W m−2) and late (14.1± 9.5 W m−2) periods,
but the differences are not significant. The paucity of sig-
nificant differences between distributions, coupled with the
deliberate choice of periods to maximize interannual vari-
ability, suggests that it is difficult to detect robust interannual
trends in the IMB dataset in its current state.

3.3 Uncertainty associated with assumptions of the
analysis

We assess uncertainty due to ice salinity, snow and ice den-
sity, ice conductivity and the layers used to calculate conduc-
tive flux and ocean heat flux. Guided by estimates produced
in the modelling studies of Turner et al. (2015) and Vancop-
penolle et al. (2008), we use a practical salinity range of 0–10
to evaluate uncertainty due to salinity at both upper and basal
surfaces of the ice. In fact, the ice salinity causes by far the
greatest uncertainty in all measured fluxes, and the effect is
most marked when considering the top melting flux. For ex-
ample, the top melting flux estimated from buoy 1997D in the
month of July 1998 is 31.0 W m−2 when a salinity of 0 is as-
sumed but 0.4 W m−2 with a salinity of 10. This is due to the
much lower latent heat of fusion of ice at higher salinities.
Over the distribution of a whole, average July top melting
flux is 29.9 W m−2 with a salinity of 0 but 1.6 W m−2 with a
salinity of 10.

At first sight, the large uncertainties would render evalu-
ation of the top melting flux in a sea ice model using IMB
data extremely difficult. However, the physical meaning of
this uncertainty must be correctly understood. The specific
latent heat of high-salinity ice is lower because a significant
fraction of the ice will already have undergone melting. The
energy used in melting this ice is accounted for in sensible
heating of the top layer of ice, as high -salinity ice has a
higher heat capacity for this reason. In a sense, top melt-
ing of ice and sensible heating of the top layer are part of
the same process. Undertaking a meaningful evaluation of
modelled top melting using the IMB fluxes therefore requires
consideration of the thermodynamic treatment of ice in that
model. For example, in a model such as HadGEM2-ES, it is
appropriate to compare modelled top melting to energy used
in melting the entire top layer of ice – equivalent to assum-
ing an ice salinity of 0 in the IMB dataset. This is because
HadGEM2-ES does not model ice salinity or heat capacity
(as described in more detail in Sect. 4 below).

The salinity has a much smaller, though still noticeable,
effect on the conductive flux. In February 2014, for exam-
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Figure 8. IMB-measured distributions of (a) top melting; (b) top conductive flux; (c) basal conductive flux, and (d) ocean heat flux, divided
into the three periods 1993–2006, 2007–2012, and 2013–2015. Each distribution is illustrated with a boxplot showing range, interquartile
range, median (horizontal lines) and mean (filled circles).

ple, a salinity of 0 is associated with a top conductive flux
of −12.5 W m−2, while a salinity of 10 is associated with
a flux of −11.8 W m−2. Over the whole dataset, the aver-
age February top conductive flux is −17.0 (−16.6) W m−2

when a salinity of 0 (10) is assumed. Sensitivity is higher
in the summer, as conductivity is more sensitive to salinity
at higher temperatures: over the dataset, the average July top
conductive flux is 3.1 (−0.1) W m−2 when a salinity of 0 (10)
is used. The basal conductive flux displays highest sensitivity
to salinity from February to April; for example, the average
March basal conductive flux is −13.3 (−11.7) W m−2 when
a salinity of 0 (10) is assumed.

Ocean heat fluxes tend to display higher sensitivity to
salinity than do the conductive fluxes but lower than does

the top melting flux. This is mainly because temperatures
tend to be lower at the basal surface of the ice than at the
top during the summer (when top melting and ocean heat
fluxes tend to be greatest in magnitude), reducing sensitiv-
ity of the latent heat of fusion of ice to salinity. For exam-
ple, in August 2003, buoy 2003D displays an ocean heat
flux of 24.3 (16.6 W m−2) when salinity of 0 (10) is as-
sumed. For the distribution as a whole, sensitivity is highest
in the month of August when the mean ocean heat flux is
23.0 (13.5) W m−2 when salinity of 0 (10) is assumed.

To examine sensitivity to snow density, we use the range
274–374 kg m−3, after Alexandrov et al. (2010). Snow den-
sity only affects the top melting flux; the highest sensitivity
is seen in the month of June, where the average top melting
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flux is 15.4 (17.9) when snow density of 274 (374) kg m−3

is used. We also examine sensitivity to ice density, using the
range 917–944 kg m−3, after Cox and Weeks (1983); for the
top melting flux, the highest sensitivity is in July, when the
average top melting flux is 29.9 (30.7) W m−2 when ice den-
sity is 917 (944) kg m−3. The ocean heat flux also depends
on ice density, and the largest difference occurs in the month
of August, when the average flux is 19.9 (20.5) W m−2 when
ice density is 917 (944) kg m−3.

