Articles | Volume 13, issue 7
https://doi.org/10.5194/gmd-13-3337-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/gmd-13-3337-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Simple algorithms to compute meridional overturning and barotropic streamfunctions on unstructured meshes
Dmitry Sidorenko
CORRESPONDING AUTHOR
Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Bremerhaven, Germany
Sergey Danilov
Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Bremerhaven, Germany
Department of Mathematics & Logistics, Jacobs University, Bremen, Germany
A. M. Obukhov Institute of Atmospheric Physics, RAS, Moscow, Russia
Nikolay Koldunov
Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Bremerhaven, Germany
MARUM – Center for Marine Environmental Sciences, Universität Bremen, Bremen, Germany
Patrick Scholz
Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Bremerhaven, Germany
Qiang Wang
Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Bremerhaven, Germany
Related authors
Özgür Gürses, Laurent Oziel, Onur Karakuş, Dmitry Sidorenko, Christoph Völker, Ying Ye, Moritz Zeising, Martin Butzin, and Judith Hauck
Geosci. Model Dev., 16, 4883–4936, https://doi.org/10.5194/gmd-16-4883-2023, https://doi.org/10.5194/gmd-16-4883-2023, 2023
Short summary
Short summary
This paper assesses the biogeochemical model REcoM3 coupled to the ocean–sea ice model FESOM2.1. The model can be used to simulate the carbon uptake or release of the ocean on timescales of several hundred years. A detailed analysis of the nutrients, ocean productivity, and ecosystem is followed by the carbon cycle. The main conclusion is that the model performs well when simulating the observed mean biogeochemical state and variability and is comparable to other ocean–biogeochemical models.
Anne Marie Treguier, Clement de Boyer Montégut, Alexandra Bozec, Eric P. Chassignet, Baylor Fox-Kemper, Andy McC. Hogg, Doroteaciro Iovino, Andrew E. Kiss, Julien Le Sommer, Yiwen Li, Pengfei Lin, Camille Lique, Hailong Liu, Guillaume Serazin, Dmitry Sidorenko, Qiang Wang, Xiaobio Xu, and Steve Yeager
Geosci. Model Dev., 16, 3849–3872, https://doi.org/10.5194/gmd-16-3849-2023, https://doi.org/10.5194/gmd-16-3849-2023, 2023
Short summary
Short summary
The ocean mixed layer is the interface between the ocean interior and the atmosphere and plays a key role in climate variability. We evaluate the performance of the new generation of ocean models for climate studies, designed to resolve
ocean eddies, which are the largest source of ocean variability and modulate the mixed-layer properties. We find that the mixed-layer depth is better represented in eddy-rich models but, unfortunately, not uniformly across the globe and not in all models.
Qiang Wang, Qi Shu, Alexandra Bozec, Eric P. Chassignet, Pier Giuseppe Fogli, Baylor Fox-Kemper, Andy McC. Hogg, Doroteaciro Iovino, Andrew E. Kiss, Nikolay Koldunov, Julien Le Sommer, Yiwen Li, Pengfei Lin, Hailong Liu, Igor Polyakov, Patrick Scholz, Dmitry Sidorenko, Shizhu Wang, and Xiaobiao Xu
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2023-123, https://doi.org/10.5194/gmd-2023-123, 2023
Revised manuscript accepted for GMD
Short summary
Short summary
High resolution improves model skills in simulating the Arctic Ocean, but other factors such as parameterizations and numerics are at least the same important for obtaining faithful simulations.
Sergey Danilov, Carolin Mehlmann, Dmitry Sidorenko, and Qiang Wang
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2023-37, https://doi.org/10.5194/gmd-2023-37, 2023
Preprint under review for GMD
Short summary
Short summary
Sea ice models are a necessary component of climate models. At very high resolution they are capable of simulating linear kinematic features, such as leads, which are important for better prediction of heat exchanges between the ocean and atmosphere. Two new discretizations are described which improve the sea-ice component of the Finite volumE Sea ice – Ocean Model (FESOM version 2) by allowing simulations of finer scales.
Pengyang Song, Dmitry Sidorenko, Patrick Scholz, Maik Thomas, and Gerrit Lohmann
Geosci. Model Dev., 16, 383–405, https://doi.org/10.5194/gmd-16-383-2023, https://doi.org/10.5194/gmd-16-383-2023, 2023
Short summary
Short summary
Tides have essential effects on the ocean and climate. Most previous research applies parameterised tidal mixing to discuss their effects in models. By comparing the effect of a tidal mixing parameterisation and tidal forcing on the ocean state, we assess the advantages and disadvantages of the two methods. Our results show that tidal mixing in the North Pacific Ocean strongly affects the global thermohaline circulation. We also list some effects that are not considered in the parameterisation.
Jan Streffing, Dmitry Sidorenko, Tido Semmler, Lorenzo Zampieri, Patrick Scholz, Miguel Andrés-Martínez, Nikolay Koldunov, Thomas Rackow, Joakim Kjellsson, Helge Goessling, Marylou Athanase, Qiang Wang, Jan Hegewald, Dmitry V. Sein, Longjiang Mu, Uwe Fladrich, Dirk Barbi, Paul Gierz, Sergey Danilov, Stephan Juricke, Gerrit Lohmann, and Thomas Jung
Geosci. Model Dev., 15, 6399–6427, https://doi.org/10.5194/gmd-15-6399-2022, https://doi.org/10.5194/gmd-15-6399-2022, 2022
Short summary
Short summary
We developed a new atmosphere–ocean coupled climate model, AWI-CM3. Our model is significantly more computationally efficient than its predecessors AWI-CM1 and AWI-CM2. We show that the model, although cheaper to run, provides results of similar quality when modeling the historic period from 1850 to 2014. We identify the remaining weaknesses to outline future work. Finally we preview an improved simulation where the reduction in computational cost has to be invested in higher model resolution.
Xiaoxu Shi, Martin Werner, Carolin Krug, Chris M. Brierley, Anni Zhao, Endurance Igbinosa, Pascale Braconnot, Esther Brady, Jian Cao, Roberta D'Agostino, Johann Jungclaus, Xingxing Liu, Bette Otto-Bliesner, Dmitry Sidorenko, Robert Tomas, Evgeny M. Volodin, Hu Yang, Qiong Zhang, Weipeng Zheng, and Gerrit Lohmann
Clim. Past, 18, 1047–1070, https://doi.org/10.5194/cp-18-1047-2022, https://doi.org/10.5194/cp-18-1047-2022, 2022
Short summary
Short summary
Since the orbital parameters of the past are different from today, applying the modern calendar to the past climate can lead to an artificial bias in seasonal cycles. With the use of multiple model outputs, we found that such a bias is non-ignorable and should be corrected to ensure an accurate comparison between modeled results and observational records, as well as between simulated past and modern climates, especially for the Last Interglacial.
Patrick Scholz, Dmitry Sidorenko, Sergey Danilov, Qiang Wang, Nikolay Koldunov, Dmitry Sein, and Thomas Jung
Geosci. Model Dev., 15, 335–363, https://doi.org/10.5194/gmd-15-335-2022, https://doi.org/10.5194/gmd-15-335-2022, 2022
Short summary
Short summary
Structured-mesh ocean models are still the most mature in terms of functionality due to their long development history. However, unstructured-mesh ocean models have acquired new features and caught up in their functionality. This paper continues the work by Scholz et al. (2019) of documenting the features available in FESOM2.0. It focuses on the following two aspects: (i) partial bottom cells and embedded sea ice and (ii) dealing with mixing parameterisations enabled by using the CVMix package.
Vera Fofonova, Tuomas Kärnä, Knut Klingbeil, Alexey Androsov, Ivan Kuznetsov, Dmitry Sidorenko, Sergey Danilov, Hans Burchard, and Karen Helen Wiltshire
Geosci. Model Dev., 14, 6945–6975, https://doi.org/10.5194/gmd-14-6945-2021, https://doi.org/10.5194/gmd-14-6945-2021, 2021
Short summary
Short summary
We present a test case of river plume spreading to evaluate coastal ocean models. Our test case reveals the level of numerical mixing (due to parameterizations used and numerical treatment of processes in the model) and the ability of models to reproduce complex dynamics. The major result of our comparative study is that accuracy in reproducing the analytical solution depends less on the type of applied model architecture or numerical grid than it does on the type of advection scheme.
Qiang Wang, Sergey Danilov, Longjiang Mu, Dmitry Sidorenko, and Claudia Wekerle
The Cryosphere, 15, 4703–4725, https://doi.org/10.5194/tc-15-4703-2021, https://doi.org/10.5194/tc-15-4703-2021, 2021
Short summary
Short summary
Using simulations, we found that changes in ocean freshwater content induced by wind perturbations can significantly affect the Arctic sea ice drift, thickness, concentration and deformation rates years after the wind perturbations. The impact is through changes in sea surface height and surface geostrophic currents and the most pronounced in warm seasons. Such a lasting impact might become stronger in a warming climate and implies the importance of ocean initialization in sea ice prediction.
Eric P. Chassignet, Stephen G. Yeager, Baylor Fox-Kemper, Alexandra Bozec, Frederic Castruccio, Gokhan Danabasoglu, Christopher Horvat, Who M. Kim, Nikolay Koldunov, Yiwen Li, Pengfei Lin, Hailong Liu, Dmitry V. Sein, Dmitry Sidorenko, Qiang Wang, and Xiaobiao Xu
Geosci. Model Dev., 13, 4595–4637, https://doi.org/10.5194/gmd-13-4595-2020, https://doi.org/10.5194/gmd-13-4595-2020, 2020
Short summary
Short summary
This paper presents global comparisons of fundamental global climate variables from a suite of four pairs of matched low- and high-resolution ocean and sea ice simulations to assess the robustness of climate-relevant improvements in ocean simulations associated with moving from coarse (∼1°) to eddy-resolving (∼0.1°) horizontal resolutions. Despite significant improvements, greatly enhanced horizontal resolution does not deliver unambiguous bias reduction in all regions for all models.
Hiroyuki Tsujino, L. Shogo Urakawa, Stephen M. Griffies, Gokhan Danabasoglu, Alistair J. Adcroft, Arthur E. Amaral, Thomas Arsouze, Mats Bentsen, Raffaele Bernardello, Claus W. Böning, Alexandra Bozec, Eric P. Chassignet, Sergey Danilov, Raphael Dussin, Eleftheria Exarchou, Pier Giuseppe Fogli, Baylor Fox-Kemper, Chuncheng Guo, Mehmet Ilicak, Doroteaciro Iovino, Who M. Kim, Nikolay Koldunov, Vladimir Lapin, Yiwen Li, Pengfei Lin, Keith Lindsay, Hailong Liu, Matthew C. Long, Yoshiki Komuro, Simon J. Marsland, Simona Masina, Aleksi Nummelin, Jan Klaus Rieck, Yohan Ruprich-Robert, Markus Scheinert, Valentina Sicardi, Dmitry Sidorenko, Tatsuo Suzuki, Hiroaki Tatebe, Qiang Wang, Stephen G. Yeager, and Zipeng Yu
Geosci. Model Dev., 13, 3643–3708, https://doi.org/10.5194/gmd-13-3643-2020, https://doi.org/10.5194/gmd-13-3643-2020, 2020
Short summary
Short summary
The OMIP-2 framework for global ocean–sea-ice model simulations is assessed by comparing multi-model means from 11 CMIP6-class global ocean–sea-ice models calculated separately for the OMIP-1 and OMIP-2 simulations. Many features are very similar between OMIP-1 and OMIP-2 simulations, and yet key improvements in transitioning from OMIP-1 to OMIP-2 are also identified. Thus, the present assessment justifies that future ocean–sea-ice model development and analysis studies use the OMIP-2 framework.
