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Abstract. The understanding of physical dynamics is crucial
to provide scientifically credible information on lake ecosys-
tem management. We show how the combination of in situ
observations, remote sensing data, and three-dimensional hy-
drodynamic (3D) numerical simulations is capable of resolv-
ing various spatiotemporal scales involved in lake dynamics.
This combination is achieved through data assimilation (DA)
and uncertainty quantification. In this study, we develop a
flexible framework by incorporating DA into 3D hydrody-
namic lake models. Using an ensemble Kalman filter, our ap-
proach accounts for model and observational uncertainties.
We demonstrate the framework by assimilating in situ and
satellite remote sensing temperature data into a 3D hydro-
dynamic model of Lake Geneva. Results show that DA ef-
fectively improves model performance over a broad range of
spatiotemporal scales and physical processes. Overall, tem-
perature errors have been reduced by 54 %. With a localiza-
tion scheme, an ensemble size of 20 members is found to be
sufficient to derive covariance matrices leading to satisfac-
tory results. The entire framework has been developed with
the goal of near-real-time operational systems (e.g., integra-
tion into meteolakes.ch).

1 Introduction

The management of aquatic systems is a complex challenge
including many stakeholders pursuing sometimes contradic-
tory objectives. This becomes even more complicated in view
of climate change, affecting both watershed hydrology and
lakes physics. There is thereby an urgent need to provide ac-
curate information on lake hydrodynamics.

Traditionally, perhaps due to the misleading definition
of lakes as lentic systems, hydrodynamic studies have fo-
cused on the one-dimensional vertical structure of lakes us-
ing in situ measurements with limited spatial and tempo-
ral coverage (Kiefer et al., 2015). Yet, the lentic definition
of lakes is misleading at a short timescale. Dynamical pro-
cesses such as wind-induced upwellings, rivers discharges,
and gyres strongly disrupt the spatial homogeneity of the sys-
tems and ultimately affect lake biogeochemistry (MacIntyre
and Melack, 1995). Remote sensing observations, as well as
one- and three-dimensional hydrodynamic models, have ad-
dressed some of the spatial and temporal coverage limita-
tions.

While three-dimensional (3D) hydrodynamic models are
important tools capable of simulating multi-scale temporal
and spatial 3D lake dynamics, measurements remain essen-
tial to properly calibrate and validate models to improve their
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accuracy. Indeed, model deviations are unavoidable due to
uncertainties in processes, forcing, and observations (Lahoz
et al., 2010), which have to be taken into account. Remotely
sensed observations provide another essential source of in-
formation, with improved spatial and temporal resolution.
However, this information remains fundamentally 2D. Ulti-
mately, the combination of remote sensing, numerical sim-
ulations, and in situ measurements can overcome the large
variations of spatiotemporal scales involved in lake dynamics
and hence provide an adequate understanding of the system.
This combination is achieved by data assimilation (DA).

DA is an effective approach to blend observational data
into model simulations (Bannister, 2017; Li et al., 2008). De-
fined as the process by which the model of an evolving sys-
tem is corrected by incorporating observations of the real sys-
tem, DA improves both short-term forecasts and past model
reanalysis (Hawley et al., 2006). A fundamental property of
DA is to take observation (e.g., instrument accuracy, rep-
resentativeness) and model (e.g., in processes, forcing, ini-
tial conditions) errors into account (Lahoz et al., 2010) and
to provide the analysis with corrected errors (Kourzeneva,
2014). Those are crucial elements for parameter inference,
monitoring, and forecast reliability.

Multiple methods have been developed for DA, among
those the ensemble Kalman filter (EnKF; Evensen, 2003).
The EnKF has been successfully applied to numerous ap-
plications in oceanography and atmospheric sciences (Ek-
nes and Evensen, 2002; Evensen, 1994; Mao et al., 2009;
Natvik and Evensen, 2003). It was found to be an efficient
tool for nonlinear problems with high dimensionality (Crow,
2003; Reichle et al., 2002a, b) by computing system er-
ror statistics based on system dynamics. But those methods
have rarely been applied to lakes, and DA for inland wa-
ters is still in its infancy. The different scales involved, and
considering the sparse observations in combination with the
large heterogeneity found in lake dynamics, limited the di-
rect application of experiments designed for oceans. For in-
stance, Zhang et al. (2007) assimilated current measurements
into a two-dimensional circulation model of Lake Michigan,
whereby current updates are calculated by kriging interpo-
lation. Yeates et al. (2008) used a pycnocline filter that as-
similated thermistor data into a 3D model of a stratified lake
to negate numerical diffusion driving model predictions off
course. Stroud et al. (2009) assimilated satellite images into
a two-dimensional sediment transport model of Lake Michi-
gan using direct insertion and a kriging-based approach, ef-
fectively reducing model forecast errors. Later on they used
an EnKF and smoother (Stroud et al., 2010) with a similar
model and data when a large sediment plume was observed
after a major storm event. The results obtained were better
relative to standard approaches (a static model and a reduced-
rank square root Kalman filter). Finally, Kourzeneva (2014)
used an extended Kalman filter (EKF) to assimilate lake
surface water temperature into a one-dimensional two-layer
freshwater lake model, leading to significant improvements

over the free model run. Overall, to our knowledge, this is
the first DA experiment that blends both in situ observations
and remote sensing data into a three-dimensional hydrody-
namic model with high dimensionality.

The aim of this study is to develop a flexible frame-
work, in a Bayesian inference setting, capable of updat-
ing and improving model states while taking into account
the uncertainty of both the modeled system and observa-
tional data. Here, we present a novel DA experiment with
an EnKF tailored to lakes and observations using an open-
source hydrodynamic model and assimilation platform. This
approach uses a new file-based coupling recently devel-
oped for OpenDA and Delft3D-FLOW with z-layer support
(Baracchini et al., 2019a). Delft3D-FLOW is an open-source
three-dimensional hydrodynamic simulation software with
numerous successful applications in coastal, river, estuarine,
and lake domains. OpenDA is an open-source generic DA en-
vironment (El Serafy et al., 2007) used in various calibration
and DA experiments (El Serafy et al., 2007; Weerts et al.,
2010; Kurniawan et al., 2011), but it has not yet been applied
to 3D lake hydrodynamic modeling with DA. Our methodol-
ogy is tested on the large French–Swiss Lake Geneva with in
situ temperature measurements and lake surface water tem-
perature (LSWT) retrieved from satellite data (AVHRR). The
choice of testing a first DA of surface temperature on Lake
Geneva was motivated by recent studies concluding that data
from spaceborne medium-resolution radiometers specifically
tailored to Lake Geneva (Oesch et al., 2005) could potentially
be assimilated to numerical models (Oesch et al., 2008). Fur-
thermore, Baracchini et al. (2019a) proposed a calibrated
model and framework for Lake Geneva, this first step be-
ing an absolute requirement for DA. Here, LSWT and in situ
data are blended into such a model to expand its monitoring
capabilities of physical phenomena. The latter is achieved by
considering the stochasticity of the system and an EnKF al-
gorithm to update model results. Environmental research and
operational monitoring and forecasting of midsize to large
lakes will benefit from this procedure, with noticeable im-
pacts on a broad diversity of societally important issues.

