Articles | Volume 12, issue 1
Geosci. Model Dev., 12, 473–523, 2019
https://doi.org/10.5194/gmd-12-473-2019
Geosci. Model Dev., 12, 473–523, 2019
https://doi.org/10.5194/gmd-12-473-2019

Model description paper 29 Jan 2019

Model description paper | 29 Jan 2019

A General Lake Model (GLM 3.0) for linking with high-frequency sensor data from the Global Lake Ecological Observatory Network (GLEON)

Matthew R. Hipsey et al.

Related authors

Climate change overtakes coastal engineering as the dominant driver of hydrological change in a large shallow lagoon
Peisheng Huang, Karl Hennig, Jatin Kala, Julia Andrys, and Matthew R. Hipsey
Hydrol. Earth Syst. Sci., 24, 5673–5697, https://doi.org/10.5194/hess-24-5673-2020,https://doi.org/10.5194/hess-24-5673-2020, 2020
Short summary
ML-SWAN-v1: a hybrid machine learning framework for the concentration prediction and discovery of transport pathways of surface water nutrients
Benya Wang, Matthew R. Hipsey, and Carolyn Oldham
Geosci. Model Dev., 13, 4253–4270, https://doi.org/10.5194/gmd-13-4253-2020,https://doi.org/10.5194/gmd-13-4253-2020, 2020
Short summary
Surface water as a cause of land degradation from dryland salinity
J. Nikolaus Callow, Matthew R. Hipsey, and Ryan I. J. Vogwill
Hydrol. Earth Syst. Sci., 24, 717–734, https://doi.org/10.5194/hess-24-717-2020,https://doi.org/10.5194/hess-24-717-2020, 2020
Short summary
Adaptation tipping points of urban wetlands under a drying climate
Amar V. V. Nanda, Leah Beesley, Luca Locatelli, Berry Gersonius, Matthew R. Hipsey, and Anas Ghadouani
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2017-307,https://doi.org/10.5194/hess-2017-307, 2017
Revised manuscript not accepted
Short summary
A prototype framework for models of socio-hydrology: identification of key feedback loops and parameterisation approach
Y. Elshafei, M. Sivapalan, M. Tonts, and M. R. Hipsey
Hydrol. Earth Syst. Sci., 18, 2141–2166, https://doi.org/10.5194/hess-18-2141-2014,https://doi.org/10.5194/hess-18-2141-2014, 2014

Related subject area

Hydrology
Parametrization of a lake water dynamics model MLake in the ISBA-CTRIP land surface system (SURFEX v8.1)
Thibault Guinaldo, Simon Munier, Patrick Le Moigne, Aaron Boone, Bertrand Decharme, Margarita Choulga, and Delphine J. Leroux
Geosci. Model Dev., 14, 1309–1344, https://doi.org/10.5194/gmd-14-1309-2021,https://doi.org/10.5194/gmd-14-1309-2021, 2021
Short summary
The global water resources and use model WaterGAP v2.2d: model description and evaluation
Hannes Müller Schmied, Denise Cáceres, Stephanie Eisner, Martina Flörke, Claudia Herbert, Christoph Niemann, Thedini Asali Peiris, Eklavyya Popat, Felix Theodor Portmann, Robert Reinecke, Maike Schumacher, Somayeh Shadkam, Camelia-Eliza Telteu, Tim Trautmann, and Petra Döll
Geosci. Model Dev., 14, 1037–1079, https://doi.org/10.5194/gmd-14-1037-2021,https://doi.org/10.5194/gmd-14-1037-2021, 2021
Short summary
Shyft v4.8: a framework for uncertainty assessment and distributed hydrologic modeling for operational hydrology
John F. Burkhart, Felix N. Matt, Sigbjørn Helset, Yisak Sultan Abdella, Ola Skavhaug, and Olga Silantyeva
Geosci. Model Dev., 14, 821–842, https://doi.org/10.5194/gmd-14-821-2021,https://doi.org/10.5194/gmd-14-821-2021, 2021
Short summary
A distributed simple dynamical systems approach (dS2 v1.0) for computationally efficient hydrological modelling at high spatio-temporal resolution
Joost Buitink, Lieke A. Melsen, James W. Kirchner, and Adriaan J. Teuling
Geosci. Model Dev., 13, 6093–6110, https://doi.org/10.5194/gmd-13-6093-2020,https://doi.org/10.5194/gmd-13-6093-2020, 2020
Short summary
Simulating second-generation herbaceous bioenergy crop yield using the global hydrological model H08 (v.bio1)
Zhipin Ai, Naota Hanasaki, Vera Heck, Tomoko Hasegawa, and Shinichiro Fujimori
Geosci. Model Dev., 13, 6077–6092, https://doi.org/10.5194/gmd-13-6077-2020,https://doi.org/10.5194/gmd-13-6077-2020, 2020
Short summary

Cited articles

Ashton, G. D. (Ed.): River and lake ice engineering. Water Resources Publications, Littleton, Colorado, USA, 1986.
Antenucci, J. P., Brookes, J. D., and Hipsey, M. R.: A simple model for quantifying Cryptosporidium transport, dilution, and potential risk in reservoirs, J. Am. Water Works Ass., 97, 86–93, 2005.
Ayala, A. I., Cortés, A., Fleenor, W. E., and Rueda, F. J.: Seasonal scale modeling of river inflows in stratified reservoirs: Structural vs. parametric uncertainty in inflow mixing, Environ. Modell. Softw., 60, 84–98, 2014.
Babanin, A. V. and Makin, V. K.: Effects of wind trend and gustiness on the sea drag: Lake George study, J. Geophys. Res.-Oceans, 113, C02015, https://doi.org/10.1029/2007JC004233, 2008.
Bird, R. E.: A simple, solar spectral model for direct-normal and diffuse horizontal irradiance, Sol. Energy, 32, 461–471, 1984.
Download
Short summary
The General Lake Model (GLM) has been developed to undertake simulation of a diverse range of wetlands, lakes, and reservoirs. The model supports the science needs of the Global Lake Ecological Observatory Network (GLEON), a network of lake sensors and researchers attempting to understand lake functioning and address questions about how lakes around the world vary in response to climate and land use change. The paper describes the science basis and application of the model.