Patrick Scholz, Dmitry Sidorenko, Ozgur Gurses, Sergey Danilov, Nikolay Koldunov, Qiang Wang, Dmitry Sein, Margarita Smolentseva, Natalja Rakowsky, and Thomas Jung
Geosci. Model Dev., 12, 4875–4899, https://doi.org/10.5194/gmd-12-4875-2019, https://doi.org/10.5194/gmd-12-4875-2019, 2019
Short summary
Short summary
This paper is the first in a series documenting and assessing important key components of the Finite-volumE Sea ice-Ocean Model version 2.0 (FESOM2.0). We assess the hydrographic biases, large-scale circulation, numerical performance and scalability of FESOM2.0 compared with its predecessor, FESOM1.4. The main conclusion is that the results of FESOM2.0 compare well to FESOM1.4 in terms of model biases but with a remarkable performance speedup with a 3 times higher throughput.
Nikolay V. Koldunov, Vadym Aizinger, Natalja Rakowsky, Patrick Scholz, Dmitry Sidorenko, Sergey Danilov, and Thomas Jung
Geosci. Model Dev., 12, 3991–4012, https://doi.org/10.5194/gmd-12-3991-2019, https://doi.org/10.5194/gmd-12-3991-2019, 2019
Short summary
Short summary
We measure how computational performance of the global FESOM2 ocean model (formulated on an unstructured mesh) changes with the increase in the number of computational cores. We find that for many components of the model the performance increases linearly but we also identify two bottlenecks: sea ice and ssh submodules. We show that FESOM2 is on par with the state-of-the-art ocean models in terms of throughput that reach 16 simulated years per day for eddy resolving configuration (1/10°).
Thomas Rackow, Dmitry V. Sein, Tido Semmler, Sergey Danilov, Nikolay V. Koldunov, Dmitry Sidorenko, Qiang Wang, and Thomas Jung
Geosci. Model Dev., 12, 2635–2656, https://doi.org/10.5194/gmd-12-2635-2019, https://doi.org/10.5194/gmd-12-2635-2019, 2019
Short summary
Short summary
Current climate models show errors in the deep ocean that are larger than the level of natural variability and the response to enhanced greenhouse gas concentrations. These errors are larger than the signals we aim to predict. With the AWI Climate Model, we show that increasing resolution to resolve eddies can lead to major reductions in deep ocean errors. AWI's next-generation (CMIP6) model configuration will thus use locally eddy-resolving computational grids for projecting climate change.
Sergey Danilov, Dmitry Sidorenko, Qiang Wang, and Thomas Jung
Geosci. Model Dev., 10, 765–789, https://doi.org/10.5194/gmd-10-765-2017, https://doi.org/10.5194/gmd-10-765-2017, 2017
Short summary
Short summary
Numerical models of global ocean circulation are used to learn about future climate. The ocean circulation is characterized by processes on different spatial scales which are still beyond the reach of present computers. We describe a new model setup that allows one to vary a model's spatial resolution and hence focus the computational power on regional dynamics, reaching a better description of local processes in areas of interest.
S. Danilov, Q. Wang, R. Timmermann, N. Iakovlev, D. Sidorenko, M. Kimmritz, T. Jung, and J. Schröter
Geosci. Model Dev., 8, 1747–1761, https://doi.org/10.5194/gmd-8-1747-2015, https://doi.org/10.5194/gmd-8-1747-2015, 2015
Short summary
Short summary
Unstructured meshes allow multi-resolution modeling of ocean dynamics. Sea ice models formulated on unstructured meshes are a necessary component of ocean models intended for climate studies. This work presents a description of a finite-element sea ice model which is used as a component of a finite-element sea ice ocean circulation model. The principles underlying its design can be of interest to other groups pursuing ocean modelling on unstructured meshes.
V. Schourup-Kristensen, D. Sidorenko, D. A. Wolf-Gladrow, and C. Völker
Geosci. Model Dev., 7, 2769–2802, https://doi.org/10.5194/gmd-7-2769-2014, https://doi.org/10.5194/gmd-7-2769-2014, 2014
Q. Wang, S. Danilov, D. Sidorenko, R. Timmermann, C. Wekerle, X. Wang, T. Jung, and J. Schröter
Geosci. Model Dev., 7, 663–693, https://doi.org/10.5194/gmd-7-663-2014, https://doi.org/10.5194/gmd-7-663-2014, 2014
Xiaoxu Shi, Alexandre Cauquoin, Gerrit Lohmann, Lukas Jonkers, Qiang Wang, Hu Yang, Yuchen Sun, and Martin Werner
Geosci. Model Dev., 16, 5153–5178, https://doi.org/10.5194/gmd-16-5153-2023, https://doi.org/10.5194/gmd-16-5153-2023, 2023
Short summary
Short summary
We developed a new climate model with isotopic capabilities and simulated the pre-industrial and mid-Holocene periods. Despite certain regional model biases, the modeled isotope composition is in good agreement with observations and reconstructions. Based on our analyses, the observed isotope–temperature relationship in polar regions may have a summertime bias. Using daily model outputs, we developed a novel isotope-based approach to determine the onset date of the West African summer monsoon.
Özgür Gürses, Laurent Oziel, Onur Karakuş, Dmitry Sidorenko, Christoph Völker, Ying Ye, Moritz Zeising, Martin Butzin, and Judith Hauck
Geosci. Model Dev., 16, 4883–4936, https://doi.org/10.5194/gmd-16-4883-2023, https://doi.org/10.5194/gmd-16-4883-2023, 2023
Short summary
Short summary
This paper assesses the biogeochemical model REcoM3 coupled to the ocean–sea ice model FESOM2.1. The model can be used to simulate the carbon uptake or release of the ocean on timescales of several hundred years. A detailed analysis of the nutrients, ocean productivity, and ecosystem is followed by the carbon cycle. The main conclusion is that the model performs well when simulating the observed mean biogeochemical state and variability and is comparable to other ocean–biogeochemical models.
Anne Marie Treguier, Clement de Boyer Montégut, Alexandra Bozec, Eric P. Chassignet, Baylor Fox-Kemper, Andy McC. Hogg, Doroteaciro Iovino, Andrew E. Kiss, Julien Le Sommer, Yiwen Li, Pengfei Lin, Camille Lique, Hailong Liu, Guillaume Serazin, Dmitry Sidorenko, Qiang Wang, Xiaobio Xu, and Steve Yeager
Geosci. Model Dev., 16, 3849–3872, https://doi.org/10.5194/gmd-16-3849-2023, https://doi.org/10.5194/gmd-16-3849-2023, 2023
Short summary
Short summary
The ocean mixed layer is the interface between the ocean interior and the atmosphere and plays a key role in climate variability. We evaluate the performance of the new generation of ocean models for climate studies, designed to resolve
ocean eddies, which are the largest source of ocean variability and modulate the mixed-layer properties. We find that the mixed-layer depth is better represented in eddy-rich models but, unfortunately, not uniformly across the globe and not in all models.
Qiang Wang, Qi Shu, Alexandra Bozec, Eric P. Chassignet, Pier Giuseppe Fogli, Baylor Fox-Kemper, Andy McC. Hogg, Doroteaciro Iovino, Andrew E. Kiss, Nikolay Koldunov, Julien Le Sommer, Yiwen Li, Pengfei Lin, Hailong Liu, Igor Polyakov, Patrick Scholz, Dmitry Sidorenko, Shizhu Wang, and Xiaobiao Xu
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2023-123, https://doi.org/10.5194/gmd-2023-123, 2023
Revised manuscript accepted for GMD
Short summary
Short summary
High resolution improves model skills in simulating the Arctic Ocean, but other factors such as parameterizations and numerics are at least the same important for obtaining faithful simulations.
Qi Shu, Qiang Wang, Chuncheng Guo, Zhenya Song, Shizhu Wang, Yan He, and Fangli Qiao
Geosci. Model Dev., 16, 2539–2563, https://doi.org/10.5194/gmd-16-2539-2023, https://doi.org/10.5194/gmd-16-2539-2023, 2023
Short summary
Short summary
Ocean models are often used for scientific studies on the Arctic Ocean. Here the Arctic Ocean simulations by state-of-the-art global ocean–sea-ice models participating in the Ocean Model Intercomparison Project (OMIP) were evaluated. The simulations on Arctic Ocean hydrography, freshwater content, stratification, sea surface height, and gateway transports were assessed and the common biases were detected. The simulations forced by different atmospheric forcing were also evaluated.
Sergey Danilov, Carolin Mehlmann, Dmitry Sidorenko, and Qiang Wang
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2023-37, https://doi.org/10.5194/gmd-2023-37, 2023
Preprint under review for GMD
Short summary
Short summary
Sea ice models are a necessary component of climate models. At very high resolution they are capable of simulating linear kinematic features, such as leads, which are important for better prediction of heat exchanges between the ocean and atmosphere. Two new discretizations are described which improve the sea-ice component of the Finite volumE Sea ice – Ocean Model (FESOM version 2) by allowing simulations of finer scales.
Pengyang Song, Dmitry Sidorenko, Patrick Scholz, Maik Thomas, and Gerrit Lohmann
Geosci. Model Dev., 16, 383–405, https://doi.org/10.5194/gmd-16-383-2023, https://doi.org/10.5194/gmd-16-383-2023, 2023
Short summary
Short summary
Tides have essential effects on the ocean and climate. Most previous research applies parameterised tidal mixing to discuss their effects in models. By comparing the effect of a tidal mixing parameterisation and tidal forcing on the ocean state, we assess the advantages and disadvantages of the two methods. Our results show that tidal mixing in the North Pacific Ocean strongly affects the global thermohaline circulation. We also list some effects that are not considered in the parameterisation.
Sergei Kirillov, Igor Dmitrenko, David G. Babb, Jens K. Ehn, Nikolay Koldunov, Søren Rysgaard, David Jensen, and David G. Barber
Ocean Sci., 18, 1535–1557, https://doi.org/10.5194/os-18-1535-2022, https://doi.org/10.5194/os-18-1535-2022, 2022
Short summary
Short summary
The sea ice bridge usually forms during winter in Nares Strait and prevents ice drifting south. However, this bridge has recently become unstable, and in this study we investigate the role of oceanic heat flux in this decline. Using satellite data, we identify areas where sea ice is relatively thin and further attribute those areas to the heat fluxes from the warm subsurface water masses. We also discuss the potential role of such an impact on ice bridge instability and earlier ice break up.