The study is organized as follows: Sect. 2, “Data and meth-
ods”, describes the study site, model, tools, and data used.
This includes measurement retrieval and the processing chain
as well as the quantification of their uncertainty. Although
part of the methods, the data assimilation algorithm and its
configuration are provided in a different section (Sect. 3) due
to their central role in the study. Noise generation, the num-
ber of ensembles, and the localization scheme are discussed
in this section. Sections 4 and 5 consist of the presentation
and discussion of results, respectively. Finally, perspectives
and conclusion are given in the final section.
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Figure 1. Lake Geneva locations, computational grid, and
bathymetry. Circles are in situ measurement sites. The triangle indi-
cates the AVHRR validation station. Squares are selected sampling
locations used to generate the wind fields of the COSMO-E prod-
ucts. Basemap source: Federal Office of Topography © Swisstopo.

2 Data and methods

Here we describe the various components used in the DA ex-
periment, the challenges associated with high-frequency and
high-resolution measurements, modeling datasets, and their
error definitions, which previously hampered the application
of such systems.

2.1 Study site

Lake Geneva (locally known as Le Léman) is a perialpine
lake located between Switzerland and France (46.458◦ N,
6.528◦ E) at an altitude of 372 m (Fig. 1). It is the largest
freshwater lake in western Europe (surface area and volume
of 580 and 89 km3, respectively), with a retention time of
11.4 years. Due to relatively mild winter temperatures and its
large depth of 309 m, complete deep convective mixing oc-
curs only every 5 to 10 winters (Schwefel et al., 2016). The
lake is composed of two parts: the large eastern basin (Grand
Lac), with a maximum depth of 309 m, mean depth of 160 m,
and mean width of 10 km in which gyres are frequently ob-
served, and the Petit Lac, the narrow and shallow western
basin (maximum depth of 70 m, mean width of 4.5 km). The
centers of the two basins are some 30 km apart, which defines
the cutoff distance of the EnKF (more details in Sect. 3). The
surrounding topography is mountainous, mainly in the south-
east, hence affecting the wind circulation above the basin.
Lake Geneva is mesotrophic, with strong variation in turbid-
ity and light penetration depth over the year (ranging from
3.6 to 14 m).

2.2 Model setup

The primary purpose of a 3D hydrodynamic model is to solve
the time-dependent, nonlinear differential equations of the
hydrostatic free-surface flows in a computational grid. Var-
ious modeling suites have been developed to solve those
equations accounting for momentum (Reynolds-averaged
Navier–Stokes – RANS) and fluid mass (continuity), as well
as heat and mass transfer. The open-source Delft3D-FLOW
software is used in this study.

Delft3D-FLOW numerical model

Delft3D-FLOW is an open-source hydrodynamic modeling
suite developed by Deltares, Netherlands. Initially designed
for coastal regions and estuaries, it has been expanded to
rivers and lakes. A detailed model description of the equa-
tions and numerical schemes (conjugate gradient solver) can
be found in the manual (Deltares, 2015). We stress again
that a fundamental prerequisite for any DA experiment is a
well-calibrated model. Improper physical parameters could
lead to strong discontinuities followed by waves (assimi-
lation shocks), leading to spurious behaviors (Anderson et
al., 2000). Assimilated variables could then, for example, go
back to their pre-assimilated value. Lake Geneva’s model has
been extensively studied and calibrated (explicit optimiza-
tion method by residual minimization) in a previous study
(Baracchini et al., 2019a). This model consists of 100 un-
evenly distributed vertical layers, with thinner layers at the
top (from 20 cm at the surface to several meters in the hy-
polimnion). Due to the steep bathymetry of Lake Geneva, we
use the z-coordinate system (layers are horizontal) to avoid
strong numerical diffusion and excessive artificial mixing. A
computational time step of 2 min is specified for the 450 m
horizontal grid size to maintain model stability with the κ-
ε turbulence closure model. This turbulence closure model
accounts for unresolved mixing at sub-grid scales. As initial
conditions, the model is initialized (uniformly horizontally)
from an in situ temperature profile taken at the deepest loca-
tion of the lake in January, when the lake is partially mixed.
We consider a simulation period of 1 year, thereby covering
the entire range of seasonal stratification dynamics.

The dynamics of a lake are mainly driven by interactions
with the atmosphere and dissipation at the bed. As boundary
forcing, we use MeteoSwiss COSMO-1 reanalysis products
from their atmospheric model tailored to the Alpine region.
They consist of various meteorological variables on a regu-
lar 1.1 km grid with hourly resolution. Seven of those vari-
ables are used in this study: solar radiation, wind direction
and velocity, relative humidity, cloud cover, pressure, and air
temperature.

Lake Geneva is subject to strong variations in turbid-
ity, which affect the stratification mainly in early summer.
Monthly time series of Secchi depth observations have there-
fore been used in the forcing.
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Finally, a single deterministic 1-year model run for Lake
Geneva without DA requires 3 d of wall-clock computing
time on a single Intel Xeon Broadwell core processor.

2.3 Assimilation platform

OpenDA is an open interface standard. It provides access to
a set of open-source tools, allowing for the integration of ar-
bitrary numerical models and observations through calibra-
tion and data assimilation algorithms. Its goal is to minimize
algorithmic development by promoting the exchange of soft-
ware solutions among researchers and users (Deltares, 2019;
http://www.openda.org, last access: 9 March 2020).

An OpenDA interface has recently been developed for the
z-layer Delft3D-FLOW using the black-box wrapper (file-
based) approach (Baracchini et al., 2019a). This interface has
been further expanded for DA in this study. Additions in-
clude extended modifications of the Delft3D-FLOW model
definition file, model forcing files (on an equidistant grid
only) for OpenDA’s noise models, and support for localiza-
tion, which allows users to limit the area of influence of an
observation. The entire source code is available on GitHub
(https://github.com/OpenDA-Association/OpenDA, last ac-
cess: 9 March 2020).