Ice conductivity is also subject to considerable uncertainty.
An alternative formulation to the Maykut and Untersteiner
method used in this study was proposed by Pringle (2007)
following laboratory tests of land-fast sea ice, in which sea
ice conductivity kI (in W m−1 K−1) is calculated from ice
temperature T (in ◦C) and practical salinity S as

kI = 2.11− 0.011T + 0.09
S

T
. (6)

Sensitivity of the IMB-measured fluxes to the conductiv-
ity formulation was tested by recalculating conductive and
ocean heat fluxes using this alternative method (there is no
difference in the top melting fluxes by design). Large dif-
ference in the winter top conductive fluxes are apparent,
due to the Pringle (2007) formulation tending to produce
much higher conductivities at low temperatures. For exam-
ple, for buoy 1993A in January 1994, a top conductive flux
of −18.3 W m−2 is estimated using the Pringle formulation
but only −15.8 W m−2 using the Maykut and Untersteiner
(1971) formulation. For the dataset as a whole, a mean Jan-
uary top conductive flux of −21.0 W m−2 is estimated with
the Pringle formulation and −17.7 W m−2 with the Maykut
and Untersteiner formulation.

Finally, sensitivity of the IMB basal conductive and ocean
heat fluxes to the depth and thickness of the reference lay-
ers used was tested. The fluxes were recalculated with the
lowest 20 cm of the ice used to calculate sensible heat up-
take and the layer 20–40 cm above the ice base to calculate
basal conductive fluxes. The largest change in mean basal
conductive flux occurs in October, with a mean value of
−0.7 W m−2 as opposed to−4.1 W m−2 in the standard con-
figuration. This is associated with temperature gradients be-
ing smaller closer to the ice base. The difference decreases
through the winter, with −11.7 W m−2 in February, as op-
posed to −13.7 W m−2 in the standard configuration. The
largest difference in ocean heat flux also occurs in October,
with a mean value of 2.8 W m−2 as opposed to 5.4 W m−2 in
the standard configuration.

In summary, varying parameters of the analysis results in
measurable changes to the IMB fluxes. In most cases, how-
ever, the sensitivity of the fluxes to the parameters is an order
of magnitude lower than the absolute values, in the months
of the year when the absolute values tend to be at their peak
(winter for the conductive fluxes; summer for the top melt-
ing and ocean heat fluxes). The main exception is the effect
of salinity on the top melting fluxes in summer, but as noted

above, care is needed when interpreting this uncertainty in
the context of a model evaluation.

4 Evaluating modelled sea ice using the IMB-derived
fluxes

4.1 Evaluating vertical energy fluxes in HadGEM2-ES
with the IMBs

In this section, the distributions of energy fluxes estimated
from the IMB data are compared to equivalent fluxes sim-
ulated by the coupled climate model HadGEM2-ES. This
model, developed from the earlier model HadGEM1, is based
on the HadGEM2-AO coupled atmosphere–ocean system but
employs additional components to simulate terrestrial and
oceanic ecosystems, in addition to tropospheric chemistry
(Collins et al., 2011). The sea ice component is very simi-
lar to that used by HadGEM1 (McLaren et al., 2006), em-
ploying a subgrid-scale thickness distribution with five cate-
gories (Thorndike et al., 1975), elastic–viscous–plastic rhe-
ology (Hunke and Dukowicz, 1997) and a zero-layer ther-
modynamics scheme, described in the appendix to Semt-
ner (1976), in which sea ice has no heat capacity and con-
duction does not vary with height within the ice. The at-
mosphere and ocean components contain a number of im-
provements relative to HadGEM1 (The HadGEM2 Develop-
ment Team, 2011). The sea ice in HadGEM2-ES is modelled
on a regular latitude–longitude grid, with a resolution of 1◦

throughout the Arctic.
The Arctic sea ice and surface radiation simulation of the

historical ensemble of HadGEM2-ES was evaluated by West
et al. (2019). A number of likely model biases were identi-
fied; a low bias in September sea ice extent, a low bias in
annual mean ice thickness and a high bias in ice thickness
seasonal cycle amplitude, and a tendency to model overly
high surface net downwelling shortwave (SW) flux in sum-
mer and overly low surface net downwelling longwave (LW)
flux in winter. To perform the evaluation of the ice energy
budget in the present study, the model period 1980–1999 is
used, chosen to match the period used in West et al. (2019).

For each month, grid cells lying inside the North Pole
and Beaufort Sea regions (Fig. 3) are separately identified,
and monthly mean top melt flux, top conductive flux, basal
conductive flux and ocean heat flux are collected into dis-
tributions. Means and standard deviations of these distribu-
tions are then compared to those of the IMB fluxes, with
model fluxes weighted by grid cell area when calculating
these statistics. Before aggregation the fluxes, produced by
the model as grid-box means, are divided by ice area to pro-
duce means over ice only, for greater consistency with the
IMB fluxes. As above, to compare modelled and observed
distributions in a systematic manner, a Welch t test is used,
and the 5 % level is chosen as a threshold for significance of
difference in distributions.
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The approach of calculating model distributions over
whole regions and time periods, rather than comparing only
grid cells lying under IMB tracks during the respective
month, is chosen for two reasons. Firstly, internal variability
is such that no climate model would be expected to capture
the exact atmospheric conditions over a specific IMB track;
whether the model could capture the average conditions over
a larger-scale region and time period is a more useful ques-
tion for evaluation purposes. Secondly, even a model grid-
cell implicitly models sea ice of many different thicknesses,
due to the ice thickness distribution, and therefore the com-
parison with IMB tracks cannot be made more like-for-like
by restricting to a single grid cell.