Jan Streffing, Dmitry Sidorenko, Tido Semmler, Lorenzo Zampieri, Patrick Scholz, Miguel Andrés-Martínez, Nikolay Koldunov, Thomas Rackow, Joakim Kjellsson, Helge Goessling, Marylou Athanase, Qiang Wang, Jan Hegewald, Dmitry V. Sein, Longjiang Mu, Uwe Fladrich, Dirk Barbi, Paul Gierz, Sergey Danilov, Stephan Juricke, Gerrit Lohmann, and Thomas Jung
Geosci. Model Dev., 15, 6399–6427, https://doi.org/10.5194/gmd-15-6399-2022, https://doi.org/10.5194/gmd-15-6399-2022, 2022
Short summary
Short summary
We developed a new atmosphere–ocean coupled climate model, AWI-CM3. Our model is significantly more computationally efficient than its predecessors AWI-CM1 and AWI-CM2. We show that the model, although cheaper to run, provides results of similar quality when modeling the historic period from 1850 to 2014. We identify the remaining weaknesses to outline future work. Finally we preview an improved simulation where the reduction in computational cost has to be invested in higher model resolution.
Takaya Uchida, Julien Le Sommer, Charles Stern, Ryan P. Abernathey, Chris Holdgraf, Aurélie Albert, Laurent Brodeau, Eric P. Chassignet, Xiaobiao Xu, Jonathan Gula, Guillaume Roullet, Nikolay Koldunov, Sergey Danilov, Qiang Wang, Dimitris Menemenlis, Clément Bricaud, Brian K. Arbic, Jay F. Shriver, Fangli Qiao, Bin Xiao, Arne Biastoch, René Schubert, Baylor Fox-Kemper, William K. Dewar, and Alan Wallcraft
Geosci. Model Dev., 15, 5829–5856, https://doi.org/10.5194/gmd-15-5829-2022, https://doi.org/10.5194/gmd-15-5829-2022, 2022
Short summary
Short summary
Ocean and climate scientists have used numerical simulations as a tool to examine the ocean and climate system since the 1970s. Since then, owing to the continuous increase in computational power and advances in numerical methods, we have been able to simulate increasing complex phenomena. However, the fidelity of the simulations in representing the phenomena remains a core issue in the ocean science community. Here we propose a cloud-based framework to inter-compare and assess such simulations.
Xiaoxu Shi, Martin Werner, Carolin Krug, Chris M. Brierley, Anni Zhao, Endurance Igbinosa, Pascale Braconnot, Esther Brady, Jian Cao, Roberta D'Agostino, Johann Jungclaus, Xingxing Liu, Bette Otto-Bliesner, Dmitry Sidorenko, Robert Tomas, Evgeny M. Volodin, Hu Yang, Qiong Zhang, Weipeng Zheng, and Gerrit Lohmann
Clim. Past, 18, 1047–1070, https://doi.org/10.5194/cp-18-1047-2022, https://doi.org/10.5194/cp-18-1047-2022, 2022
Short summary
Short summary
Since the orbital parameters of the past are different from today, applying the modern calendar to the past climate can lead to an artificial bias in seasonal cycles. With the use of multiple model outputs, we found that such a bias is non-ignorable and should be corrected to ensure an accurate comparison between modeled results and observational records, as well as between simulated past and modern climates, especially for the Last Interglacial.
Viorica Nagavciuc, Patrick Scholz, and Monica Ionita
Nat. Hazards Earth Syst. Sci., 22, 1347–1369, https://doi.org/10.5194/nhess-22-1347-2022, https://doi.org/10.5194/nhess-22-1347-2022, 2022
Short summary
Short summary
Here we have assessed the variability and trends of hot and dry summers in Romania. The length, spatial extent, and frequency of heat waves in Romania have increased significantly over the last 70 years, while no significant changes have been observed in the drought conditions. The increased frequency of heat waves, especially after the 1990s, could be partially explained by an increase in the geopotential height over the eastern part of Europe.
Patrick Scholz, Dmitry Sidorenko, Sergey Danilov, Qiang Wang, Nikolay Koldunov, Dmitry Sein, and Thomas Jung
Geosci. Model Dev., 15, 335–363, https://doi.org/10.5194/gmd-15-335-2022, https://doi.org/10.5194/gmd-15-335-2022, 2022
Short summary
Short summary
Structured-mesh ocean models are still the most mature in terms of functionality due to their long development history. However, unstructured-mesh ocean models have acquired new features and caught up in their functionality. This paper continues the work by Scholz et al. (2019) of documenting the features available in FESOM2.0. It focuses on the following two aspects: (i) partial bottom cells and embedded sea ice and (ii) dealing with mixing parameterisations enabled by using the CVMix package.
Vera Fofonova, Tuomas Kärnä, Knut Klingbeil, Alexey Androsov, Ivan Kuznetsov, Dmitry Sidorenko, Sergey Danilov, Hans Burchard, and Karen Helen Wiltshire
Geosci. Model Dev., 14, 6945–6975, https://doi.org/10.5194/gmd-14-6945-2021, https://doi.org/10.5194/gmd-14-6945-2021, 2021
Short summary
Short summary
We present a test case of river plume spreading to evaluate coastal ocean models. Our test case reveals the level of numerical mixing (due to parameterizations used and numerical treatment of processes in the model) and the ability of models to reproduce complex dynamics. The major result of our comparative study is that accuracy in reproducing the analytical solution depends less on the type of applied model architecture or numerical grid than it does on the type of advection scheme.
Qiang Wang, Sergey Danilov, Longjiang Mu, Dmitry Sidorenko, and Claudia Wekerle
The Cryosphere, 15, 4703–4725, https://doi.org/10.5194/tc-15-4703-2021, https://doi.org/10.5194/tc-15-4703-2021, 2021
Short summary
Short summary
Using simulations, we found that changes in ocean freshwater content induced by wind perturbations can significantly affect the Arctic sea ice drift, thickness, concentration and deformation rates years after the wind perturbations. The impact is through changes in sea surface height and surface geostrophic currents and the most pronounced in warm seasons. Such a lasting impact might become stronger in a warming climate and implies the importance of ocean initialization in sea ice prediction.
Tingfeng Dou, Cunde Xiao, Jiping Liu, Qiang Wang, Shifeng Pan, Jie Su, Xiaojun Yuan, Minghu Ding, Feng Zhang, Kai Xue, Peter A. Bieniek, and Hajo Eicken
The Cryosphere, 15, 883–895, https://doi.org/10.5194/tc-15-883-2021, https://doi.org/10.5194/tc-15-883-2021, 2021
Short summary
Short summary
Rain-on-snow (ROS) events can accelerate the surface ablation of sea ice, greatly influencing the ice–albedo feedback. We found that spring ROS events have shifted to earlier dates over the Arctic Ocean in recent decades, which is correlated with sea ice melt onset in the Pacific sector and most Eurasian marginal seas. There has been a clear transition from solid to liquid precipitation, leading to a reduction in spring snow depth on sea ice by more than −0.5 cm per decade since the 1980s.
Claudia Wekerle, Tore Hattermann, Qiang Wang, Laura Crews, Wilken-Jon von Appen, and Sergey Danilov
Ocean Sci., 16, 1225–1246, https://doi.org/10.5194/os-16-1225-2020, https://doi.org/10.5194/os-16-1225-2020, 2020
Short summary
Short summary
The high-resolution ocean models ROMS and FESOM configured for the Fram Strait reveal very energetic ocean conditions there. The two main currents meander strongly and shed circular currents of water, called eddies. Our analysis shows that this region is characterised by small and short-lived eddies (on average around a 5 km radius and 10 d lifetime). Both models agree on eddy properties and show similar patterns of baroclinic and barotropic instability of the West Spitsbergen Current.
Eric P. Chassignet, Stephen G. Yeager, Baylor Fox-Kemper, Alexandra Bozec, Frederic Castruccio, Gokhan Danabasoglu, Christopher Horvat, Who M. Kim, Nikolay Koldunov, Yiwen Li, Pengfei Lin, Hailong Liu, Dmitry V. Sein, Dmitry Sidorenko, Qiang Wang, and Xiaobiao Xu
Geosci. Model Dev., 13, 4595–4637, https://doi.org/10.5194/gmd-13-4595-2020, https://doi.org/10.5194/gmd-13-4595-2020, 2020
Short summary
Short summary
This paper presents global comparisons of fundamental global climate variables from a suite of four pairs of matched low- and high-resolution ocean and sea ice simulations to assess the robustness of climate-relevant improvements in ocean simulations associated with moving from coarse (∼1°) to eddy-resolving (∼0.1°) horizontal resolutions. Despite significant improvements, greatly enhanced horizontal resolution does not deliver unambiguous bias reduction in all regions for all models.
Hiroyuki Tsujino, L. Shogo Urakawa, Stephen M. Griffies, Gokhan Danabasoglu, Alistair J. Adcroft, Arthur E. Amaral, Thomas Arsouze, Mats Bentsen, Raffaele Bernardello, Claus W. Böning, Alexandra Bozec, Eric P. Chassignet, Sergey Danilov, Raphael Dussin, Eleftheria Exarchou, Pier Giuseppe Fogli, Baylor Fox-Kemper, Chuncheng Guo, Mehmet Ilicak, Doroteaciro Iovino, Who M. Kim, Nikolay Koldunov, Vladimir Lapin, Yiwen Li, Pengfei Lin, Keith Lindsay, Hailong Liu, Matthew C. Long, Yoshiki Komuro, Simon J. Marsland, Simona Masina, Aleksi Nummelin, Jan Klaus Rieck, Yohan Ruprich-Robert, Markus Scheinert, Valentina Sicardi, Dmitry Sidorenko, Tatsuo Suzuki, Hiroaki Tatebe, Qiang Wang, Stephen G. Yeager, and Zipeng Yu
Geosci. Model Dev., 13, 3643–3708, https://doi.org/10.5194/gmd-13-3643-2020, https://doi.org/10.5194/gmd-13-3643-2020, 2020
Short summary
Short summary
The OMIP-2 framework for global ocean–sea-ice model simulations is assessed by comparing multi-model means from 11 CMIP6-class global ocean–sea-ice models calculated separately for the OMIP-1 and OMIP-2 simulations. Many features are very similar between OMIP-1 and OMIP-2 simulations, and yet key improvements in transitioning from OMIP-1 to OMIP-2 are also identified. Thus, the present assessment justifies that future ocean–sea-ice model development and analysis studies use the OMIP-2 framework.
Veronika Eyring, Lisa Bock, Axel Lauer, Mattia Righi, Manuel Schlund, Bouwe Andela, Enrico Arnone, Omar Bellprat, Björn Brötz, Louis-Philippe Caron, Nuno Carvalhais, Irene Cionni, Nicola Cortesi, Bas Crezee, Edouard L. Davin, Paolo Davini, Kevin Debeire, Lee de Mora, Clara Deser, David Docquier, Paul Earnshaw, Carsten Ehbrecht, Bettina K. Gier, Nube Gonzalez-Reviriego, Paul Goodman, Stefan Hagemann, Steven Hardiman, Birgit Hassler, Alasdair Hunter, Christopher Kadow, Stephan Kindermann, Sujan Koirala, Nikolay Koldunov, Quentin Lejeune, Valerio Lembo, Tomas Lovato, Valerio Lucarini, François Massonnet, Benjamin Müller, Amarjiit Pandde, Núria Pérez-Zanón, Adam Phillips, Valeriu Predoi, Joellen Russell, Alistair Sellar, Federico Serva, Tobias Stacke, Ranjini Swaminathan, Verónica Torralba, Javier Vegas-Regidor, Jost von Hardenberg, Katja Weigel, and Klaus Zimmermann
Geosci. Model Dev., 13, 3383–3438, https://doi.org/10.5194/gmd-13-3383-2020, https://doi.org/10.5194/gmd-13-3383-2020, 2020
Short summary
Short summary
The Earth System Model Evaluation Tool (ESMValTool) is a community diagnostics and performance metrics tool designed to improve comprehensive and routine evaluation of earth system models (ESMs) participating in the Coupled Model Intercomparison Project (CMIP). It has undergone rapid development since the first release in 2016 and is now a well-tested tool that provides end-to-end provenance tracking to ensure reproducibility.