2.4 Monitoring data

2.4.1 Role of data accuracy

Key in any DA problem is the observational data and their
quality (Madsen, 2003). 3D models require an especially
large amount of data to validate their variability. Remote
sensing observations are therefore considered together with
vertical in situ profiles to constrain the system over the sur-
face and depth. Errors are present in the system through its
initial conditions, physical processes, approximations, and
forcings (Bárdossy and Singh, 2008). Observations of the
true system also require quantifying their uncertainties, as
measurements are always an imperfect and incomplete rep-
resentation (Bertino et al., 2007). This is particularly impor-
tant as it defines how reliable an observation is and therefore
how the model states are corrected. Injecting data with in-
correct measurement error distributions into a good model
could depreciate its relevance to the point at which assimila-
tion estimates are worse than the non-assimilative solution or
the observations. The opposite holds true, and model forecast
would still be unreliable.

2.4.2 Lake in situ data

The dataset consists of 31 temperature profiles over the wa-
ter column at two locations of Lake Geneva (GE3 and SHL2;
Fig. 1) sampled during the year 2017. Profiles are collected
on a monthly (GE3) to bimonthly (SHL2) basis. Uncertainty
of in situ temperature profiles is defined as the maximum
value of the instrument precision (0.1 ◦C) and temporal vari-

ability at the measurement location. The reasons for the latter
are twofold: first, some in situ profiles did not have their exact
collection time recorded; second, this study does not focus on
reproducing short-term dynamics such as basin-scale inter-
nal waves and thermocline oscillations. The standard devia-
tion of preliminary modeling results is computed over a time
window to account for this variability. The temporal variabil-
ity window is defined by the period of basin-scale internal
oscillations (48 h). This procedure allows for the limiting of
physical discontinuities created by the EnKF updates from
specific physical processes (i.e., internal waves), which are
not the focus of this study.

The Buchillon station (Fig. 1), consisting of a mast mea-
suring various atmospheric and hydrodynamic properties in
real time, has been used for the validation of AVHRR data
as detailed below. Of relevance for this study is a thermistor
located at 1 m of water depth, representing the bulk tempera-
ture.

2.4.3 AVHRR LSWT

The spaceborne Advanced Very High Resolution Radiometer
(AVHRR) sensor has been selected for its high temporal (up
to 10 overpasses per day) and moderate spatial (1.1 km in
nadir) resolution. We consider it to be the right trade-off for
lakes: between the high spatial but low temporal resolution
of Landsat 8 (100 m every 2 weeks) and the low spatial but
high temporal one of SEVIRI (3 km at the Equator; every
15 min). The access to the AVHRR data was facilitated by a
direct downlink and processing chain from the University of
Bern. We describe below, and in the Appendix, how AVHRR
can be used for DA in lakes.

The AVHRR LSWT retrieval process, with locally adapted
split-window coefficients for Lake Geneva, is described in
Lieberherr and Wunderle (2018) and Lieberherr et al. (2017).
Only pixels with quality levels higher than 3 (Lieberherr and
Wunderle, 2018) are considered for the next sections.

An extensive description of the filtering of the data is avail-
able in Appendix A. Overall, out of the 3372 AVHRR images
of Lake Geneva available for 2017, 124 satisfy the selection
criteria (see Appendix A). These data are relatively evenly
spread from February to October, with a maximum frequency
of one image per 24 h. Very few images are available in Jan-
uary, November, and December due to bad weather condi-
tions or cloud cover. The average lake coverage of those im-
ages is about 51 %.

3 Data assimilation

The multiple methods proposed for DA mainly fall into
two categories: (i) variational (e.g., 3D-VAR, 4D-VAR) and
(ii) sequential methods (e.g., Kalman filtering, particle filter-
ing). For variational methods, the optimization of the model
states (or parameters) is based on the minimization of a cost
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function. Carrassi et al. (2018) have proposed an extensive
review of DA assimilation methods and uses in geophysical
sciences. Variational methods are popular in meteorological
forecasting (Rawlins et al., 2007). However, the computa-
tional burden associated with the collection and storage of
data can be significant. Moreover, the batch processing of
data reduces flexibility and complicates the consideration of
time-varying model parameters.

Sequential methods are robust techniques for DA in
a broad range of applications. For linear dynamics and
measurement processes with Gaussian error statistics, the
Kalman filter (Kalman, 1960) is an optimal sequential DA
algorithm. However, most processes observed in nature, such
as hydrodynamics, are nonlinear. The analytical solution pro-
vided by the Kalman filter therefore cannot be derived in or-
der to compute the posterior distribution of simulated vari-
ables. To overcome this limitation, variants exist, such as the
EKF, which consists of a linearization of the model in the
neighborhood of the current estimate of the state vector. This
linearization can lead to complicated calculations for systems
with high dimensionality, as the integration and propagation
of the error covariance result in a significant computational
demand (Gillijns et al., 2006). Linearization is done using
first-order Taylor expansion, which implies a closure at the
second-order moments. For highly nonlinear systems this can
result in an improper estimation of the state vector or covari-
ance matrices and can therefore lead to quick divergence and
instability (Moradkhani et al., 2005; Nakamura et al., 2006).

In order to cope with nonlinearities and obtain a full repre-
sentation of the posterior distribution, other statistical meth-
ods, such as particle filters, have been developed (Carpen-
ter et al., 1999). The particle filter is a solution following
a Darwinian-like process of survival of the fittest. It shares
properties with an EnKF in the sense that the particles are
the ensemble members. Particle filters do not need any as-
sumption for the state variable distribution (e.g., Gaussian)
and can deal with nonlinear observation models as well. The
updates are applied on particle weights rather than the state
variable, which results in fewer numerical instabilities for
process-based models (van Leeuwen, 2009; Liu et al., 2012;
Moradkhani et al., 2005). A major drawback is the particle
depletion, which requires complex resampling algorithms.
Moreover, it is less computationally efficient than the EnKF
due to the need for a high number of particles (more par-
ticles than EnKF ensembles are often needed, of the order
of tens of thousands). Despite its advantages, the use of the
particle filter as an assimilation method in oceanography and
limnology is limited due to its high computational cost. To
address such issues, solutions are undergoing development
(Šukys and Kattwinkel, 2018). For its flexibility and afford-
able computational cost, we further focus on the EnKF.