For both regions, top melt fluxes simulated by HadGEM2-
ES tend to be much higher than those measured by the IMBs
(Fig. 9a, b); modelled and observed distributions are sig-
nificantly different throughout the melt season. For exam-
ple, the modelled mean top melt flux of 72.5± 8.2 W m−2

in the Beaufort Sea region in June is much higher than the
IMB mean of 26.0±10.2 W m−2; in the North Pole region in
June, the modelled mean top melt flux of 56.6±14.0 W m−2

is much higher than the IMB mean of 12.4± 8.3 W m−2. A
Welch t test shows the modelled and observed distributions
of top melt fluxes to be significantly different at the 5 % level
throughout the summer in both regions. The phase of the an-
nual cycle in top melt is shifted slightly earlier, with the effect
that, in both regions, the modelled June and July means are
very similar, while the IMB estimates show a distinct max-
imum in July. However, the greater top melt in the Beau-
fort Sea region relative to the North Pole region is captured
by the model. The bias towards excessive top melting dis-
played by HadGEM2-ES is consistent with the finding by
West et al. (2019) that summer net SW fluxes are overesti-
mated in HadGEM2-ES. It was shown in this study that this
was likely associated with an early onset of surface melting
in the model. In turn, this triggers the melt pond parame-
terization of HadGEM2-ES, lowering surface albedo at an
earlier time of year than melt ponds would have formed in
reality.

The annual cycle of top conductive flux is broadly cap-
tured by HadGEM2-ES (Fig. 9c, d), with strongly negative
values modelled in the autumn, winter and spring and weakly
positive values in the summer. However, from September to
May, modelled means are more strongly negative than ob-
served means; for example, in the North Pole region in De-
cember a modelled mean of −31.0± 7.6 W m−2 is higher in
magnitude than the IMB mean of −18.1± 12.7 W m−2. Ice
thickness in HadGEM2-ES is known to be biased low in early
winter (West et al., 2019), and in Sect. 4.2 below, the extent
to which this bias is responsible for the conductive flux bias
is investigated. The higher magnitude of conductive fluxes in
winter in the Beaufort Sea region relative to the North Pole
region is captured by the model; however, the higher values
of fluxes in May and September in the Beaufort Sea region
relative to the North Pole region are not captured. Modelled

and observed flux distributions are significantly different in
all months except February, March and November (North
Pole region) and June, September and October (Beaufort Sea
region).

Modelled values of basal conductive flux at each model
grid box are identical to those of top conductive flux, due
to the HadGEM2-ES zero-layer thermodynamics scheme.
Consequently HadGEM2-ES overestimates the magnitude of
basal conductive flux in autumn and winter more severely
than it does top conductive flux (Fig. 9e, f). The overesti-
mation is most severe during the autumn; in the Beaufort
Sea region in October a mean modelled flux of −28.1±
11.1 W m−2 is much higher in magnitude than the mean
observed flux of −7.9± 16.8 W m−2. As the basal conduc-
tive flux in the freezing season is the principal driver of ice
growth, this suggests that HadGEM2-ES is likely to model
substantially stronger ice growth during these months than
was measured at the IMB sites. Modelled and observed
fluxes are significantly different in all months and regions
except, barely, in the North Pole region in August.

For the ocean heat flux, in the Beaufort Sea region the
model produces a similar seasonal cycle to that estimated
from the IMB data, with very small values in the winter and a
wide range of positive values in the summer (Fig. 9g, h); only
in April and May are the distributions significantly different.
For the North Pole region however, two differences are ap-
parent. Firstly, spread in winter ocean heat fluxes is much
higher in the model, with a small number of very high fluxes;
these occur near the southern boundary of the region, where
the ice cover meets warmer water moving north through the
Fram Strait. Secondly, modelled ocean heat fluxes in summer
tend to be higher than those measured by the IMBs. For ex-
ample, in July a modelled mean of 27.2± 13.9 W m−2 com-
pared to an observed mean of 12.1±7.4 W m−2. In the North
Pole region, modelled and observed distributions are signifi-
cantly different in all months except September.

The HadGEM2-ES ocean heat flux distributions are in fact
similar between the North Pole and Beaufort Sea regions but
evaluate differently because the IMB ocean heat fluxes in the
North Pole region are much lower. In other words, the spa-
tial variability in summer ocean heat fluxes suggested by the
IMB data is not captured by the model. This may be related
to late summer ice concentration biases in HadGEM2-ES:
ice concentration is biased low in the North Pole region but
not in the Beaufort Sea region. This would tend to cause a
high bias in net SW absorption by the ocean mixed layer and,
hence, a positive bias in ocean heat flux.