Mattia Righi, Bouwe Andela, Veronika Eyring, Axel Lauer, Valeriu Predoi, Manuel Schlund, Javier Vegas-Regidor, Lisa Bock, Björn Brötz, Lee de Mora, Faruk Diblen, Laura Dreyer, Niels Drost, Paul Earnshaw, Birgit Hassler, Nikolay Koldunov, Bill Little, Saskia Loosveldt Tomas, and Klaus Zimmermann
Geosci. Model Dev., 13, 1179–1199, https://doi.org/10.5194/gmd-13-1179-2020, https://doi.org/10.5194/gmd-13-1179-2020, 2020
Short summary
Short summary
This paper describes the second major release of ESMValTool, a community diagnostic and performance metrics tool for the evaluation of Earth system models. This new version features a brand new design, with an improved interface and a revised preprocessor. It takes advantage of state-of-the-art computational libraries and methods to deploy efficient and user-friendly data processing, improving the performance over its predecessor by more than a factor of 30.
Patrick Scholz, Dmitry Sidorenko, Ozgur Gurses, Sergey Danilov, Nikolay Koldunov, Qiang Wang, Dmitry Sein, Margarita Smolentseva, Natalja Rakowsky, and Thomas Jung
Geosci. Model Dev., 12, 4875–4899, https://doi.org/10.5194/gmd-12-4875-2019, https://doi.org/10.5194/gmd-12-4875-2019, 2019
Short summary
Short summary
This paper is the first in a series documenting and assessing important key components of the Finite-volumE Sea ice-Ocean Model version 2.0 (FESOM2.0). We assess the hydrographic biases, large-scale circulation, numerical performance and scalability of FESOM2.0 compared with its predecessor, FESOM1.4. The main conclusion is that the results of FESOM2.0 compare well to FESOM1.4 in terms of model biases but with a remarkable performance speedup with a 3 times higher throughput.
Ivan Kuznetsov, Alexey Androsov, Vera Fofonova, Sergey Danilov, Natalja Rakowsky, Sven Harig, and Karen Helen Wiltshire
Ocean Sci. Discuss., https://doi.org/10.5194/os-2019-103, https://doi.org/10.5194/os-2019-103, 2019
Revised manuscript not accepted
Short summary
Short summary
Coastal regions play a significant role in global processes. Numerical models are one of the major instruments in understanding ocean dynamics. The main objective of this article is to demonstrate the representativeness of the simulations with the new FESOM-C model by comparing the results with observational data for the southeastern part of the North Sea. An equally important objective is to present the application of convergence analysis of solutions for grids of different spatial resolutions.
Nikolay V. Koldunov, Vadym Aizinger, Natalja Rakowsky, Patrick Scholz, Dmitry Sidorenko, Sergey Danilov, and Thomas Jung
Geosci. Model Dev., 12, 3991–4012, https://doi.org/10.5194/gmd-12-3991-2019, https://doi.org/10.5194/gmd-12-3991-2019, 2019
Short summary
Short summary
We measure how computational performance of the global FESOM2 ocean model (formulated on an unstructured mesh) changes with the increase in the number of computational cores. We find that for many components of the model the performance increases linearly but we also identify two bottlenecks: sea ice and ssh submodules. We show that FESOM2 is on par with the state-of-the-art ocean models in terms of throughput that reach 16 simulated years per day for eddy resolving configuration (1/10°).
Özgür Gürses, Vanessa Kolatschek, Qiang Wang, and Christian Bernd Rodehacke
The Cryosphere, 13, 2317–2324, https://doi.org/10.5194/tc-13-2317-2019, https://doi.org/10.5194/tc-13-2317-2019, 2019
Short summary
Short summary
The warming of the Earth's climate system causes sea level rise. In Antarctica, ice streams flow into the sea and develop ice shelves. These are floating extensions of the ice streams. Ocean water melts these ice shelves. It has been proposed that a submarine wall could shield these ice shelves from the warm water. Our model simulation shows that the wall protects ice shelves. However, the warm water flows to neighboring ice shelves. There, enhanced melting reduces the effectiveness of the wall.
Thomas Rackow, Dmitry V. Sein, Tido Semmler, Sergey Danilov, Nikolay V. Koldunov, Dmitry Sidorenko, Qiang Wang, and Thomas Jung
Geosci. Model Dev., 12, 2635–2656, https://doi.org/10.5194/gmd-12-2635-2019, https://doi.org/10.5194/gmd-12-2635-2019, 2019
Short summary
Short summary
Current climate models show errors in the deep ocean that are larger than the level of natural variability and the response to enhanced greenhouse gas concentrations. These errors are larger than the signals we aim to predict. With the AWI Climate Model, we show that increasing resolution to resolve eddies can lead to major reductions in deep ocean errors. AWI's next-generation (CMIP6) model configuration will thus use locally eddy-resolving computational grids for projecting climate change.
Alexey Androsov, Vera Fofonova, Ivan Kuznetsov, Sergey Danilov, Natalja Rakowsky, Sven Harig, Holger Brix, and Karen Helen Wiltshire
Geosci. Model Dev., 12, 1009–1028, https://doi.org/10.5194/gmd-12-1009-2019, https://doi.org/10.5194/gmd-12-1009-2019, 2019
Short summary
Short summary
We present a description of a coastal ocean circulation model designed to work on variable-resolution meshes made of triangular and quadrilateral cells. This hybrid mesh functionality allows for higher numerical performance and less dissipative solutions.
Monica Ionita, Klaus Grosfeld, Patrick Scholz, Renate Treffeisen, and Gerrit Lohmann
Earth Syst. Dynam., 10, 189–203, https://doi.org/10.5194/esd-10-189-2019, https://doi.org/10.5194/esd-10-189-2019, 2019
Short summary
Short summary
Based on a simple statistical model we show that the September sea ice extent has a high predictive skill, up to 4 months ahead, based on previous months' oceanic and atmospheric conditions. Our statistical model skillfully captures the interannual variability of the September sea ice extent and could provide a valuable tool for identifying relevant regions and oceanic and atmospheric parameters that are important for the sea ice development in the Arctic.
Nikolay V. Koldunov and Luisa Cristini
Adv. Geosci., 45, 295–303, https://doi.org/10.5194/adgeo-45-295-2018, https://doi.org/10.5194/adgeo-45-295-2018, 2018
Short summary
Short summary
We believe that project managers can benefit from using programming languages in their work. In this paper we show several simple examples of how python programming language can be used for some of the basic text manipulation tasks, as well as describe more complicated test cases using a HORIZON 2020 type European project as an example.
Monica Ionita, Patrick Scholz, Klaus Grosfeld, and Renate Treffeisen
Earth Syst. Dynam., 9, 939–954, https://doi.org/10.5194/esd-9-939-2018, https://doi.org/10.5194/esd-9-939-2018, 2018
Short summary
Short summary
In austral spring 2016 the Antarctic region experienced anomalous sea ice retreat in all sectors, with sea ice extent in October and November 2016 being the lowest in the Southern Hemisphere over the observational record (1979–present). The extreme sea ice retreat was accompanied by the wettest and warmest spring on record, over large areas covering the Indian ocean, the Ross Sea, and the Weddell Sea.
Qiang Wang, Claudia Wekerle, Sergey Danilov, Xuezhu Wang, and Thomas Jung
Geosci. Model Dev., 11, 1229–1255, https://doi.org/10.5194/gmd-11-1229-2018, https://doi.org/10.5194/gmd-11-1229-2018, 2018
Short summary
Short summary
For developing a system for Arctic research, we evaluate the Arctic Ocean simulated by FESOM. We use two global meshes differing in the horizontal resolution only in the Arctic Ocean (24 vs. 4.5 km). The high resolution significantly improves the model's representation of the Arctic Ocean. The most pronounced improvement is in the Arctic intermediate layer. The high resolution also improves the ocean surface circulation, mainly through a better representation of the Canadian Arctic Archipelago.
Nikolay V. Koldunov, Armin Köhl, Nuno Serra, and Detlef Stammer
The Cryosphere, 11, 2265–2281, https://doi.org/10.5194/tc-11-2265-2017, https://doi.org/10.5194/tc-11-2265-2017, 2017
Short summary
Short summary
The paper describes one of the first attempts to use the so-called adjoint data assimilation method to bring Arctic Ocean model simulations closer to observation, especially in terms of the sea ice. It is shown that after assimilation the model bias in simulating the Arctic sea ice is considerably reduced. There is also additional improvement in the sea ice thickens representation that is not assimilated directly.
Monica Ionita, Lena M. Tallaksen, Daniel G. Kingston, James H. Stagge, Gregor Laaha, Henny A. J. Van Lanen, Patrick Scholz, Silvia M. Chelcea, and Klaus Haslinger
Hydrol. Earth Syst. Sci., 21, 1397–1419, https://doi.org/10.5194/hess-21-1397-2017, https://doi.org/10.5194/hess-21-1397-2017, 2017
Short summary
Short summary
This paper analyses the European summer drought of 2015 from a climatological perspective, including its origin and spatial and temporal development, and how it compares with the 2003 event. It discusses the main contributing factors controlling the occurrence and persistence of the event: temperature and precipitation anomalies, blocking episodes and sea surface temperatures. The results represent the outcome of a collaborative initiative of members of UNESCO’s FRIEND-Water program.
Sergey Danilov, Dmitry Sidorenko, Qiang Wang, and Thomas Jung
Geosci. Model Dev., 10, 765–789, https://doi.org/10.5194/gmd-10-765-2017, https://doi.org/10.5194/gmd-10-765-2017, 2017
Short summary
Short summary
Numerical models of global ocean circulation are used to learn about future climate. The ocean circulation is characterized by processes on different spatial scales which are still beyond the reach of present computers. We describe a new model setup that allows one to vary a model's spatial resolution and hence focus the computational power on regional dynamics, reaching a better description of local processes in areas of interest.
Stephen M. Griffies, Gokhan Danabasoglu, Paul J. Durack, Alistair J. Adcroft, V. Balaji, Claus W. Böning, Eric P. Chassignet, Enrique Curchitser, Julie Deshayes, Helge Drange, Baylor Fox-Kemper, Peter J. Gleckler, Jonathan M. Gregory, Helmuth Haak, Robert W. Hallberg, Patrick Heimbach, Helene T. Hewitt, David M. Holland, Tatiana Ilyina, Johann H. Jungclaus, Yoshiki Komuro, John P. Krasting, William G. Large, Simon J. Marsland, Simona Masina, Trevor J. McDougall, A. J. George Nurser, James C. Orr, Anna Pirani, Fangli Qiao, Ronald J. Stouffer, Karl E. Taylor, Anne Marie Treguier, Hiroyuki Tsujino, Petteri Uotila, Maria Valdivieso, Qiang Wang, Michael Winton, and Stephen G. Yeager
Geosci. Model Dev., 9, 3231–3296, https://doi.org/10.5194/gmd-9-3231-2016, https://doi.org/10.5194/gmd-9-3231-2016, 2016
Short summary
Short summary
The Ocean Model Intercomparison Project (OMIP) aims to provide a framework for evaluating, understanding, and improving the ocean and sea-ice components of global climate and earth system models contributing to the Coupled Model Intercomparison Project Phase 6 (CMIP6). This document defines OMIP and details a protocol both for simulating global ocean/sea-ice models and for analysing their output.