3.1 Ensemble Kalman filter (EnKF)

The EnKF is an attractive alternative for nonlinear dynamics
and systems with high dimensionality. Reichle et al. (2002a)
found that the EnKF is more robust than the EKF while being
more flexible to obtain system covariances, a core element
of the DA problem (Bertino et al., 2007). Indeed, whereas
the careful estimation of covariances often required a lot of
effort (De Lannoy et al., 2007b), in the EnKF they are de-
rived dynamically from a small ensemble of model trajec-
tories (and therefore take into account the physics of the
model), which grasps the essential parts of the error struc-
ture (Reichle et al., 2002b). The EnKF only considers a sam-
ple of the state variable to represent the processes modeled.
The covariance matrix becomes a sampled covariance ma-
trix, and predictive probability density functions of the state
vectors are approximated by Monte Carlo simulations (Naka-
mura et al., 2006). It nonlinearly propagates a finite ensem-
ble of model trajectories instead of using a linearized equa-
tion for the error covariance, so no computation of deriva-
tives is required. The EnKF still considers a linear correction
procedure and assumes Gaussian distributions of the random
variables. When this is not the case, the filter still produces
a variance-minimizing solution, though it is not the optimal
estimate (Bertino et al., 2007).

We develop below the fundamentals behind the algorithm.
We first define the true model state (corresponding to the ac-
tual physical state of the lake) vector x of the system at time
t as xt (in our case temperature for the entire 3D model grid),
M the nonlinear lake system operator, η the process noise,
and u the forcing vector (here meteorological forcing) for a
time t . The state propagation equation reads

xt =Mt (xt−1,ut−1)+ ηt−1. (1)

In this study, the noise is added in the forcing term u and
subsequently dropped in the notation of Eq. (2). The state
space vector, noted x̂, is an approximation (done by the hy-
drodynamic model Delft3D-FLOW) of the true state x. The
forecast state (the input information for DA at time t) is de-
fined by x̂f and the analysis state obtained after DA as x̂a.
The model propagation equation now reads

x̂f
t =Mt

(
x̂a
t−1,ut−1

)
. (2)

As we do not measure the true state of the system (x), the
observation (y) equation is defined by the following, with H
an operator relating the system state to the observation and ε
is some measurement noise:

yt =Ht (xt )+ εt , (3)

with the observation prediction given by

ŷt =Ht (x̂
f
t ). (4)

Note that in our case, we directly observe what we com-
pute (i.e., surface temperature and profiles at computed grid

www.geosci-model-dev.net/13/1267/2020/ Geosci. Model Dev., 13, 1267–1284, 2020



1272 T. Baracchini et al.: Data assimilation of hydrodynamic models

points), and therefore in this study H is an identity matrix.
The resulting data assimilation estimate of the state vector
(x̂a), which will be used in the next cycle as restart condi-
tion, is given by

x̂a
t = x̂f

t +Kt (yt − ŷt ). (5)

That last equation (Eq. 5) is a central concept of DA; it in-
troduces the weighting factor K , also referred to as Kalman
gain. The Kalman gain can be viewed as a balance of the
model and observation uncertainties, together with the error
correlation of all the elements of the state vector. It aims to
minimize the error covariance of the state estimate during the
analysis time Eq. (5). It is defined as

Kt = Pf
tH

T
t

(
HtPf

tH
T
t +Rt

)−1
, (6)

with Rt the measurement error covariance matrix (in this
study we assume no cross-correlation between observation
errors, and hence Rt is diagonal and determined from the un-
certainty of the measurements; Sect. 2.4) and Pf the a priori
state error covariance matrix. Error covariance is a key com-
ponent of DA. The EnKF is able to compute a time-varying
covariance error based on the dynamics of the system. This
is a critical property when considering variables with short
decorrelation spatiotemporal scales (Kuragano and Kamachi,
2000). In addition to the probability density function of the
state (when in the presence of process noise), covariance es-
timation is achieved considering ensemble members. For an
ensemble of forecasts (j = 1, . . .,N ), each subject to a dis-
turbance (e.g., in model processes, forcing, or initial condi-
tions), P is obtained from

Pf
t =

1
N − 1

∑N

j=1
(xf
t,j − x̄f

t )(x
f
t,j − x̄f

t )
T . (7)

From Eq. (7) we can conclude that the error-spreading pat-
tern across the domain is indeed derived from the ensemble
members in a systematic way. This is not the case for some
variational methods such as 3D-VAR, whereby the statistics
are considered isotropic with little variation over time. In the
EnKF each ensemble member is then updated individually
(based on Eq. 5). The state average over the ensemble pro-
vides the a posteriori state estimate. Additionally, in contrast
to the extended (or traditional) Kalman filter, there is no need
to propagate the state covariance nor to estimate the initial
state covariance and model error covariance matrices. The
EnKF only uses the first and second moments to construct the
probability density functions; it cannot ensure higher-order
statistics by opposition to the particle filter (Nakamura et al.,
2006).

The EnKF is widely used for large systems with uncer-
tain initial states, and variants are still being developed to
leverage its limitations (Hoel et al., 2016). Several authors
(Bertino et al., 2007; Evensen, 1994; Verlaan and Heemink,
2001) found better performance for highly nonlinear systems

in comparison to the EKF. This approach can accommodate
large datasets or missing observations, and it can incorporate
correlated nonlinear and error measurement models. More-
over, the ensembles are easy to implement in parallel fash-
ion. Models with high dimensionality are well suited for this
type of assimilation, which requires a relatively low number
of ensemble members to produce stable and accurate results
(detailed in the Results section and Discussion section). We
used this algorithm for the results presented in this study.

3.2 System setup

The aim of this section is to detail the various properties of
the EnKF and DA setup, which is specific to this study.

3.2.1 Stochasticity and noise

The performance of a DA experiment strongly depends on
the characterization of uncertainties (van Velzen and Ver-
laan, 2007). The hydrodynamics are modeled with determin-
istic equations. Their initial conditions, in the case of Lake
Geneva, play only a limited role in basin-scale dynamics over
long periods of time (months, years). Yet, boundary condi-
tions, especially the air–water heat and momentum budgets,
still contain large uncertainties that decrease the performance
of any theoretically perfectly calibrated model. To overcome
this issue, we added stochasticity to the system by includ-
ing noise in the east (u direction) and north (v direction)
components of the wind velocity. These variables, coming
from MeteoSwiss COSMO-1 reanalysis products with DA,
are known to be the most inaccurate and influential boundary
forcing over lakes.