It is instructive also to examine how modelled oceanic
heat convergence (OHC) compares to real-world estimates.
Arctic Ocean heat convergence in HadGEM2-ES from 1980
to 1999 is 4.9 W m−2, roughly consistent with estimates of
heat transport through the Fram Strait, the dominant path-
way by which the Arctic Ocean gains heat (e.g. Schauer et
al., 2004). However, oceanic heat convergence in the North
Pole region (as defined in Fig. 3) is higher at 9.1 W m−2,
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Figure 9. Comparing distribution of (a, b) top melt, (c, d) top conductive flux, (e, f) basal conductive flux and (g, h) ocean heat flux from
HadGEM2-ES (red) to those estimated from the IMB data (black), for the (a, c, e, g) North Pole and (b, d, f, h) Beaufort Sea regions.
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while oceanic heat convergence in the Beaufort Sea region
is lower at 1.6 W m−2. These patterns are consistent with
most of the Arctic Ocean heat convergence being released
relatively close to the Fram Strait and Barents Sea, the prin-
cipal points of ingress of relatively warm Atlantic water. It
is noteworthy that the large difference in OHC between the
two regions is not mirrored in the ocean-to-ice heat flux.
This is consistent with the finding by Keen et al. (2018) that
much of the ocean-to-ice heat flux in HadGEM2-ES derives
from direct solar heating, rather than OHC. Studies by Bitz
et al. (2008), Perovich et al. (2008) and Steele et al. (2010)
show this is likely to be true in the real world also. Hence
differences in OHC are unlikely to contribute to differences
in ocean–ice heat flux.

The model biases in summer top melt and winter conduc-
tive fluxes are larger than most of the uncertainties measured
in Sect. 3.3. The model bias in top melt is of a similar magni-
tude to the uncertainty in top melting due to salinity, albeit in
the opposite direction (higher salinities imply an even greater
model bias). However, for the reasons stated in Sect. 3.3, the
most meaningful comparison is obtained by considering the
energy used in melting the whole of the top layer of ice, in-
cluding the melting of brine pockets during sensible heating
– equivalent to using a salinity of 0 in calculating top melt-
ing. Hence the model biases stated above – for the “standard
configuration” – are likely to present the most accurate pic-
ture.

4.2 Links to sea ice and surface radiation simulation of
HadGEM2-ES

A top melting bias of∼ 40 W m−2 is estimated for the month
of June in both the North Pole and Beaufort Sea regions.
This is consistent with the finding of West et al. (2019) that
June surface net shortwave (SW) radiation in the model was
biased high relative to a variety of satellite and reanalysis
datasets, by around 20 W m−2 over the Arctic Ocean on aver-
age. Relative to CERES-EBAF measurements from 2000 to
2013 (Loeb et al., 2009), HadGEM2-ES overestimates June
net SW in the North Pole and Beaufort Sea regions by 30
and 9 W m−2 respectively. Owing to the recent trend to ear-
lier onset of surface melt over the past 30 years (e.g. Markus
et al., 2009) and attendant likely decrease in surface albedo,
these biases are likely to be underestimated. Hence it is likely
that a major part of the model bias in top melting can be
explained by a model bias in net SW radiation. In West et
al. (2019) it was shown that a tendency for surface melt on-
set to occur too early in HadGEM2-ES, reducing the surface
albedo in a parameterization of the effect of melt ponds, was
likely to be principally responsible for this.

The severe overestimation in magnitude of basal conduc-
tive fluxes during the early part of the melt season can be
partly explained by the zero-layer thermodynamics scheme
of HadGEM2-ES; the thermal inertia effect seen in the IMBs,
whereby the basal conductive flux drops much more slowly

in autumn than the top conductive flux, does not occur in the
model. However, as the top conductive fluxes also tend to be
considerably higher in the model than in the IMB estimates,
the thermal inertia effect is likely to be only partially re-
sponsible. In West et al. (2019) two other model biases were
identified as being likely to lead to a high bias in winter ice
growth (analogous to the basal conductive flux bias): a neg-
ative bias in ice thickness during early winter and a negative
bias in downwelling longwave (LW) radiation throughout the
season. It was estimated that these biases were likely to lead
to surface flux biases of order ∼ 10 W m−2 throughout the
freezing season. Hence these are also likely to explain a por-
tion of the basal conductive flux bias noted above.

The excessive modelled top melting and basal conductive
fluxes identified would be likely to lead to ice growth and
ice melting that are too strong, in winter and summer re-
spectively, and an associated amplification of the ice thick-
ness seasonal cycle. Such an amplification was identified
in HadGEM2-ES by comparing modelled ice thickness to
the forced ice–ocean model PIOMAS (Pan-Arctic Ice-Ocean
Modeling and Assimilation System), as well as to estimates
from satellites and submarines. Hence there is a high level of
consistency between the model biases inferred from the IMB
estimates and those inferred from the sea ice state and surface
radiation evaluations in West et al. (2019). The IMB evalu-
ation, however, provides additional insight to the picture, by
providing consistent evaluation of previously unknown pro-
cesses such as top melting. In addition, the IMB evaluation
clearly identifies a role for the zero-layer thermodynamics
scheme in driving a bias towards excess ice growth during
the early winter in HadGEM2-ES.

