Articles | Volume 13, issue 3
https://doi.org/10.5194/gmd-13-1267-2020
https://doi.org/10.5194/gmd-13-1267-2020
Development and technical paper
 | 
17 Mar 2020
Development and technical paper |  | 17 Mar 2020

Data assimilation of in situ and satellite remote sensing data to 3D hydrodynamic lake models: a case study using Delft3D-FLOW v4.03 and OpenDA v2.4

Theo Baracchini, Philip Y. Chu, Jonas Šukys, Gian Lieberherr, Stefan Wunderle, Alfred Wüest, and Damien Bouffard

Related authors

Using automatic calibration to improve the physics behind complex numerical models: An example from a 3D lake model using Delft3d (v6.02.10) and DYNO-PODS (v1.0)
Marina Amadori, Abolfazl Irani Rahaghi, Damien Bouffard, and Marco Toffolon
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2024-118,https://doi.org/10.5194/gmd-2024-118, 2024
Preprint under review for GMD
Short summary
Real-time pollen identification using holographic imaging and fluorescence measurements
Sophie Erb, Elias Graf, Yanick Zeder, Simone Lionetti, Alexis Berne, Bernard Clot, Gian Lieberherr, Fiona Tummon, Pascal Wullschleger, and Benoît Crouzy
Atmos. Meas. Tech., 17, 441–451, https://doi.org/10.5194/amt-17-441-2024,https://doi.org/10.5194/amt-17-441-2024, 2024
Short summary
Past and future climate change effects on the thermal regime and oxygen solubility of four peri-alpine lakes
Olivia Desgué-Itier, Laura Melo Vieira Soares, Orlane Anneville, Damien Bouffard, Vincent Chanudet, Pierre Alain Danis, Isabelle Domaizon, Jean Guillard, Théo Mazure, Najwa Sharaf, Frédéric Soulignac, Viet Tran-Khac, Brigitte Vinçon-Leite, and Jean-Philippe Jenny
Hydrol. Earth Syst. Sci., 27, 837–859, https://doi.org/10.5194/hess-27-837-2023,https://doi.org/10.5194/hess-27-837-2023, 2023
Short summary
A Bayesian data assimilation framework for lake 3D hydrodynamic models with a physics-preserving particle filtering method using SPUX-MITgcm v1
Artur Safin, Damien Bouffard, Firat Ozdemir, Cintia L. Ramón, James Runnalls, Fotis Georgatos, Camille Minaudo, and Jonas Šukys
Geosci. Model Dev., 15, 7715–7730, https://doi.org/10.5194/gmd-15-7715-2022,https://doi.org/10.5194/gmd-15-7715-2022, 2022
Short summary
Inland lake temperature initialization via coupled cycling with atmospheric data assimilation
Stanley G. Benjamin, Tatiana G. Smirnova, Eric P. James, Eric J. Anderson, Ayumi Fujisaki-Manome, John G. W. Kelley, Greg E. Mann, Andrew D. Gronewold, Philip Chu, and Sean G. T. Kelley
Geosci. Model Dev., 15, 6659–6676, https://doi.org/10.5194/gmd-15-6659-2022,https://doi.org/10.5194/gmd-15-6659-2022, 2022
Short summary

Related subject area

Numerical methods
The Measurement Error Proxy System Model: MEPSM v0.2
Matt J. Fischer
Geosci. Model Dev., 17, 6745–6760, https://doi.org/10.5194/gmd-17-6745-2024,https://doi.org/10.5194/gmd-17-6745-2024, 2024
Short summary
Numerical stabilization methods for level-set-based ice front migration
Gong Cheng, Mathieu Morlighem, and G. Hilmar Gudmundsson
Geosci. Model Dev., 17, 6227–6247, https://doi.org/10.5194/gmd-17-6227-2024,https://doi.org/10.5194/gmd-17-6227-2024, 2024
Short summary
Modelling chemical advection during magma ascent
Hugo Dominguez, Nicolas Riel, and Pierre Lanari
Geosci. Model Dev., 17, 6105–6122, https://doi.org/10.5194/gmd-17-6105-2024,https://doi.org/10.5194/gmd-17-6105-2024, 2024
Short summary
Consistent point data assimilation in Firedrake and Icepack
Reuben W. Nixon-Hill, Daniel Shapero, Colin J. Cotter, and David A. Ham
Geosci. Model Dev., 17, 5369–5386, https://doi.org/10.5194/gmd-17-5369-2024,https://doi.org/10.5194/gmd-17-5369-2024, 2024
Short summary
A Joint Reconstruction and Model Selection Approach for Large Scale Inverse Modeling
Malena Sabaté Landman, Julianne Chung, Jiahua Jiang, Scot Miller, and Arvind Saibaba
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2024-90,https://doi.org/10.5194/gmd-2024-90, 2024
Revised manuscript accepted for GMD
Short summary

Cited articles

Akella, S. and Navon, I. M.: Different approaches to model error formulation in 4D-Var: a study with high-resolution advection schemes, Tellus A, 61, 112–128, 2009. 
Anderson, L. A., Robinson, A. R., and Lozano, C. J.: Physical and biological modeling in the Gulf Stream region, Deep-Sea Res., 47, 1787–1827, 2000. 
Bannister, R. N.: A review of operational methods of variational and ensemble-variational data assimilation, Q. J. Roy. Meteor. Soc., 143, 607–633, https://doi.org/10.1002/qj.2982, 2017. 
Baracchini, T.: OpenDA, available at: https://github.com/OpenDA-Association/OpenDA, last access: 9 March 2020. 
Baracchini, T., Verlaan, M., Cimatoribus, A., Wüest, A., and Bouffard, D.: Automated calibration of 3D lake hydrodynamic models using an open-source data assimilation platform, Environ. Modell. Softw., in review, 2019a. 
Download
Short summary
Lake physical processes occur at a wide range of spatiotemporal scales. 3D hydrodynamic lake models are the only information source capable of solving those scales; however, they still need observations to be calibrated and to constrain their uncertainties. The optimal combination of a 3D hydrodynamic model, in situ measurements, and remote sensing observations is achieved through data assimilation. Here we present a complete data assimilation experiment for lakes using open-source tools.