The addition of stochasticity to the deterministic model is
done with OpenDA’s noise model, which adds spatiotempo-
rally correlated noise to the wind fields. This noise model,
distributing the noise based on correlation scales derived
from a distance-dependent function decaying to 0, requires
three quantities (for both the u and v directions): (i) the wind
standard deviation, (ii) the wind spatial correlation scale, and
(iii) the temporal correlation scale. They are obtained from
an analysis of the COSMO-E (ensemble) products over the
entire year of 2017. COSMO-E probabilistic products are
derived from 21-ensemble forecasts on a 2.2 km grid and
contain information on the variability of the computed at-
mospheric variables. The wind standard deviation is hence
obtained by taking the mean COSMO-E standard deviation
of every pixel over the lake for the studied period. The spa-
tiotemporal correlation scales are obtained by computing the
cross-correlations of six – fictive – stations around the lake,
as shown by Fig. 1. The cross-correlation of a station with it-
self provides the temporal correlation scale, while the cross-
correlation among stations allows for the determination of
the spatial correlation scale. Table 1 summarizes the afore-
mentioned noise model parameters.
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Table 1. Summary of the noise model parameters.

Parameter Description Value
(u direction, v direction)

σ (m s−1) Wind standard deviation 1.11, 1.10
ρL (m) Wind spatial correlation 20 000, 30 000
ρt (h) Wind temporal correlation 5.67, 6.67

3.2.2 State variables

OpenDA has recently been updated to support three Delft3D-
FLOW state variables (Baracchini et al., 2019a), namely wa-
ter levels, temperatures, and flow velocities. In this study,
only temperatures are updated by the EnKF.

3.2.3 Ensembles

The EnKF operates using a statistical sample of the state
of the system. The ensemble size (N ) is often determined
heuristically and must be a balance between a good repre-
sentation of the state space and acceptable computation time.
The errors in the solution probability distribution function
(PDF) will approach zero at the rate N−1/2 (Evensen, 2003).
A preliminary study showed that a satisfying compromise is
obtained with 20 ensemble members. The choice for a small
number of ensembles is further motivated by future use for
operational purposes. More details and an ensemble size as-
sessment are presented in the Results section.

3.2.4 Localization scheme

As mentioned above (Sect. 3.1), the covariance matrix links
every domain point with the others. Covariances are derived
from the ensemble members. A limitation of a small ensem-
ble size is possible spurious correlations (Evensen, 2009),
resulting in artifacts over long distances from the observa-
tion location. In such cases, when the model spatial extent is
large, a localization scheme has to be applied (an observation
usually only influences its near vicinity, and it has limited in-
fluence for greater spatial extensions; Stanev et al., 2011).
Such a scheme has therefore been implemented in OpenDA,
which collaterally also aims to reduce the computational cost
of the analysis time. This localization allows users to define a
cutoff distance based on a Gaspari–Cohn isotropic distance-
based function (decaying to 0 at a defined cutoff distance)
to limit the area of influence of an observation. This function
ensures a smooth transition between a full and non-update for
better model stability. Effectively, this removes long-range
spurious correlations by scaling the size of the observation
covariance matrix.

In this study, a cutoff distance of 15 km is defined. This
distance is based on the spacing of the two in situ stations
and the radius of their associated basin gyres (Petit Lac and
Grand Lac; Fig. 1). This is further motivated by the fact that
such a distance allows users to cover the entire interior of the

Table 2. Summary of the data assimilation performance (MAE and
RMSE).

Control DA Improvement
run run (%)

MAE (◦C) 1.49 0.60 60
RMSE (◦C) 2.07 0.95 54

basin by an update of in situ data. Due to the significant depth
of the lake, dynamics at deeper locations are less variable,
and hence their correlations at longer distances are easier to
estimate. Regarding the LSWT, as it is partly the result of
surface heat fluxes, its spatial structure is also expected to be
correlated, to some extent, at relatively large spatial scales.
Finally, as a result of the coarse vertical resolution of the in
situ profiles, we did not define a different localization scheme
in the vertical compared to the horizontal direction.

4 Results

In this section, we present both quantitative and qualitative
results of the DA experiment. As mentioned in Sect. 2.4, the
DA run consisted of the assimilation of 128 AVHRR LSWT
datasets and 31 in situ profiles over the entire year of 2017.
Mean absolute error (MAE), root mean square error (RMSE),
and a Taylor diagram (Taylor, 2001) are used as benchmark
indicators. Direct model comparisons with satellite images
and in situ profiles are provided to visualize the benefits of
the approach for both surface and deepwater dynamics. Im-
plications of the DA for physical phenomena are presented.

Table 2, providing MAEs and RMSEs before and after DA,
indicates significant improvements over the baseline simu-
lation. RMSE and MAE values are reduced by 54 % and
60 %, respectively. The discrepancy between the two indi-
cate some occasional large data–model mismatch, which af-
fects the RMSE more heavily. The Taylor diagram (Fig. 2),
displays large improvements in centered root mean square
difference (RMSD), correlation, and standard deviation.

4.1 Surface assimilation and physical processes

The benefit of DA is shown with four examples in Fig. 3,
comparing LSWT from AVHRR measurements with LSWT
from the control run model and DA experiment. We first
highlight (top panels) the fact that DA assimilation can per-
form correctly even in the case of missing observations over
the lake surface. The state covariance matrix could update
the model in areas where no data were available. Model ac-
curacy is thereby improved at the basin scale rather than at
observation locations. This is particularly relevant as large
lakes are often partly cloudy. The second example demon-
strates the potential of DA to correct the state variable – a
cold bias in the present case – while maintaining the coher-
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Figure 2. Taylor diagram of Lake Geneva temperature data assimi-
lation. The dots correspond to the observations (black), the control
run without DA (blue), and the DA run (red). The radial distance
from the observations is the centered root mean square difference;
the radial distance from the origin defines the standard deviation,
and the azimuthal position is the correlation coefficient.

ent structure of the complex spatial thermal gradient (Fig. 3,
second row). The third example shows gyre-like flow struc-
tures. Such rotating structures are difficult to observe from
AVHRR LSWT data (third row of Fig. 3), partly due to their
limited spatial resolution and weak signature at the surface.
However, a gyre created by a NNE wind on 12 August is
better visible in the model results (clockwise in the western
part of the main basin and counterclockwise in the center).
In that case, the DA updated the LSWT while keeping the
physical structure and flow spatial coherence of the control
run. Finally, the lowest panels in Fig. 3 show how DA im-
proves observations and the future quantification of transient
upwelling. While the upwelling in the Petit Lac was partially
already caught by the control run, the DA allowed for a much
better adjustment of its intensity and extent. Another similar
case is presented in Appendix B.

The benefit from DA is also evident when looking at the
temporal evolution of LSWT (Figs. 4 and 5). In Figs. 4 and 5,
the AVHRR LSWT is again compared at two locations with
the simulations with and without DA. The observed strong
summer temporal variability with biweekly temperature vari-
ations exceeding 5 ◦C is not well resolved in the control run
(Fig. 4); however, it is much better reproduced by applying
DA. The warming phase also benefits significantly from the
assimilation. The control run surface temperature started to
increase in the second part of March, while the warming oc-
curred in early March in the observations and DA. Both mod-
els are in good agreement during the cooling phase after Au-
gust. While few observations were available during this late
period, not much improvement is obtained for the baseline,
which was already accurate. Overall, every point of the DA
run is close to or at least within the ∼ 1 ◦C uncertainty of the

AVHRR observations (see Sect. 2.4 for more information on
uncertainty).