4.3 The relationship between conductive flux, ice
thickness and snow depth

Both top and basal conductive fluxes are strongly related to
ice thickness, as thicker ice tends to have weaker temper-
ature gradients than thinner ice under similar atmospheric
conditions. Conductive fluxes are also related to snow depth
for similar reasons. To examine the extent to which the
HadGEM2-ES conductive flux biases are influenced by bi-
ases in ice thickness, conductive fluxes from November to
March were aggregated into ice thickness bins, 20 cm wide
and ranging from 0 to 4 m, in both IMBs and the model.
HadGEM2-ES ice thicknesses are much lower than ice thick-
nesses sampled by the IMBs from November to March in
both the North Pole and Beaufort Sea regions, with most of
the “overlap” occurring in the range 1–2 m (Fig. 10).

For the North Pole region, IMB-measured top conduc-
tive flux is similar in magnitude to HadGEM2-ES conduc-
tive flux for the overlapping range of thicknesses, but IMB-
measured basal conductive flux tends to be lower. For exam-
ple, in the 1.4–16 m range, the IMB-measured top and basal
conductive fluxes range from −33.0 to −11.9 and −24.0
to −10.8 W m−2 respectively, while the HadGEM2-ES con-
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Figure 10. Conductive fluxes plotted according to (a, c) ice thickness and (b, d) snow depth for the (a, b) North Pole and (c, d) Beaufort Sea
regions.

ductive flux ranges from −15.6 to −26.6 W m−2. As above,
this suggests that the uniform conductive flux assumption of
HadGEM2-ES is important in driving excessive ice growth in
this model. However, in the Beaufort Sea region both top and
basal conductive fluxes from the IMBs are much lower than
HadGEM2-ES even in the region of overlapping thicknesses.
For example, in the 1.4–1.6 m range, the IMB-measured top
and basal conductive fluxes range from −18.8 to −7.8 and
−18.4 to −8.3 W m−2 respectively, while the HadGEM2-ES
conductive flux ranges from−30.0 to−21.4 W m−2. This in-
dicates that in the Beaufort Sea at least, ice thickness biases
and the uniform conductive flux assumption are not the only

factors driving excessive ice growth; biases in atmospheric
thermal forcing are also at work.

The HadGEM2-ES conductive fluxes display an inverse
relationship with ice thickness. Cells with thinner ice tend to
have higher conductive flux (Fig. 10a, b); in the Beaufort Sea
region for example, the correlation coefficient between con-
ductive flux and the logarithm of ice thickness is 0.66. Curi-
ously, there is no sign of a similar relationship in the IMBs in
either region; in the Beaufort Sea region the correlation coef-
ficient between the log of ice thickness and top (basal) con-
ductive flux is small and not significant at 0.25 (−0.16). In
particular, both regions exhibit large numbers of IMB mea-
surements with high ice thicknesses and high top conductive
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fluxes. In most cases these points are associated with strong
ice cooling and a very low basal conductive flux.

When conductive flux is compared to snow depth, it can
be seen that similar snow depths are associated with much
greater conductive fluxes in HadGEM2-ES than in the IMB
data (Fig. 10c, d), indicating that snow depth biases are un-
likely to be a major contributor to the conductive flux bi-
ases. A similar inverse relationship between conductive flux
and snow depth is seen in HadGEM2-ES, stronger in the
Beaufort Sea than at the North Pole. Unlike with the ice
thickness, there is the suggestion of a similar relationship
in the IMB data, with the 10–15 cm (5–10 cm) category in
the North Pole (Beaufort Sea) displaying much higher con-
ductive fluxes than are present in the other categories. No
data points with high snow depths display high conductive
fluxes. As a result, the correlation between top (basal) con-
ductive flux and the log of ice thickness in the IMB estimates
is 0.47 (0.48).

5 Representativeness of the IMB-estimated fluxes

The comparison of HadGEM2-ES modelled fluxes to those
inferred from the IMB measurements reveals several poten-
tial model biases, notably the overestimation of top melt flux
in June and July and the overestimation of the magnitude of
basal conductive flux in the early freezing season. In this sec-
tion the accuracy of this method of model bias estimation is
discussed.

The model flux distributions evaluated represent area-
weighted means over the ice-covered fractions of grid cells,
each of order 10–100 km in width, chosen to cover the North
Pole and Beaufort Sea regions as defined in Sect. 2. The “true
model bias” would represent the difference between this and
the average flux over ice-covered regions for each month
in the 1980–1999 period. By contrast, the IMB-measured
means are derived from a relatively small number of single-
point measurements from these regions (points that tend to
move position during an individual month, with the general
ice flow), most from a period somewhat later than 1980–
1999. To assess the accuracy of the model biases inferred,
a method of estimating the order of magnitude of the likely
error in the IMB estimated mean fluxes is required.