S. Danilov, Q. Wang, R. Timmermann, N. Iakovlev, D. Sidorenko, M. Kimmritz, T. Jung, and J. Schröter
Geosci. Model Dev., 8, 1747–1761, https://doi.org/10.5194/gmd-8-1747-2015, https://doi.org/10.5194/gmd-8-1747-2015, 2015
Short summary
Short summary
Unstructured meshes allow multi-resolution modeling of ocean dynamics. Sea ice models formulated on unstructured meshes are a necessary component of ocean models intended for climate studies. This work presents a description of a finite-element sea ice model which is used as a component of a finite-element sea ice ocean circulation model. The principles underlying its design can be of interest to other groups pursuing ocean modelling on unstructured meshes.
V. Schourup-Kristensen, D. Sidorenko, D. A. Wolf-Gladrow, and C. Völker
Geosci. Model Dev., 7, 2769–2802, https://doi.org/10.5194/gmd-7-2769-2014, https://doi.org/10.5194/gmd-7-2769-2014, 2014
I. A. Dmitrenko, S. A. Kirillov, N. Serra, N. V. Koldunov, V. V. Ivanov, U. Schauer, I. V. Polyakov, D. Barber, M. Janout, V. S. Lien, M. Makhotin, and Y. Aksenov
Ocean Sci., 10, 719–730, https://doi.org/10.5194/os-10-719-2014, https://doi.org/10.5194/os-10-719-2014, 2014
Q. Wang, S. Danilov, D. Sidorenko, R. Timmermann, C. Wekerle, X. Wang, T. Jung, and J. Schröter
Geosci. Model Dev., 7, 663–693, https://doi.org/10.5194/gmd-7-663-2014, https://doi.org/10.5194/gmd-7-663-2014, 2014
N. Rakowsky, A. Androsov, A. Fuchs, S. Harig, A. Immerz, S. Danilov, W. Hiller, and J. Schröter
Nat. Hazards Earth Syst. Sci., 13, 1629–1642, https://doi.org/10.5194/nhess-13-1629-2013, https://doi.org/10.5194/nhess-13-1629-2013, 2013
Related subject area
Numerical methods
GeoINR 1.0: an implicit neural network approach to three-dimensional geological modelling
A comparison of Eulerian and Lagrangian methods for vertical particle transport in the water column
AutoQS v1: automatic parametrization of QuickSampling based on training images analysis
Sweep Interpolation: A Fourth-Order Accurate Cost Effective Scheme in the Global Environmental Multiscale Model
Implementation and application of ensemble optimal interpolation on an operational chemistry weather model for improving PM2.5 and visibility predictions
A dynamical core based on a discontinuous Galerkin method for higher-order finite-element sea ice modeling
Calibration of Absorbing Boundary Layers for Geoacoustic Wave Modeling in Pseudo-Spectral Time-Domain Methods
GStatSim V1.0: a Python package for geostatistical interpolation and conditional simulation
Leveraging Google's Tensor Processing Units for tsunami-risk mitigation planning in the Pacific Northwest and beyond
An improved subgrid channel model with upwind-form artificial diffusion for river hydrodynamics and floodplain inundation simulation
A model instability issue in the National Centers for Environmental Prediction Global Forecast System version 16 and potential solutions
A comparison of 3-D spherical shell thermal convection results at low to moderate Rayleigh number using ASPECT (version 2.2.0) and CitcomS (version 3.3.1)
Scalable Feature Extraction and Tracking (SCAFET): A general framework for feature extraction from large climate datasets
LISFLOOD-FP 8.1: new GPU-accelerated solvers for faster fluvial/pluvial flood simulations
Fast approximate Barnes interpolation: illustrated by Python-Numba implementation fast-barnes-py v1.0
Perspectives of Physics-Based Machine Learning for Geoscientific Applications Governed by Partial Differential Equations
Strategies for conservative and non-conservative monotone remapping on the sphere
Modeling large‐scale landform evolution with a stream power law for glacial erosion (OpenLEM v37): benchmarking experiments against a more process-based description of ice flow (iSOSIA v3.4.3)
A mixed finite-element discretisation of the shallow-water equations
Multifidelity Monte Carlo estimation for efficient uncertainty quantification in climate-related modeling
Massively parallel modeling and inversion of electrical resistivity tomography data using PFLOTRAN
Parallelized domain decomposition for multi-dimensional Lagrangian random walk mass-transfer particle tracking schemes
The Intelligent Prospector v1.0: geoscientific model development and prediction by sequential data acquisition planning with application to mineral exploration
CHONK 1.0: landscape evolution framework: cellular automata meets graph theory
Predicting peak daily maximum 8 h ozone and linkages to emissions and meteorology in Southern California using machine learning methods (SoCAB-8HR V1.0)
Transfer learning for landslide susceptibility modeling using domain adaptation and case-based reasoning
ISMIP-HOM benchmark experiments using Underworld
spyro: a Firedrake-based wave propagation and full-waveform-inversion finite-element solver
Spatial filtering in a 6D hybrid-Vlasov scheme to alleviate adaptive mesh refinement artifacts: a case study with Vlasiator (versions 5.0, 5.1, and 5.2.1)
A Bayesian data assimilation framework for lake 3D hydrodynamic models with a physics-preserving particle filtering method using SPUX-MITgcm v1
A fast, single-iteration ensemble Kalman smoother for sequential data assimilation
Characterizing uncertainties of Earth system modeling with heterogeneous many-core architecture computing
Metrics for Intercomparison of Remapping Algorithms (MIRA) protocol applied to Earth system models
Impact of the numerical solution approach of a plant hydrodynamic model (v0.1) on vegetation dynamics
Islet: interpolation semi-Lagrangian element-based transport
Multi-dimensional hydrological–hydraulic model with variational data assimilation for river networks and floodplains
Assessing the robustness and scalability of the accelerated pseudo-transient method
Assessment of stochastic weather forecast of precipitation near European cities, based on analogs of circulation
University of Warsaw Lagrangian Cloud Model (UWLCM) 2.0: adaptation of a mixed Eulerian–Lagrangian numerical model for heterogeneous computing clusters
P3D-BRNS v1.0.0: A Three-dimensional, Multiphase, Multicomponent, Pore-scale Reactive Transport Modelling Package for Simulating Biogeochemical Processes in Subsurface Environments
Prediction error growth in a more realistic atmospheric toy model with three spatiotemporal scales
On numerical broadening of particle-size spectra: a condensational growth study using PyMPDATA 1.0
Lossy checkpoint compression in full waveform inversion: a case study with ZFPv0.5.5 and the overthrust model
Blockworlds 0.1.0: a demonstration of anti-aliased geophysics for probabilistic inversions of implicit and kinematic geological models
Efficient high-dimensional variational data assimilation with machine-learned reduced-order models
Improved double Fourier series on a sphere and its application to a semi-implicit semi-Lagrangian shallow-water model
SciKit-GStat 1.0: a SciPy-flavored geostatistical variogram estimation toolbox written in Python
Flow-Py v1.0: a customizable, open-source simulation tool to estimate runout and intensity of gravitational mass flows
Emulation of high-resolution land surface models using sparse Gaussian processes with application to JULES
A three-dimensional variational data assimilation system for aerosol optical properties based on WRF-Chem v4.0: design, development, and application of assimilating Himawari-8 aerosol observations
Michael Hillier, Florian Wellmann, Eric A. de Kemp, Boyan Brodaric, Ernst Schetselaar, and Karine Bédard
Geosci. Model Dev., 16, 6987–7012, https://doi.org/10.5194/gmd-16-6987-2023, https://doi.org/10.5194/gmd-16-6987-2023, 2023
Short summary
Short summary
Neural networks can be used effectively to model three-dimensional geological structures from point data, sampling geological interfaces, units, and structural orientations. Existing neural network approaches for this type of modelling are advanced by the efficient incorporation of unconformities, new knowledge inputs, and improved data fitting techniques. These advances permit the modelling of more complex geology in diverse geological settings, different-sized areas, and various data regimes.
Tor Nordam, Ruben Kristiansen, Raymond Nepstad, Erik van Sebille, and Andy M. Booth
Geosci. Model Dev., 16, 5339–5363, https://doi.org/10.5194/gmd-16-5339-2023, https://doi.org/10.5194/gmd-16-5339-2023, 2023
Short summary
Short summary
We describe and compare two common methods, Eulerian and Lagrangian models, used to simulate the vertical transport of material in the ocean. They both solve the same transport problems but use different approaches for representing the underlying equations on the computer. The main focus of our study is on the numerical accuracy of the two approaches. Our results should be useful for other researchers creating or using these types of transport models.
Mathieu Gravey and Grégoire Mariethoz
Geosci. Model Dev., 16, 5265–5279, https://doi.org/10.5194/gmd-16-5265-2023, https://doi.org/10.5194/gmd-16-5265-2023, 2023
Short summary
Short summary
Multiple‐point geostatistics are widely used to simulate complex spatial structures based on a training image. The use of these methods relies on the possibility of finding optimal training images and parametrization of the simulation algorithms. Here, we propose finding an optimal set of parameters using only the training image as input. The main advantage of our approach is to remove the risk of overfitting an objective function.
Mohammad Mortezazadeh, Jean-Francois Cossette, Ashu Dastoor, Jean de Grandpré, Irena Ivanova, and Abdessamad Qaddouri
EGUsphere, https://doi.org/10.5194/egusphere-2023-1508, https://doi.org/10.5194/egusphere-2023-1508, 2023
Short summary
Short summary
The interpolation process is the most computationally expensive step of the semi-Lagrangian (SL) approach. In this paper we implement a new interpolation scheme into semi-Lagrangian approach which has the same computational cost as a third order polynomial scheme but with the accuracy of a fourth order interpolation scheme. This improvement is achieved by using two 3rd-order backward and forward polynomial interpolation schemes in two consecutive time steps.
Siting Li, Ping Wang, Hong Wang, Yue Peng, Zhaodong Liu, Wenjie Zhang, Hongli Liu, Yaqiang Wang, Huizheng Che, and Xiaoye Zhang
Geosci. Model Dev., 16, 4171–4191, https://doi.org/10.5194/gmd-16-4171-2023, https://doi.org/10.5194/gmd-16-4171-2023, 2023
Short summary
Short summary
Optimizing the initial state of atmospheric chemistry model input is one of the most essential methods to improve forecast accuracy. Considering the large computational load of the model, we introduce an ensemble optimal interpolation scheme (EnOI) for operational use and efficient updating of the initial fields of chemical components. The results suggest that EnOI provides a practical and cost-effective technique for improving the accuracy of chemical weather numerical forecasts.