Similar conclusions arise from Fig. 5, which provides a
close-up of time series of the summer period in the west-
ern basin (Petit Lac). Ensemble spread is smaller during the
period of strongest stratification from late July to late Au-
gust. Overall, the model uncertainty arising from perturbed
wind fields reaches 2 ◦C in the summer, when it is the highest
and 1 ◦C on average. Major upwellings in June and July are
caught by both model runs, although the intensity is too weak
in the control run. Again, data–model discrepancies and tem-
perature variability are largest from late May to early August.
Starting in August, the models with and without DA exhibit
similar dynamics, both close to observations.

We further compared the upwelling of 15 September with
river temperature data with a model surface grid point lo-
cated 3 km away (Fig. 6). The upwelling has indeed been
observed in the lake outflow, dropping from 21 to 12 ◦C in
6 d. The figure shows that the control run underestimated the
upwelling by 5 ◦C, while the DA run underestimated it by
∼ 2.5 ◦C. The AVHRR observation was 1.5 ◦C warmer than
the river temperature. Figure 6 also confirms that the model
does not suffer from spurious behavior after an assimilation.
Model shocks are not observed and numerical equilibrium is
reached in a sub-daily period.

4.2 Deepwater assimilation

We investigated how the vertical structure and subsurface dy-
namics are affected by the DA. Figure 7 provides a compar-
ison of the DA performance over depth with in situ data in-
stead of AVHRR measurements. Overall, for both stations
significant improvements are obtained over the entire water
column and throughout the year. Major improvements are
observed at the thermocline depth, correctly represented in
the DA experiment. Its strong vertical gradient significantly
benefited from the assimilation of temperature profiles. The
warm bias between 5 and 25 m of depth, resulting in an over-
estimation of the mixed layer depth in the control run, is ef-
fectively eliminated.

4.3 Ensemble member size

Finally, we evaluated the EnKF ensemble size needed by a
convergence analysis. A period of 1.5 months, from June
to mid-July with a spin-up time of 2 weeks (without DA),
is selected for assessment. This period of weak spring ther-
mal stratification has been selected, as it is the time of the
year with the most complex and broadest range of dynamics
(Fig. 4).

The results indicate that for an increasing number of en-
sembles (N ) the analysis error decreases. Figure 8 provides
RMSEs and MAEs for different ensemble sizes, also differ-
entiating between assimilated data sources. We conclude that
major gains are achieved with 10 ensemble members. For
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Figure 3. Surface temperature comparison of the AVHRR observations (left column), control run (central column), and DA run (right
column) at selected analysis times (four rows) in 2017. The first row highlights the assimilation of sporadic data and the second row of
complex surface patterns. The third row is an example for gyre phenomena and the fourth row of an upwelling event.

in situ data only, 20 ensembles seem to be the sweet spot.
Due to the much larger number of AVHRR observations (i.e.,
one image provides thousands of observations since it cov-
ers the entire spatial extent of the computational grid), the
red (AVHRR) and black (all measurements) lines are con-
founded. Finally, assessment of the ensemble spread showed
that few gains in second-order moments were found with
larger ensemble sizes. Indeed, in the scope of this study, the
additional benefits for N > 20 are limited. At this stage, the
1 ◦C uncertainty of the AVHRR LSWT data might become a
limiting factor hindering further improvements.

With a vision towards DA for operational lake forecasting
systems and the computational constraints associated with
real-time hydrodynamics, we conclude that 20 members pro-

vide a satisfactory compromise for the system considered in
this study.

5 Discussion

The DA framework has brought significant improvements to
the hydrodynamics of Lake Geneva. It demonstrated its ef-
fectiveness to improve various model-forecasted mesoscale
to large-scale thermal features. The combination of both
in situ measurements and remote sensing observations al-
lowed for constraining the 3D thermal structure of the model
throughout the water column.

Surface time series (Fig. 4) indicated that spring–early
summer observations play a key role in improving the model
performance during the warming period (Kourzeneva, 2014).
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Figure 4. Time series of the LSWT in the center of the lake. The
red line corresponds to the mean of the ensemble and the red shaded
area to the ensemble spread, while the blue line marks the control
run and the black dots the AVHRR observations.

Figure 5. Zoomed time series of LSWT in the center of the western
basin (Petit Lac). The red line corresponds to the mean of the en-
semble, the red shaded area to the ensemble spread, the blue line to
the control run, and the black dots to AVHRR observations.

This allows for an adequate modeling of the lake warm-
ing, with significant implications expected for water quality
models and the typical spring phytoplankton blooms. Later
in the year, in late spring and summer, the AVHRR data
revealed high-variability temperature dynamics (e.g., up-
wellings), which are not reproduced by the control run. It is
the time when the largest ensemble spread is observed, which
indicates that the summer LSWT is sensitive to changes in
wind patterns. Additionally, ensemble spread stemming from
spatiotemporally correlated noise applied to the wind fields
indicates that the model is sensitive to changes in this forc-
ing function. The effects on model outputs are correctly de-

Figure 6. Close-up of the upwelling event in mid-September. River
temperature from the lake outlet in Geneva is added as a compari-
son. The AVHRR data (black dots), control run (blue), and DA run
(red) correspond to a surface pixel 3 km from the outflow.

scribed, and the uncertainty arising from this perturbation
ranged from 1 ◦C on average, with peak values at 2 ◦C.

A similar conclusion can be drawn for subsurface thermal
dynamics. Figure 7 indicates that data–model mismatches in
the mixed layer appeared as the lake started to warm and the
thermocline formed. Compared to the control run, the DA run
exhibited both a more accurate warming phase and vertical
temperature gradient during the stratified period.