One source of error derives from the temporal offset in
the IMB measurements relative to the model. To assess the
impact of this, we compare the HadGEM2-ES vertical ice
fluxes from the period 1980–1999 to those from the pe-
riod 2000–2015, during which most of the IMB measure-
ments were taken (as the historical experiments end in 2005;
the RCP8.5 experiment was used from 2006 onwards). Flux
anomalies in the later period relative to the earlier period
are mostly small (below 2 W m−2 in magnitude) in both re-
gions. However, there is a significant negative anomaly in
July top melting, −6 and −9 W m−2 in the North Pole and
Beaufort Sea regions respectively. There is also a positive

anomaly in September basal conductive flux (3 W m−2 in
both regions), and in the Beaufort Sea moderate basal con-
ductive flux anomalies continue into the winter, being 5, 3,
−4 and −2 W m−2 from October to January respectively.
These anomalies are likely to reflect earlier melting and later
freezing of ice in this region. They are small in size compared
to the HadGEM2-ES model biases but suggest that the tem-
poral bias may cause model top melting bias in July – and
Beaufort Sea basal conductive flux in autumn – to be slightly
overstated.

A potentially more serious source of error is sampling –
bias would be introduced if the IMB measurements were
systematically over- or undersampling locations with higher
than average flux in a particular month. The Arctic sea ice
cover is highly heterogeneous, with ice conditions varying
substantially over all scales. For most variables (for example
snow thickness, ice salinity or ice albedo), it is difficult to
assess whether the variability in the ice pack is sufficiently
sampled by the IMB measurements, due either to a lack of
reference datasets or to an inability to estimate these vari-
ables at the IMB locations. However, the degree to which
the ice thickness distribution (which affects conductive fluxes
in particular) is correctly sampled by the IMBs can be as-
sessed. The effect of errors in the ice thickness distribution
on the IMB-measured fluxes is estimated in Appendix A and
is shown to be small compared to the model biases identi-
fied. We note that the ice thickness distribution sampling bias
is likely to be particularly strong (relative to other variables)
due to the deliberate placing of IMBs in level multiyear ice
and due to the Lagrangian movement of the IMBs combined
with the generally short lifetime of thin ice floes, which tend
to grow quickly in winter and melt quickly in summer. It is
proposed that given the effect of this bias is weak, it is likely
that the effect of other, not deliberately introduced, biases is
weaker still and that the model biases identified in Sect. 4 are
likely to be robust features.

6 Conclusions

Around 500 estimates of monthly mean top melt, top con-
duction, basal conduction and ocean heat flux have been esti-
mated from data measured by the Arctic IMB network, with
the number of estimates available for each month ranging
from 25 to 59. The distributions capture seasonal and spa-
tial variability in the vertical fluxes analysed but do not con-
tain sufficient data points to capture interannual variability.
Comparison of modelled fluxes to observed fluxes in the two
densely sampled regions in the North Pole and Beaufort Sea
reveals substantial model biases, notably to high top melt
fluxes in summer and to high (negative) basal conductive
fluxes in autumn and early winter. Uncertainty in the IMB
fluxes due to parameters of the analysis and biases due to in-
adequate sampling of thin and very thick ice types are likely
to be small relative to the model biases identified.
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The flux biases are consistent with an evaluation of the
sea ice simulation of HadGEM2-ES that identified an over-
amplified seasonal cycle in ice thickness, with model ice
growth and melt biased high in winter and summer respec-
tively, as well as a high model bias in net SW radiation in
June, a low bias in net LW radiation throughout the winter,
and a low model bias in ice thickness in autumn and early
winter. The IMB analysis confirms that the net SW bias is
likely to cause overly strong ice thinning during summer via
anomalously strong top melting of ice. The IMB analysis also
allows the effect of biases in ice thickness, snow depth and
atmospheric conditions, as well as the effect of the uniform
conductive flux assumption, on the conductive fluxes to be
separately examined. In this way it is confirmed that both
low ice thickness and cold atmospheric conditions are likely
to be driving anomalously strong winter ice growth via the
basal conductive flux, both conclusions already suggested by
West et al. (2019). However, the IMB analysis also suggests
that the zero-layer thermodynamic scheme of HadGEM2-ES
plays a role in promoting this anomalously strong ice growth.
The IMB analysis also provides evidence that snow depth
biases are not important in driving the ice growth biases of
HadGEM2-ES.

The calculated IMB fluxes hence offer a valuable tool for
increasing understanding of sea ice simulations in coupled
models, as they allow detailed examination of the links be-
tween atmospheric forcing of sea ice and the resulting sea ice
state. This is particularly the case for the upcoming Phase 6
of the Coupled Model Intercomparison Project (CMIP6), for
which diagnostics of ice energy and mass fluxes, such as top
melting and conduction, have been requested for all sea ice
models participating in this experiment (Notz et al., 2016).
Understanding of the processes leading to biases in a given
sea ice state enables better understanding of modelled sea ice
spread in the present day and in the future and may, there-
fore, also allow better understanding of future projections in
sea ice state.