Thomas Richter, Véronique Dansereau, Christian Lessig, and Piotr Minakowski
Geosci. Model Dev., 16, 3907–3926, https://doi.org/10.5194/gmd-16-3907-2023, https://doi.org/10.5194/gmd-16-3907-2023, 2023
Short summary
Short summary
Sea ice covers not only the pole regions but affects the weather and climate globally. For example, its white surface reflects more sunlight than land. The oceans around the poles are therefore kept cool, which affects the circulation in the oceans worldwide. Simulating the behavior and changes in sea ice on a computer is, however, very difficult. We propose a new computer simulation that better models how cracks in the ice change over time and show this by comparing to other simulations.
Carlos Spa, Oilio Rojas, and Josep de la Puente
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2023-76, https://doi.org/10.5194/gmd-2023-76, 2023
Revised manuscript accepted for GMD
Short summary
Short summary
This paper develops a calibration methodology of all absorbing techniques typically used by Fourier pseudo-spectral time-domain (PSTD) methods for geoacoustic wave simulations. The main contributions of the paper are: - An implementation and quantitative comparison of all absorbing techniques available for PSTD methods through a simple and robust numerical experiment. - A validation of these absorbing techniques in several 3-D seismic scenarios with gradual heterogeneity complexities.
Emma J. MacKie, Michael Field, Lijing Wang, Zhen Yin, Nathan Schoedl, Matthew Hibbs, and Allan Zhang
Geosci. Model Dev., 16, 3765–3783, https://doi.org/10.5194/gmd-16-3765-2023, https://doi.org/10.5194/gmd-16-3765-2023, 2023
Short summary
Short summary
Earth scientists often have to fill in spatial gaps in measurements. This gap-filling or interpolation can be accomplished with geostatistical methods, where the statistical relationships between measurements are used to inform how these gaps should be filled. Despite the broad utility of these methods, there are few freely available geostatistical software applications. We present GStatSim, a Python package for performing different geostatistical interpolation methods.
Ian Madden, Simone Marras, and Jenny Suckale
Geosci. Model Dev., 16, 3479–3500, https://doi.org/10.5194/gmd-16-3479-2023, https://doi.org/10.5194/gmd-16-3479-2023, 2023
Short summary
Short summary
To aid risk managers who may wish to rapidly assess tsunami risk but may lack high-performance computing infrastructure, we provide an accessible software package able to rapidly model tsunami inundation over real topography by leveraging Google's Tensor Processing Unit, a high-performance hardware. Minimally trained users can take advantage of the rapid modeling abilities provided by this package via a web browser thanks to the ease of use of Google Cloud Platform.
Youtong Rong, Paul Bates, and Jeffrey Neal
Geosci. Model Dev., 16, 3291–3311, https://doi.org/10.5194/gmd-16-3291-2023, https://doi.org/10.5194/gmd-16-3291-2023, 2023
Short summary
Short summary
A novel subgrid channel (SGC) model is developed for river–floodplain modelling, allowing utilization of subgrid-scale bathymetric information while performing computations on relatively coarse grids. By including adaptive artificial diffusion, potential numerical instability, which the original SGC solver had, in low-friction regions such as urban areas is addressed. Evaluation of the new SGC model through structured tests confirmed that the accuracy and stability have improved.
Xiaqiong Zhou and Hann-Ming Henry Juang
Geosci. Model Dev., 16, 3263–3274, https://doi.org/10.5194/gmd-16-3263-2023, https://doi.org/10.5194/gmd-16-3263-2023, 2023
Short summary
Short summary
The National Centers for Environmental Prediction Global Forecast System version 16 experienced model instability failures in real-time runs resolved by increasing the minimum thickness depth parameter. Further investigation revealed that the issue was caused by the advection of geopotential heights at the model's layer interfaces. By replacing high-order boundary conditions with zero-gradient boundary conditions for interface-wind reconstruction, the instability was effectively addressed.
Grant T. Euen, Shangxin Liu, Rene Gassmöller, Timo Heister, and Scott D. King
Geosci. Model Dev., 16, 3221–3239, https://doi.org/10.5194/gmd-16-3221-2023, https://doi.org/10.5194/gmd-16-3221-2023, 2023
Short summary
Short summary
Due to the increasing availability of high-performance computing over the past few decades, numerical models have become an important tool for research. Here we test two geodynamic codes that produce such models: ASPECT, a newer code, and CitcomS, an older one. We show that they produce solutions that are extremely close. As methods and codes become more complex over time, showing reproducibility allows us to seamlessly link previously known information to modern methodologies.
Arjun Babu Nellikkattil, Travis Allen O’Brien, Danielle Lemmon, June-Yi Lee, and Jung-Eun Chu
EGUsphere, https://doi.org/10.5194/egusphere-2023-592, https://doi.org/10.5194/egusphere-2023-592, 2023
Short summary
Short summary
The exponential increases in the climate and weather data demand computationally efficient and mathematically sound feature extraction algorithms to identify phenomenons such as atmospheric rivers, cyclones, sea surface temperature fronts, jet streams, etc. In this study, we present an innovative generalized framework for extracting two and three-dimensional features from gridded datasets using the local geometric shape of the input fields.
Mohammad Kazem Sharifian, Georges Kesserwani, Alovya Ahmed Chowdhury, Jeffrey Neal, and Paul Bates
Geosci. Model Dev., 16, 2391–2413, https://doi.org/10.5194/gmd-16-2391-2023, https://doi.org/10.5194/gmd-16-2391-2023, 2023
Short summary
Short summary
This paper describes a new release of the LISFLOOD-FP model for fast and efficient flood simulations. It features a new non-uniform grid generator that uses multiwavelet analyses to sensibly coarsens the resolutions where the local topographic variations are smooth. Moreover, the model is parallelised on the graphical processing units (GPUs) to further boost computational efficiency. The performance of the model is assessed for five real-world case studies, noting its potential applications.
Bruno K. Zürcher
Geosci. Model Dev., 16, 1697–1711, https://doi.org/10.5194/gmd-16-1697-2023, https://doi.org/10.5194/gmd-16-1697-2023, 2023
Short summary
Short summary
We present a novel algorithm to efficiently compute Barnes interpolation, which is a method for transforming data values recorded at irregularly spaced points into a corresponding regular grid. In contrast to naive implementations with an algorithmic complexity that depends on the product of the number of sample points and the number of grid points, our approach reduces this dependency to their sum.
Denise Degen, Daniel Caviedes Voullième, Susanne Buiter, Harrie-Jan Hendriks Franssen, Harry Vereecken, Ana González-Nicolás, and Florian Wellmann
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2022-309, https://doi.org/10.5194/gmd-2022-309, 2023
Revised manuscript accepted for GMD
Short summary
Short summary
In geosciences, we often use simulations based on physical laws. These simulations can be computationally expensive, which is a problem if simulations must be performed many times (e.g., to add error bounds). We show how a novel machine learning method helps to reduce simulation time. In comparison to other approaches, which typically only look at the output of a simulation, the method considers physical laws in the simulation itself. The method provides reliable results faster than standard.
David H. Marsico and Paul A. Ullrich
Geosci. Model Dev., 16, 1537–1551, https://doi.org/10.5194/gmd-16-1537-2023, https://doi.org/10.5194/gmd-16-1537-2023, 2023
Short summary
Short summary
Climate models involve several different components, such as the atmosphere, ocean, and land models. Information needs to be exchanged, or remapped, between these models, and devising algorithms for performing this exchange is important for ensuring the accuracy of climate simulations. In this paper, we examine the efficacy of several traditional and novel approaches to remapping on the sphere and demonstrate where our approaches offer improvement.
Moritz Liebl, Jörg Robl, Stefan Hergarten, David Lundbek Egholm, and Kurt Stüwe
Geosci. Model Dev., 16, 1315–1343, https://doi.org/10.5194/gmd-16-1315-2023, https://doi.org/10.5194/gmd-16-1315-2023, 2023
Short summary
Short summary
In this study, we benchmark a topography-based model for glacier erosion (OpenLEM) with a well-established process-based model (iSOSIA). Our experiments show that large-scale erosion patterns and particularly the transformation of valley length geometry from fluvial to glacial conditions are very similar in both models. This finding enables the application of OpenLEM to study the influence of climate and tectonics on glaciated mountains with reasonable computational effort on standard PCs.
James Kent, Thomas Melvin, and Golo Albert Wimmer
Geosci. Model Dev., 16, 1265–1276, https://doi.org/10.5194/gmd-16-1265-2023, https://doi.org/10.5194/gmd-16-1265-2023, 2023
Short summary
Short summary
This paper introduces the Met Office's new shallow water model. The shallow water model is a building block towards the Met Office's new atmospheric dynamical core. The shallow water model is tested on a number of standard spherical shallow water test cases, including flow over mountains and unstable jets. Results show that the model produces similar results to other shallow water models in the literature.
Anthony Gruber, Max Gunzburger, Lili Ju, Rihui Lan, and Zhu Wang
Geosci. Model Dev., 16, 1213–1229, https://doi.org/10.5194/gmd-16-1213-2023, https://doi.org/10.5194/gmd-16-1213-2023, 2023
Short summary
Short summary
This work applies a novel technical tool, multifidelity Monte Carlo (MFMC) estimation, to three climate-related benchmark experiments involving oceanic, atmospheric, and glacial modeling. By considering useful quantities such as maximum sea height and total (kinetic) energy, we show that MFMC leads to predictions which are more accurate and less costly than those obtained by standard methods. This suggests MFMC as a potential drop-in replacement for estimation in realistic climate models.
Piyoosh Jaysaval, Glenn E. Hammond, and Timothy C. Johnson
Geosci. Model Dev., 16, 961–976, https://doi.org/10.5194/gmd-16-961-2023, https://doi.org/10.5194/gmd-16-961-2023, 2023
Short summary
Short summary
We present a robust and highly scalable implementation of numerical forward modeling and inversion algorithms for geophysical electrical resistivity tomography data. The implementation is publicly available and developed within the framework of PFLOTRAN (http://www.pflotran.org), an open-source, state-of-the-art massively parallel subsurface flow and transport simulation code. The paper details all the theoretical and implementation aspects of the new capabilities along with test examples.
Lucas Schauer, Michael J. Schmidt, Nicholas B. Engdahl, Stephen D. Pankavich, David A. Benson, and Diogo Bolster
Geosci. Model Dev., 16, 833–849, https://doi.org/10.5194/gmd-16-833-2023, https://doi.org/10.5194/gmd-16-833-2023, 2023
Short summary
Short summary
We develop a multi-dimensional, parallelized domain decomposition strategy for mass-transfer particle tracking methods in two and three dimensions, investigate different procedures for decomposing the domain, and prescribe an optimal tiling based on physical problem parameters and the number of available CPU cores. For an optimally subdivided diffusion problem, the parallelized algorithm achieves nearly perfect linear speedup in comparison with the serial run-up to thousands of cores.
John Mern and Jef Caers
Geosci. Model Dev., 16, 289–313, https://doi.org/10.5194/gmd-16-289-2023, https://doi.org/10.5194/gmd-16-289-2023, 2023
Short summary
Short summary
In this work, we formulate the sequential geoscientific data acquisition problem as a problem that is similar to playing chess against nature, except the pieces are not fully observed. Solutions to these problems are given in AI and rarely used in geoscientific data planning. We illustrate our approach to a simple 2D problem of mineral exploration.