Overall, the performance of the EnKF has been notable in
a broad range of scenarios. Even with complex observational
patterns, filter updates were performed with different ampli-
tudes at each spatial location (Fig. 3). Those spatially varying
updates are often in agreement with the physical processes
governing the hydrodynamics of the lake. Also, in the case of
incomplete or sporadic data, the EnKF updates behaved well,
and good combinations of data and system dynamics were
found. Some authors (De Lannoy et al., 2007b) found that
when the update is performed through the covariance propa-
gation (in the case of missing observations), the a posteriori
state might not be correct and counteract the updates in the
surrounding locations. This behavior has not been observed
in the presented hydrodynamics of Lake Geneva. This indi-
cates that the covariance matrices were well estimated from
the ensemble members and their physical dynamics. The
non-static covariance matrix derived from the EnKF allows
for longer-term studies, such as over the entire year, with
complex changes in the thermal structure of the water body.
Time-varying covariance error estimates for 3D models are
complex tasks in DA. Analysis updates were not intense or
frequent enough to cause model shocks or solver failure. This
would have a minimal impact on the surface layers, since
such corrections would not be persistent due to the variable
nature of surface layers and sensitivity to atmospheric forc-
ing. However, more issues would arise from model shocks in
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Figure 7. Evolution of the deepwater temperature without and with DA. (a, c) The differences of control runs minus in situ observations; (b,
d) the differences of DA runs minus in situ observations. Panels (a–b) correspond to the center of the main basin (SHL2; Fig. 1), and panels
(c–d) correspond to Petit Lac (GE3; Fig. 1).

Figure 8. Data assimilation performance as a function of ensemble
size. The dashed blue line corresponds to the error with respect to in
situ observations only; the red line is the same with respect to LSWT
only, and the black squares show the model error with respect to
both observation sources.

the deep water, which could trigger movements of large water
volumes. Since in situ profiles have a much lower uncertainty
than AVHRR observations (< 0.1 ◦C vs. 1 ◦C; Sect. 2.4), in-
tense state updates are more likely; however, they have not
been observed in this study and no model solver failure arose
from the EnKF updates. After significant updates, the model
generally recovered over a sub-daily period. Increasing the
observational frequency (here limited to one satellite obser-
vation per day) would increase the likelihood of encounter-
ing model shocks, as equilibrium adjustment may not be
reached between updates. Higher computational costs also
weigh into the data quality–quantity compromise, particu-
larly when considering near-real-time systems. Detailed dis-
cussions regarding model error formulation are provided by

Akella and Navon (2009) and Daescu and Navon (2013) for
variational data assimilation.

5.1 Physical processes

Figure 3 shows that various physical processes, such as up-
wellings and gyres, are better resolved with the use of EnKF.
Upwellings typically occur more prominently at the begin-
ning or end of the season, when stratification is weaker. The
better identification of such processes is of prime impor-
tance for various water quality aspects (e.g., heat extraction,
wastewater discharge, water intakes; Gaudard et al., 2019).
Yet the magnitude of such events has rarely been quanti-
fied due to difficulties with their large-scale identification.
Through the combination of remote sensing observations and
3D hydrodynamic modeling, we open new possibilities for
monitoring and predicting such phenomena. In this study
we found that upwellings are better reproduced in both in-
tensity and spatial extent. Comparing temperature measure-
ments with a surface model grid point 3 km away from the
outflow showed good agreements after DA. An underestima-
tion of the upwelling of 2.5 ◦C after DA is observed (com-
pared to 5 ◦C with the control run). Most of this remaining
difference can be attributed to the satellite underestimating
the event as well (by 1.5 ◦C, with an uncertainty of 1 ◦C)
and the remoteness and depth (surface) of the pixel com-
pared. For Lake Geneva, this is of particular interest when
an upwelling occurs in the western basin (Petit Lac), drop-
ping the outflow temperature for millions of downstream res-
idents. In terms of gyres, those structures are repeatedly ob-
served in Lake Geneva (Bouffard et al., 2018; Kiefer et al.,
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2015). Because of the Coriolis force, subsequent strong up-
lifts to down-lifts of the thermocline occur, which structure
the lateral dispersion of primary productivity (Soomets et al.,
2019).

5.2 Ensemble size

Among the various ensemble sizes assessed for this study
(Fig. 8), we found that relatively small ensemble sizes (∼ 20)
are enough to derive suitable time-varying covariances and
error-spreading patterns. This is particularly important in the
presence of variables with short decorrelation time and spa-
tial scales. Studies indicated that relatively small ensembles
fail to accurately estimate the small correlation patterns of
remote observations (Houtekamer and Mitchell, 2001). The
localization scheme implemented (Sect. 3.1), defining a cut-
off radius around each observation, allows users to circum-
vent this limitation. Houtekamer and Mitchell (2001) found
that for an increasing ensemble size, the optimal cutoff value
increases as well. Larger ensemble sizes not only restrain the
underestimation of ensemble spread and accuracy, but also
allow for the use of more remote observations. For DA ex-
periments with limited data, larger ensemble sizes may be a
requirement to maximize observational coverage.

5.3 Limitations and perspectives

A main limitation of the EnKF is the Gaussian assumption,
which in the case of large data–model mismatches could have
led to artifacts and unrealistic a posteriori state values. This
has not been observed in this analysis with the provided noise
definition and observational stochastic setup. Furthermore,
while we did not systematically study the physics after each
analysis step, we think the method can still be used for the
study of physical processes, provided the user assesses the
intensity of those physical discontinuities. Out of the 152 as-
similations, only 8 created some numerical instabilities in the
model, though they were small enough to prevent solver fail-
ure. The existence of an upper limit to the amount of infor-
mation assimilated was not investigated here, as the aim of
this work is to provide an operational system with data as-
similation in lakes.

Other difficulties arise in the presence of bias, whereby
Kalman filtering performs suboptimal corrections (Dee and
Da Silva, 1998), as observations and the model are assumed
unbiased. Solutions for dealing with biases in EnKF may be-
come necessary (De Lannoy et al., 2007a). In the present ap-
proach, however, occasionally occurring model biases have
been effectively handled by the update. The DA model did
not drift back to its biased or control run state. We believe
that this is a result of the adequate initial parameterization
of the model (Baracchini et al., 2019a). This further high-
lights the crucial importance of accurate model calibration
and formulation before applying DA experiments. It is worth
noting that the EnKF is able to also provide updates to pa-

rameters and forcing conditions, which in some cases may
provide more persistent improvements (for example, when
time-varying parameters are needed).

This DA experiment is time-consuming from a computa-
tional aspect. For example, it took nearly 1 month to compute
the present setup on a dual Intel Xeon E5-2697v4 processor
with 256 GB of memory, generating close to a terabyte of
data. While the analysis time for in situ data has been rea-
sonable (∼ 1 h), the immense number of observations gen-
erated by an AVHRR image (entire coverage of the surface
layer of the computational grid) brought the analysis time
up to 3 h for a single image. This is largely due to the cur-
rent lack of multi-core support for the analysis step. A multi-
core local analysis has been implemented in the scope of this
study for multi-variable (e.g., temperature with water levels
and/or flow velocities) assimilations, but gains can further be
achieved from a local analysis based on the observation lo-
calization scheme.