The greatest source of uncertainty in estimating the IMB
fluxes derives from lack of knowledge of ice salinity at the
measurement sites and, therefore, the thermodynamic prop-
erties of conductivity and heat capacity. A method of measur-
ing salinity at the IMB sites would greatly reduce the uncer-
tainty in the IMB estimates, particularly for ocean heat flux,
enhancing the usefulness of this dataset as a tool for model
evaluation.
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Appendix A: The ice thickness sampling bias and its
effect on flux distributions

An analysis of the distribution of monthly mean ice thick-
nesses sampled by the IMBs finds that most lie in the range
1.4–3.6 m. However, analysis of submarine measurements of
ice thickness in the central and western Arctic from 1981 to
2000, as collated by Rothrock et al. (2008), shows a substan-
tial proportion of ice to be of thickness outside these bounds.
In order to estimate the effect of this sampling bias, we use
the following simple model. The thickness distribution is dis-
cretized, in a similar manner to HadGEM2-ES, by separating
ice into five thickness categories, with minimum thickness
bounds at 0, 0.6, 1.4, 2.4 and 3.6 m. Given a mean flux Fm, rIMB
for month m and region r that is estimated from the IMBs
by averaging all fluxes for that month and region, the total
observational error can be characterized as

Ferr = F
m, r
IMB −F

m, r
actual, (A1)

where Fm, ractual is the actual value of that flux, averaged over
the region and month in question, for the period 1993–2015.
The mean flux can be further split into thickness categories
by setting

F
m, r
IMB =

∑
i

F
m, r, i
IMB−cat×

(
N
m, r
i

/
N
m, r
total

)
, (A2)

where the Fm, r, iIMB−cat are the average IMB flux over month m,
region r , and category i, Nm, r

i is the total number of IMB
fluxes in month m, region r , and category i, and Nm, r

total is the
total number of IMB fluxes in month m and region r .

Similarly, the actual flux values can be written as

F
m, r
actual =

∑
i

F
m, r, i
actual−cat× a

m, r
i , (A3)

where am, ri is the average fraction of ice in month m and
region r that is in category i (expressed as a proportion of
average fraction of ice in the region).

It can be seen that Nm, r
i

/
N
m, r
total acts as an IMB-based es-

timate of am, ri and that the error in Fm, rIMB due to the ice thick-
ness sampling bias is exactly that due to the error in this es-
timate. Hence we can characterize the sampling error by ex-
pressing Ferr in terms of systematic and sampling errors in
the following way:

Fm, rerr

=

∑
i

(
F
m, r, i
IMB−cat×

(
N
m, r
i

/
N
m, r
total

)
−F

m, r, i
actual−cat× a

m, r
i

)
= Ferr_systematic+Ferr_sample

=
1
2

∑
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IMB−cat−F
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)(
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total + a
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i

)
+

1
2

∑
i

(
N
m, r
i

/
N
m, r
total − a

m, r
i

)(
F
m, r, i
IMB−cat+F

m, r, i
actual−cat

)
, (A4)

where Ferr_sample captures the flux error due to ice thickness
sampling; Ferr_systematic describes the error due to inaccuracy
in the IMBs estimating F for each particular category, ef-
fectively capturing the remaining observational error that is
beyond the scope of the current analysis.

To estimate Ferr_sample, we first need estimates of am, ri ,
the real-world proportion of ice in a given thickness category
for each region and month, for which we use submarine mea-
surements (National Snow and Ice Data Center, 2019), which
capture small-scale variation in sea ice thickness. Ice thick-
ness measurements in each category are collected for each
month and region and are used to generate an estimate of
a
m, r
i . In practice, measurements are abundant during spring

and autumn but sparse during summer and nonexistent dur-
ing winter. To alleviate this problem, we interpolate am, ri us-
ing a 5-month binomial mean, weighted by number of mea-
surements, in order to produce a smooth seasonal cycle, mo-
tivated by the observation that maximum and minimum ice
thickness values often occur during spring and autumn re-
spectively. The resulting seasonal cycles of am, ri are shown
in Fig. S2.

Secondly, estimates of 1
2

(
F
m, r, i
IMB−cat+F

m, r, i
actual−cat

)
, repre-

sentative average fluxes for each thickness category, are
required. To calculate representative fluxes of conduction,
we combine a simple model of the relationship between
conductive fluxes and ice and snow thickness with the
IMB measurements of conduction. The surface flux Fsfc =

Fatmos+BTsfc is approximated by linearizing the dependence
on surface temperature Tsfc, referenced to 0 ◦C. The sur-
face flux is set equal to the top conductive flux Fcondtop,
and a constant rate of change of conductive flux from
the top to the basal surface of the ice is assumed, such
that 1

2

(
Fcondtop+Fcondbot

)
=

(Tsfc−Tbot)
Rice

, where Fcondbot rep-
resents basal conductive flux, Tbot is the ice base temperature,
and Rice = hice

/
kice+hsnow

/
ksnow is the thermal insulance

of the ice–snow column – with hice and hsnow being ice and
snow thickness and kice and ksnow ice and snow conductivity
respectively. Eliminating Tsfc from the above equations gives