Boris Gailleton, Luca Malatesta, Guillaume Cordonnier, and Jean Braun
EGUsphere, https://doi.org/10.5194/egusphere-2022-1394, https://doi.org/10.5194/egusphere-2022-1394, 2023
Short summary
Short summary
This contribution presents a new method to numerically explore the evolution of mountain ranges and surroundings area. The methods helps monitoring with details the timing and travel path of material eroded from the mountain ranges. It suits particularly well studies juxtaposing different domains – lakes or multiple rock types for example – and allow the combination of different process together.
Ziqi Gao, Yifeng Wang, Petros Vasilakos, Cesunica E. Ivey, Khanh Do, and Armistead G. Russell
Geosci. Model Dev., 15, 9015–9029, https://doi.org/10.5194/gmd-15-9015-2022, https://doi.org/10.5194/gmd-15-9015-2022, 2022
Short summary
Short summary
While the national ambient air quality standard of ozone is based on the 3-year average of the fourth highest 8 h maximum (MDA8) ozone concentrations, these predicted extreme values using numerical methods are always biased low. We built four computational models (GAM, MARS, random forest and SVR) to predict the fourth highest MDA8 ozone in Southern California using precursor emissions, meteorology and climatological patterns. All models presented acceptable performance, with GAM being the best.
Zhihao Wang, Jason Goetz, and Alexander Brenning
Geosci. Model Dev., 15, 8765–8784, https://doi.org/10.5194/gmd-15-8765-2022, https://doi.org/10.5194/gmd-15-8765-2022, 2022
Short summary
Short summary
A lack of inventory data can be a limiting factor in developing landslide predictive models, which are crucial for supporting hazard policy and decision-making. We show how case-based reasoning and domain adaptation (transfer-learning techniques) can effectively retrieve similar landslide modeling situations for prediction in new data-scarce areas. Using cases in Italy, Austria, and Ecuador, our findings support the application of transfer learning for areas that require rapid model development.
Till Sachau, Haibin Yang, Justin Lang, Paul D. Bons, and Louis Moresi
Geosci. Model Dev., 15, 8749–8764, https://doi.org/10.5194/gmd-15-8749-2022, https://doi.org/10.5194/gmd-15-8749-2022, 2022
Short summary
Short summary
Knowledge of the internal structures of the major continental ice sheets is improving, thanks to new investigative techniques. These structures are an essential indication of the flow behavior and dynamics of ice transport, which in turn is important for understanding the actual impact of the vast amounts of water trapped in continental ice sheets on global sea-level rise. The software studied here is specifically designed to simulate such structures and their evolution.
Keith J. Roberts, Alexandre Olender, Lucas Franceschini, Robert C. Kirby, Rafael S. Gioria, and Bruno S. Carmo
Geosci. Model Dev., 15, 8639–8667, https://doi.org/10.5194/gmd-15-8639-2022, https://doi.org/10.5194/gmd-15-8639-2022, 2022
Short summary
Short summary
Finite-element methods (FEMs) permit the use of more flexible unstructured meshes but are rarely used in full waveform inversions (FWIs), an iterative process that reconstructs velocity models of earth’s subsurface, due to computational and memory storage costs. To reduce those costs, novel software is presented allowing the use of high-order mass-lumped FEMs on triangular meshes, together with a material-property mesh-adaptation performance-enhancing strategy, enabling its use in FWIs.
Konstantinos Papadakis, Yann Pfau-Kempf, Urs Ganse, Markus Battarbee, Markku Alho, Maxime Grandin, Maxime Dubart, Lucile Turc, Hongyang Zhou, Konstantinos Horaites, Ivan Zaitsev, Giulia Cozzani, Maarja Bussov, Evgeny Gordeev, Fasil Tesema, Harriet George, Jonas Suni, Vertti Tarvus, and Minna Palmroth
Geosci. Model Dev., 15, 7903–7912, https://doi.org/10.5194/gmd-15-7903-2022, https://doi.org/10.5194/gmd-15-7903-2022, 2022
Short summary
Short summary
Vlasiator is a plasma simulation code that simulates the entire near-Earth space at a global scale. As 6D simulations require enormous amounts of computational resources, Vlasiator uses adaptive mesh refinement (AMR) to lighten the computational burden. However, due to Vlasiator’s grid topology, AMR simulations suffer from grid aliasing artifacts that affect the global results. In this work, we present and evaluate the performance of a mechanism for alleviating those artifacts.
Artur Safin, Damien Bouffard, Firat Ozdemir, Cintia L. Ramón, James Runnalls, Fotis Georgatos, Camille Minaudo, and Jonas Šukys
Geosci. Model Dev., 15, 7715–7730, https://doi.org/10.5194/gmd-15-7715-2022, https://doi.org/10.5194/gmd-15-7715-2022, 2022
Short summary
Short summary
Reconciling the differences between numerical model predictions and observational data is always a challenge. In this paper, we investigate the viability of a novel approach to the calibration of a three-dimensional hydrodynamic model of Lake Geneva, where the target parameters are inferred in terms of distributions. We employ a filtering technique that generates physically consistent model trajectories and implement a neural network to enable bulk-to-skin temperature conversion.
Colin Grudzien and Marc Bocquet
Geosci. Model Dev., 15, 7641–7681, https://doi.org/10.5194/gmd-15-7641-2022, https://doi.org/10.5194/gmd-15-7641-2022, 2022
Short summary
Short summary
Iterative optimization techniques, the state of the art in data assimilation, have largely focused on extending forecast accuracy to moderate- to long-range forecast systems. However, current methodology may not be cost-effective in reducing forecast errors in online, short-range forecast systems. We propose a novel optimization of these techniques for online, short-range forecast cycles, simultaneously providing an improvement in forecast accuracy and a reduction in the computational cost.
Yangyang Yu, Shaoqing Zhang, Haohuan Fu, Lixin Wu, Dexun Chen, Yang Gao, Zhiqiang Wei, Dongning Jia, and Xiaopei Lin
Geosci. Model Dev., 15, 6695–6708, https://doi.org/10.5194/gmd-15-6695-2022, https://doi.org/10.5194/gmd-15-6695-2022, 2022
Short summary
Short summary
To understand the scientific consequence of perturbations caused by slave cores in heterogeneous computing environments, we examine the influence of perturbation amplitudes on the determination of the cloud bottom and cloud top and compute the probability density function (PDF) of generated clouds. A series of comparisons of the PDFs between homogeneous and heterogeneous systems show consistently acceptable error tolerances when using slave cores in heterogeneous computing environments.
Vijay S. Mahadevan, Jorge E. Guerra, Xiangmin Jiao, Paul Kuberry, Yipeng Li, Paul Ullrich, David Marsico, Robert Jacob, Pavel Bochev, and Philip Jones
Geosci. Model Dev., 15, 6601–6635, https://doi.org/10.5194/gmd-15-6601-2022, https://doi.org/10.5194/gmd-15-6601-2022, 2022
Short summary
Short summary
Coupled Earth system models require transfer of field data between multiple components with varying spatial resolutions to determine the correct climate behavior. We present the Metrics for Intercomparison of Remapping Algorithms (MIRA) protocol to evaluate the accuracy, conservation properties, monotonicity, and local feature preservation of four different remapper algorithms for various unstructured mesh problems of interest. Future extensions to more practical use cases are also discussed.
Yilin Fang, L. Ruby Leung, Ryan Knox, Charlie Koven, and Ben Bond-Lamberty
Geosci. Model Dev., 15, 6385–6398, https://doi.org/10.5194/gmd-15-6385-2022, https://doi.org/10.5194/gmd-15-6385-2022, 2022
Short summary
Short summary
Accounting for water movement in the soil and water transport within the plant is important for plant growth in Earth system modeling. We implemented different numerical approaches for a plant hydrodynamic model and compared their impacts on the simulated aboveground biomass (AGB) at single points and globally. We found care should be taken when discretizing the number of soil layers for numerical simulations as it can significantly affect AGB if accuracy and computational costs are of concern.
Andrew M. Bradley, Peter A. Bosler, and Oksana Guba
Geosci. Model Dev., 15, 6285–6310, https://doi.org/10.5194/gmd-15-6285-2022, https://doi.org/10.5194/gmd-15-6285-2022, 2022
Short summary
Short summary
Tracer transport in atmosphere models can be computationally expensive. We describe a flexible and efficient interpolation semi-Lagrangian method, the Islet method. It permits using up to three grids that share an element grid: a dynamics grid for computing quantities such as the wind velocity; a physics parameterizations grid; and a tracer grid. The Islet method performs well on a number of verification problems and achieves high performance in the E3SM Atmosphere Model version 2.
Léo Pujol, Pierre-André Garambois, and Jérôme Monnier
Geosci. Model Dev., 15, 6085–6113, https://doi.org/10.5194/gmd-15-6085-2022, https://doi.org/10.5194/gmd-15-6085-2022, 2022
Short summary
Short summary
This contribution presents a new numerical model for representing hydraulic–hydrological quantities at the basin scale. It allows modeling large areas at a low computational cost, with fine zooms where needed. It allows the integration of local and satellite measurements, via data assimilation methods, to improve the model's match to observations. Using this capability, good matches to in situ observations are obtained on a model of the complex Adour river network with fine zooms on floodplains.
Ludovic Räss, Ivan Utkin, Thibault Duretz, Samuel Omlin, and Yuri Y. Podladchikov
Geosci. Model Dev., 15, 5757–5786, https://doi.org/10.5194/gmd-15-5757-2022, https://doi.org/10.5194/gmd-15-5757-2022, 2022
Short summary
Short summary
Continuum mechanics-based modelling of physical processes at large scale requires huge computational resources provided by massively parallel hardware such as graphical processing units. We present a suite of numerical algorithms, implemented using the Julia language, that efficiently leverages the parallelism. We demonstrate that our implementation is efficient, scalable and robust and showcase applications to various geophysical problems.
Meriem Krouma, Pascal Yiou, Céline Déandreis, and Soulivanh Thao
Geosci. Model Dev., 15, 4941–4958, https://doi.org/10.5194/gmd-15-4941-2022, https://doi.org/10.5194/gmd-15-4941-2022, 2022
Short summary
Short summary
We evaluated the skill of a stochastic weather generator (SWG) to forecast precipitation at different time scales and in different areas of western Europe from analogs of Z500 hPa. The SWG has the skill to simulate precipitation for 5 and 10 d. We found that forecast weaknesses can be associated with specific weather patterns. The comparison with ECMWF forecasts confirms the skill of our model. This work is important because it provides information about weather forecasts over specific areas.
Piotr Dziekan and Piotr Zmijewski
Geosci. Model Dev., 15, 4489–4501, https://doi.org/10.5194/gmd-15-4489-2022, https://doi.org/10.5194/gmd-15-4489-2022, 2022
Short summary
Short summary
Detailed computer simulations of clouds are important for understanding Earth's atmosphere and climate. The paper describes how the UWLCM has been adapted to work on supercomputers. A distinctive feature of UWLCM is that air flow is calculated by processors at the same time as cloud droplets are modeled by graphics cards. Thanks to this, use of computing resources is maximized and the time to complete simulations of large domains is not affected by communications between supercomputer nodes.