6 Conclusions

For managerial and scientific purposes, new monitoring
and forecasting tools covering wide ranges of spatiotem-
poral scales are of great interest. The coverage of such
scale breadth of inland waters is achieved by combining
three information sources, namely (i) in situ measurements,
(ii) remote sensing observations, and (iii) model simulations.
With data assimilation (DA), optimal combinations can be
achieved and valorized.

For several decades, DA has been applied in oceanogra-
phy and atmospheric sciences, yet its applications in lim-
nology has remained limited. In this study, we developed
a flexible framework and tools to blend real-time data into
model simulations tailored to lakes. We applied this method
to Lake Geneva using large datasets consisting of a three-
dimensional hydrodynamic model, AVHRR lake surface wa-
ter temperature, and in situ profiles over an entire year. Re-
sults demonstrated the effectiveness of DA as significant
gains were obtained for both the surface and deepwater dy-
namics over a well-calibrated baseline. We showed that both
data types (in situ and remote sensing) are important to con-
strain the entire spatial extent (horizontal and vertical) of the
model. Results also indicate that AVHRR data are a valid
remote sensing (RS) data source for DA into lake hydrody-
namics, provided that observational error and uncertainties
are well defined.

In that regard, the use of an ensemble Kalman filter
(EnKF) allowed us to handle non-static covariance estima-
tion, a key element of any DA problem. Additionally, it is
able to account for the uncertainties of each data source.
Those are essential elements influencing DA performance
(Qi et al., 2014). We found that the ensemble size played an
important role in reducing model errors. To keep their num-
ber limited, a localization scheme has been implemented,
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hence circumventing the estimation of improper small corre-
lations at large distances (Houtekamer and Mitchell, 2001).
In that regard, while the EnKF adds computational cost to the
problem, it is capable of dynamically estimating the stochas-
tic model based on the physical properties of the system. This
is well encompassed by the paradox defined by Bertino et al.
(2007), stating that simple DA methods become complex en-
gineering tasks when the inconsistency between the stochas-
tic and the physical model becomes relevant. Due to the flex-
ibility of the tools developed and used, we that expect this
procedure can be transferred to other lake and hydrodynamic
models with relatively minor modifications (Baracchini et al.,
2019b).

To conclude, this method has been designed with the vi-
sion of future near-real-time applications. Implications of DA
in the operational context are significant to provide robust
and timely short-term forecasts, accurate reanalysis prod-
ucts, and uncertainties for reliable water management. Over
the last decades, the number of remote sensing products has
grown rapidly; however, they have hardly been used in the
operational context in an optimal way (de Rosnay et al.,
2013). The timely retrieval and processing of RS products
requires interdisciplinary efforts to ensure robustness and the
proper error definition of the data, which hinders the devel-
opment of such operational systems (van Velzen and Ver-
laan, 2007). In this study, we provided an example of how
the entire chain, from the satellite to assimilation into the
model, can be performed with limited field infrastructure.
More concretely, we expect the findings of this study to be di-
rectly applicable to existing lake forecasting platforms, such
as the one for Lake Geneva (http://meteolakes.ch, last access:
9 March 2020). Impacts of such an implementation are ex-
pected at a scientific, governmental, and public level.
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Appendix A: AVHRR validation

Validation

AVHRR data were validated for Lake Geneva by compar-
ing in situ data from the Buchillon station to the remote-
sensing-derived skin temperature. Analysis of the data and
comparison with both radiometric and in situ observations
at Buchillon showed that quality flags are not a sufficient
measure to reliably quantify the accuracy of the AVHRR im-
ages but to improve the quality, avoiding errors (e.g., cloud-
contaminated pixels). Indeed, we observed strong fluctua-
tions of up to ±3 ◦C between skin and bulk temperature,
especially during daytime when a micro-stratification estab-
lishes in the surface layer (Gentemann et al., 2003). Skin and
bulk temperature becomes similar under windy or convec-
tive conditions. Skin-to-bulk corrections were developed in
oceanography as a function of the wind intensity (Minnett et
al., 2011). Yet, lakes are a much more calm environment and
parameterization should also take into account convective
processes (Bouffard and Wüest, 2019). Such parameteriza-
tion is unfortunately lacking for Lake Geneva and we initially
selected nighttime to early morning images in which surface
convective cooling reduces the skin-to-bulk difference. How-
ever, comparison with field data showed that this is still not
reliable enough. The discrepancy is indeed strongly linked
to day–night cycles, but those are also season-dependent.
Therefore, no specific satellite overpass can be selected for
the entire computational time (1 year). To determine that
images portray an accurate representation of the lake bulk
LSWT, the thermistor at 1 m of depth (recording at 1 h inter-
vals) has been used for a direct comparison with the space-
borne AVHRR data. Considering that the Buchillon station is
close (80 m) to the shore, its position has been shifted 2 km
south to avoid land boundary contamination. Finally, the av-
erage of a 3× 3 pixel window of the satellite image centered
on the south-shifted Buchillon station coordinates is used as
a comparison point with the field data. Only images with an
absolute deviation with respect to the bulk water lower than
1 ◦C are retained for further assimilation. The 1 ◦C thresh-
old will also define the AVHRR observational uncertainty
needed for the EnKF. Outlier pixel values colder than 4 ◦C
and warmer than 28 ◦C are removed. Finally, to avoid assim-
ilating observations at a frequency that is too high (or too
close in time), which can result in physical discontinuities
and the destruction of model processes (model not reaching
equilibrium between assimilations), the maximum frequency
of satellite images is limited to one per 24 h. The screened
images are then mapped to the computational grid.

This procedure aims to bypass the skin-to-bulk tempera-
ture effect, while ensuring the best data quality for assim-
ilation. This procedure assumes horizontal uniformity over
the lake area (i.e., atmospheric effects are assumed to be the
same over the entire domain) and may be sensitive to local
cloud patches.
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Appendix B: Additional results

Figure B1. Surface temperature comparison of the AVHRR observations (left column), control run (central column), and DA run (right
column) at selected analysis times (four rows) in 2017. The first row highlights the assimilation of sporadic data and the second row of
complex surface patterns. The third row is an example of upwelling phenomena and the fourth row of gyre-like structures.
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Code and data availability. The source code and documentation of
the numerical model (Delft3D-FLOW) and data assimilation plat-
form (OpenDA) developed in and for this study can be accessed
and downloaded on their online repositories at: https://oss.deltares.
nl/web/delft3d/source-code (last access: 9 March 2020) and https:
//github.com/OpenDA-Association/OpenDA (Barrachini, 2020).
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