Articles | Volume 12, issue 8
Geosci. Model Dev., 12, 3745–3758, 2019
https://doi.org/10.5194/gmd-12-3745-2019

Special issue: Nucleus for European Modelling of the Ocean - NEMO

Geosci. Model Dev., 12, 3745–3758, 2019
https://doi.org/10.5194/gmd-12-3745-2019

Model evaluation paper 27 Aug 2019

Model evaluation paper | 27 Aug 2019

On the discretization of the ice thickness distribution in the NEMO3.6-LIM3 global ocean–sea ice model

François Massonnet et al.

Related authors

SITool (v1.0) – a new evaluation tool for large-scale sea ice simulations: application to CMIP6 OMIP
Xia Lin, François Massonnet, Thierry Fichefet, and Martin Vancoppenolle
Geosci. Model Dev., 14, 6331–6354, https://doi.org/10.5194/gmd-14-6331-2021,https://doi.org/10.5194/gmd-14-6331-2021, 2021
Short summary
PARASO, a circum-Antarctic fully-coupled ice-sheet - ocean - sea-ice - atmosphere - land model involving f.ETISh1.7, NEMO3.6, LIM3.6, COSMO5.0 and CLM4.5
Charles Pelletier, Thierry Fichefet, Hugues Goosse, Konstanze Haubner, Samuel Helsen, Pierre-Vincent Huot, Christoph Kittel, François Klein, Sebastien Le clec'h, Nicole P. M. van Lipzig, Sylvain Marchi, François Massonnet, Pierre Mathiot, Ehsan Moravveji, Eduardo Moreno-Chamarro, Pablo Ortega, Frank Pattyn, Niels Souverijns, Guillian Van Achter, Sam Vanden Broucke, Alexander Vanhulle, Deborah Verfaillie, and Lars Zipf
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2021-315,https://doi.org/10.5194/gmd-2021-315, 2021
Preprint under review for GMD
Short summary
Benefits of sea ice initialization for the interannual-to-decadal climate prediction skill in the Arctic in EC-Earth3
Tian Tian, Shuting Yang, Mehdi Pasha Karami, François Massonnet, Tim Kruschke, and Torben Koenigk
Geosci. Model Dev., 14, 4283–4305, https://doi.org/10.5194/gmd-14-4283-2021,https://doi.org/10.5194/gmd-14-4283-2021, 2021
Short summary
An inter-comparison of the mass budget of the Arctic sea ice in CMIP6 models
Ann Keen, Ed Blockley, David A. Bailey, Jens Boldingh Debernard, Mitchell Bushuk, Steve Delhaye, David Docquier, Daniel Feltham, François Massonnet, Siobhan O'Farrell, Leandro Ponsoni, José M. Rodriguez, David Schroeder, Neil Swart, Takahiro Toyoda, Hiroyuki Tsujino, Martin Vancoppenolle, and Klaus Wyser
The Cryosphere, 15, 951–982, https://doi.org/10.5194/tc-15-951-2021,https://doi.org/10.5194/tc-15-951-2021, 2021
Short summary
The EC-Earth3 Earth System Model for the Climate Model Intercomparison Project 6
Ralf Döscher, Mario Acosta, Andrea Alessandri, Peter Anthoni, Almut Arneth, Thomas Arsouze, Tommi Bergmann, Raffaele Bernadello, Souhail Bousetta, Louis-Philippe Caron, Glenn Carver, Miguel Castrillo, Franco Catalano, Ivana Cvijanovic, Paolo Davini, Evelien Dekker, Francisco J. Doblas-Reyes, David Docquier, Pablo Echevarria, Uwe Fladrich, Ramon Fuentes-Franco, Matthias Gröger, Jost v. Hardenberg, Jenny Hieronymus, M. Pasha Karami, Jukka-Pekka Keskinen, Torben Koenigk, Risto Makkonen, Francois Massonnet, Martin Ménégoz, Paul A. Miller, Eduardo Moreno-Chamarro, Lars Nieradzik, Twan van Noije, Paul Nolan, Declan O’Donnell, Pirkka Ollinaho, Gijs van den Oord, Pablo Ortega, Oriol Tintó Prims, Arthur Ramos, Thomas Reerink, Clement Rousset, Yohan Ruprich-Robert, Philippe Le Sager, Torben Schmith, Roland Schrödner, Federico Serva, Valentina Sicardi, Marianne Sloth Madsen, Benjamin Smith, Tian Tian, Etienne Tourigny, Petteri Uotila, Martin Vancoppenolle, Shiyu Wang, David Wårlind, Ulrika Willén, Klaus Wyser, Shuting Yang, Xavier Yepes-Arbós, and Qiong Zhang
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2020-446,https://doi.org/10.5194/gmd-2020-446, 2021
Revised manuscript accepted for GMD
Short summary