Amir Golparvar, Matthias Kästner, and Martin Thullner
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2022-86, https://doi.org/10.5194/gmd-2022-86, 2022
Revised manuscript accepted for GMD
Short summary
Short summary
Coupled reaction-transport modeling is an established and highly beneficial method for studying natural and synthetic porous material with applications ranging from industrial processes to natural decompositions in terrestrial environments. Up to now, a framework that explicitly considers the porous structure (e.g., from µ-CT images), for modeling the transport of reactive species is missing. We presented a model that overcomes this limitation and represents a novel numerical simulation toolbox.
Hynek Bednář and Holger Kantz
Geosci. Model Dev., 15, 4147–4161, https://doi.org/10.5194/gmd-15-4147-2022, https://doi.org/10.5194/gmd-15-4147-2022, 2022
Short summary
Short summary
A scale-dependent error growth described by a power law or by a quadratic hypothesis is studied in Lorenz’s system with three spatiotemporal levels. The validity of power law is extended by including a saturation effect. The quadratic hypothesis can only serve as a first guess. In addition, we study the initial error growth for the ECMWF forecast system. Fitting the parameters, we conclude that there is an intrinsic limit of predictability after 22 days.
Michael A. Olesik, Jakub Banaśkiewicz, Piotr Bartman, Manuel Baumgartner, Simon Unterstrasser, and Sylwester Arabas
Geosci. Model Dev., 15, 3879–3899, https://doi.org/10.5194/gmd-15-3879-2022, https://doi.org/10.5194/gmd-15-3879-2022, 2022
Short summary
Short summary
In systems such as atmospheric clouds, droplets undergo growth through condensation of vapor. The broadness of the resultant size spectrum of droplets influences precipitation likelihood and the radiative properties of clouds. One of the inherent limitations of simulations of the problem is the so-called numerical diffusion causing overestimation of the spectrum width, hence the term numerical broadening. In the paper, we take a closer look at one of the algorithms used in this context: MPDATA.
Navjot Kukreja, Jan Hückelheim, Mathias Louboutin, John Washbourne, Paul H. J. Kelly, and Gerard J. Gorman
Geosci. Model Dev., 15, 3815–3829, https://doi.org/10.5194/gmd-15-3815-2022, https://doi.org/10.5194/gmd-15-3815-2022, 2022
Short summary
Short summary
Full waveform inversion (FWI) is a partial-differential equation (PDE)-constrained optimization problem that is notorious for its high computational load and memory footprint. In this paper we present a method that combines recomputation with lossy compression to accelerate the computation with minimal loss of precision in the results. We show this using experiments running FWI with a variety of compression settings on a popular academic dataset.
Richard Scalzo, Mark Lindsay, Mark Jessell, Guillaume Pirot, Jeremie Giraud, Edward Cripps, and Sally Cripps
Geosci. Model Dev., 15, 3641–3662, https://doi.org/10.5194/gmd-15-3641-2022, https://doi.org/10.5194/gmd-15-3641-2022, 2022
Short summary
Short summary
This paper addresses numerical challenges in reasoning about geological models constrained by sensor data, especially models that describe the history of an area in terms of a sequence of events. Our method ensures that small changes in simulated geological features, such as the position of a boundary between two rock layers, do not result in unrealistically large changes to resulting sensor measurements, as occur presently using several popular modeling packages.
Romit Maulik, Vishwas Rao, Jiali Wang, Gianmarco Mengaldo, Emil Constantinescu, Bethany Lusch, Prasanna Balaprakash, Ian Foster, and Rao Kotamarthi
Geosci. Model Dev., 15, 3433–3445, https://doi.org/10.5194/gmd-15-3433-2022, https://doi.org/10.5194/gmd-15-3433-2022, 2022
Short summary
Short summary
In numerical weather prediction, data assimilation is frequently utilized to enhance the accuracy of forecasts from equation-based models. In this work we use a machine learning framework that approximates a complex dynamical system given by the geopotential height. Instead of using an equation-based model, we utilize this machine-learned alternative to dramatically accelerate both the forecast and the assimilation of data, thereby reducing need for large computational resources.
Hiromasa Yoshimura
Geosci. Model Dev., 15, 2561–2597, https://doi.org/10.5194/gmd-15-2561-2022, https://doi.org/10.5194/gmd-15-2561-2022, 2022
Short summary
Short summary
This paper proposes a new double Fourier series (DFS) method on a sphere that improves the numerical stability of a model compared with conventional DFS methods. The shallow-water model and the advection model using the new DFS method give stable results without the appearance of high-wavenumber noise near the poles. The model using the new DFS method is faster than the model using spherical harmonics (especially at high resolutions) and gives almost the same results.
Mirko Mälicke
Geosci. Model Dev., 15, 2505–2532, https://doi.org/10.5194/gmd-15-2505-2022, https://doi.org/10.5194/gmd-15-2505-2022, 2022
Short summary
Short summary
I preset SciKit-GStat, a well-documented and tested Python package for variogram estimation. The variogram is the core means of geostatistics, which almost all other methods rely on. Geostatistical interpolation and field generation are widely spread in geoscience, i.e., for data assimilation or modeling.
While SciKit-GStat focuses on effective and intuitive variogram estimation, it can interface with other prominent packages and make its variograms available for a multitude of methods.
Christopher J. L. D'Amboise, Michael Neuhauser, Michaela Teich, Andreas Huber, Andreas Kofler, Frank Perzl, Reinhard Fromm, Karl Kleemayr, and Jan-Thomas Fischer
Geosci. Model Dev., 15, 2423–2439, https://doi.org/10.5194/gmd-15-2423-2022, https://doi.org/10.5194/gmd-15-2423-2022, 2022
Short summary
Short summary
The term gravitational mass flow (GMF) covers various natural hazard processes such as snow avalanches, rockfall, landslides, and debris flows. Here we present the open-source GMF simulation tool Flow-Py. The model equations are based on simple geometrical relations in three-dimensional terrain. We show that Flow-Py is an educational, innovative GMF simulation tool with three computational experiments: 1. validation of implementation, 2. performance, and 3. expandability.
Evan Baker, Anna B. Harper, Daniel Williamson, and Peter Challenor
Geosci. Model Dev., 15, 1913–1929, https://doi.org/10.5194/gmd-15-1913-2022, https://doi.org/10.5194/gmd-15-1913-2022, 2022
Short summary
Short summary
We have adapted machine learning techniques to build a model of the land surface in Great Britain. The model was trained using data from a very complex land surface model called JULES. Our model is faster at producing simulations and predictions and can investigate many different scenarios, which can be used to improve our understanding of the climate and could also be used to help make local decisions.
Daichun Wang, Wei You, Zengliang Zang, Xiaobin Pan, Yiwen Hu, and Yanfei Liang
Geosci. Model Dev., 15, 1821–1840, https://doi.org/10.5194/gmd-15-1821-2022, https://doi.org/10.5194/gmd-15-1821-2022, 2022
Short summary
Short summary
This paper presents a 3D variational data assimilation system for aerosol optical properties, including aerosol optical thickness (AOT) retrievals and lidar-based aerosol profiles, which was developed for a size-resolved sectional model in WRF-Chem. To directly assimilate aerosol optical properties, an observation operator based on the Mie scattering theory was designed. The results show that Himawari-8 AOT assimilation can significantly improve model aerosol analyses and forecasts.
Cited articles
Adcroft, A., Campin, J.-M., Hill, C., and Marshall, J.: Implementation of an
Atmosphere–Ocean General Circulation Model on the Expanded Spherical Cube,
Mon. Weather Rev., 132, 2845–2863, https://doi.org/10.1175/MWR2823.1, 2004. a
Danilov, S., Sidorenko, D., Wang, Q., and Jung, T.: The Finite-volumE Sea ice–Ocean Model (FESOM2), Geosci. Model Dev., 10, 765–789, https://doi.org/10.5194/gmd-10-765-2017, 2017. a, b
Katsman, C. A., Drijfhout, S. S., Dijkstra, H. A., and Spall, M. A.: Sinking of
dense North Atlantic waters in a global ocean model: Location and
controls, J. Geophys. Res., 123, 5, https://doi.org/10.1029/2017JC013329,
2018.
a
Koldunov, N. V., Aizinger, V., Rakowsky, N., Scholz, P., Sidorenko, D., Danilov, S., and Jung, T.: Scalability and some optimization of the Finite-volumE Sea ice–Ocean Model, Version 2.0 (FESOM2), Geosci. Model Dev., 12, 3991–4012, https://doi.org/10.5194/gmd-12-3991-2019, 2019. a
Korn, P.: Formulation of an unstructured grid model for global ocean dynamics, J. Comput. Phys., 339, 525–552, 2017. a
Kundu, P. K., Cohen, Ira M., A., and Dowling, D. R.: Fluid mechanics,
Waltham, MA, Academic Press, fifth edition edn., previous ed.: 2008, 2012. a
Megann, A.: Estimating the numerical diapycnal mixing in an eddy-permitting
ocean model, Ocean Modell., 121, 19–33,
https://doi.org/10.1016/j.ocemod.2017.11.001, 2018. a
Ringler, T., Petersen, M., Higdon, R., Jacobsen, D., Maltrud, M., and Jones,
P.: A multi-resolution approach to global ocean modelling, Ocean Modell., 69, 211–232, 2013. a
Sidorenko, D., Danilov, S., Wang, Q., Huerta-Casas, A., and Schröter, J.: On
computing transports in finite-element models, Ocean Modell., 28, 60–65,
https://doi.org/10.1016/j.ocemod.2008.09.001, 2009. a, b
Sidorenko, D., Danilov, S., Koldunov, N., Scholz, P., and Wang, Q.: FESOM 2.0
computation of meridional overturning and barotropic streamfunctions,
Zenodo, https://doi.org/10.5281/zenodo.3552456, 2019. a
Sidorenko, D., Danilov, S., Koldunov, N., Scholz, P., and Wang, Q.: FESOM 2.0
computation of meridional overturning and barotropic streamfunctions (model
code), Zenodo, https://doi.org/10.5281/zenodo.3613366, 2020. a
Smith, R. and Gent, P.: Ocean component of the Community Climate System model
(CCSM2. 0 and 3.0), Reference manual for the Parallel Ocean Program (POP),
available at: http://www.cesm.ucar.edu (last access: 21 July 2020), 2004. a
Wang, Q., Danilov, S., Sidorenko, D., Timmermann, R., Wekerle, C., Wang, X., Jung, T., and Schröter, J.: The Finite Element Sea Ice-Ocean Model (FESOM) v.1.4: formulation of an ocean general circulation model, Geosci. Model Dev., 7, 663–693, https://doi.org/10.5194/gmd-7-663-2014, 2014. a
Woodring, J., Petersen, M., Schmeißer, A., Patchett, J., Ahrens, J., and
Hagen, H.: In situ eddy analysis in a high-resolution ocean climate model,
IEEE T. Vis. Comput. Gr., 22, 857–866,
https://doi.org/10.1109/TVCG.2015.2467411, 2015. a
Short summary
Computation of barotropic and meridional overturning streamfunctions for models formulated on unstructured meshes is commonly preceded by interpolation to a regular mesh. This operation destroys the original conservation, which can be then be artificially imposed to make the computation possible. An elementary method is proposed that avoids interpolation and preserves conservation in a strict model sense.
Computation of barotropic and meridional overturning streamfunctions for models formulated on...