Fcondtop =
Fatmos+BTbot

1−BRHS−top
ice

, (A5)

where R
HS−top
ice = Rice

/
(1+αheat) and αheat =

Fcondtop−Fcondbot
Fcondtop+Fcondbot

.
Equation (A5) can be combined with the IMB estimates

of conductive fluxes and the snow and ice thickness to pro-
duce, for each monthly mean IMB measurement, an asso-
ciated value of Fatmos, a measure of the atmospheric forc-
ing on the ice that is independent of small-scale variations in
ice thickness. Hence for each month and region, a distribu-
tion in Fatmos can be produced; mean values of this can be
fed back into the simple model to produce an average con-
ductive flux that would be expected for each ice thickness
category. The average conductive flux is then multiplied by
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N
m, r
i

/
N
m, r
total

)
−a

m, r
i , as estimated above, and summed over

categories to produce the flux error Fm, rerr .
The resulting flux bias is below 1 W m−2 in magnitude

year round in the North Pole region. It is slightly larger in
the Beaufort Sea in winter time, achieving values of −1.5 to
−1 W m−2 from November to February. The values are small
compared to the model–observation differences identified in
Sect. 4, and so we conclude that the ice thickness sampling
bias does not seriously affect ability to evaluate modelled
conductive fluxes.

A less strong – but still discernible – relationship exists
between top melt flux and ice thickness, due to ice albedo
tending to be lower for thinner ice. However, this effect is
likely to be associated with a significant difference in albedo
only for the thinnest category of ice – and then only in the
absence of snow (e.g. Ebert et al., 1995). To estimate this
effect, we use an average albedo of 0.55 for bare ice in the
top four thickness categories and 0.35 in the lowest category,
based on observed values reviewed and collated by Pirazz-
ini (2008). We assume that ice is snow-covered 80 % of the
time from October to May (with a corresponding albedo of
0.85), 50 % of the time in June and September, and 20 %
of the time in July and August. Finally, we calculate mean
values of downwelling SW radiation for the North Pole and
Beaufort Sea regions from CERES-EBAF from 2000 to 2013
and multiply these by the albedo differences implied by the
anomaly of ice fraction in category 1. With this method, a
maximum flux bias of −3 W m−2 is estimated for the North
Pole region, in July, and −2 W m−2 for the Beaufort Sea re-
gion, also in July. Again, this anomaly is small compared to
the model–observation differences seen in Sect. 4, and it is
concluded that the sampling bias similarly does not affect
ability to evaluate modelled top melting.

An estimate of the influence of the sampling bias on ocean
heat flux estimates is more difficult, due to a less clear rela-
tionship between ice thickness and the ocean heat flux and to
the frequent presence of rapid changes in ice thickness dur-
ing the months in which ocean heat flux is highest (July and
August). It is likely that very small ice thicknesses are asso-
ciated with elevated ocean heat flux in the summer months
due to greater solar penetration through ice. However, the
ice thickness sampling bias is at its least severe during the
summer months, as thinner ice is sampled by the IMBs sim-
ply through the melting of originally thicker floes on which
the IMBs were placed. In addition, thinning ice, which in-
duces a particularly high ocean heat flux, is likely to melt
out quickly and contribute a correspondingly small fraction
to the ice thickness distribution.

We examined the sensitivity of the average ocean heat
fluxes to this issue by assuming ocean heat fluxes in cate-
gory 1 to be systematically larger than those in the remaining
categories (as diagnosed from the IMBs) by a factor λ. With
λ= 3, August ocean heat fluxes in the Beaufort Sea region
are on average 80 W m−2 greater in category 1 than in thicker
ice categories; it is unlikely that the solar penetration effect
could be associated with larger flux differences than this. The
largest average flux bias associated with this effect is then
−6.3 W m−2, also seen in August in the Beaufort Sea region.
Hence this could be taken as a reasonable upper bound for
the effect of the sampling bias on ocean heat fluxes. It is
smaller in magnitude than the model ocean heat flux biases
diagnosed, although the difference is less than those for the
top melt and conductive fluxes.
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Code availability. The code used to analyse the IMB data is pub-
lished in two repositories, corresponding to two stages of the
analysis. The code used to read, quality control and process the
data into consistent quantities on consistent time points can be
downloaded from https://doi.org/10.5281/zenodo.3975692 (West,
2020a). The code used to produce datasets of monthly mean en-
ergy fluxes from this processed data can be downloaded from
https://doi.org/10.5281/zenodo.3971736 (West, 2020b). In addition,
the code with which Figs. 3–10, S1 and S2, were produced is pub-
lished at https://doi.org/10.5281/zenodo.3947782 (West, 2020c).

Data availability. The raw IMB data are publicly available and can
be downloaded from http://imb-crrel-dartmouth.org/results/ (last
access: 20 April 2020, Perovich et al., 2020). The processed IMB
data and the derived dataset of monthly mean fluxes are published
with this revision at https://doi.org/10.5281/zenodo.3773811 (West,
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