Related subject area

Cryosphere
Ice Algae Model Intercomparison Project phase 2 (IAMIP2)
Hakase Hayashida, Meibing Jin, Nadja S. Steiner, Neil C. Swart, Eiji Watanabe, Russell Fiedler, Andrew McC. Hogg, Andrew E. Kiss, Richard J. Matear, and Peter G. Strutton
Geosci. Model Dev., 14, 6847–6861, https://doi.org/10.5194/gmd-14-6847-2021,https://doi.org/10.5194/gmd-14-6847-2021, 2021
Short summary
A Gaussian process emulator for simulating ice sheet–climate interactions on a multi-million-year timescale: CLISEMv1.0
Jonas Van Breedam, Philippe Huybrechts, and Michel Crucifix
Geosci. Model Dev., 14, 6373–6401, https://doi.org/10.5194/gmd-14-6373-2021,https://doi.org/10.5194/gmd-14-6373-2021, 2021
Short summary
SITool (v1.0) – a new evaluation tool for large-scale sea ice simulations: application to CMIP6 OMIP
Xia Lin, François Massonnet, Thierry Fichefet, and Martin Vancoppenolle
Geosci. Model Dev., 14, 6331–6354, https://doi.org/10.5194/gmd-14-6331-2021,https://doi.org/10.5194/gmd-14-6331-2021, 2021
Short summary
fenics_ice 1.0: a framework for quantifying initialization uncertainty for time-dependent ice sheet models
Conrad P. Koziol, Joe A. Todd, Daniel N. Goldberg, and James R. Maddison
Geosci. Model Dev., 14, 5843–5861, https://doi.org/10.5194/gmd-14-5843-2021,https://doi.org/10.5194/gmd-14-5843-2021, 2021
Short summary
SNICAR-AD v3: A Community Tool for Modeling Spectral Snow Albedo
Mark G. Flanner, Julian Arnheim, Joseph M. Cook, Cheng Dang, Cenlin He, Xianglei Huang, Deepak Singh, S. McKenzie Skiles, Chloe A. Whicker, and Charles S. Zender
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2021-182,https://doi.org/10.5194/gmd-2021-182, 2021
Revised manuscript accepted for GMD
Short summary

Cited articles

Barthélemy, A., Goosse, H., Fichefet, T., and Lecomte, O.: On the sensitivity of Antarctic sea ice model biases to atmospheric forcing uncertainties, Clim. Dynam., 51, 1585–1603, https://doi.org/10.1007/s00382-017-3972-7, 2017. a, b, c
Bitz, C. M. and Lipscomb, W. H.: An energy-conserving thermodynamic model of sea ice, J. Geophys. Res., 104, 15669–15677, https://doi.org/10.1029/1999JC900100, 1999. a
Bitz, C. M., Holland, M. M., Weaver, A. J., and Eby, M.: Simulating the ice-thickness distribution in a coupled climate model, J. Geophys. Res., 106, 2441–2463, https://doi.org/10.1029/1999JC000113, 2001. a, b, c, d
Bouillon, S., Fichefet, T., Legat, V., and Madec, G.: The elastic-viscous-plastic method revisited, Ocean Modell., 71, 2–12, https://doi.org/10.1016/j.ocemod.2013.05.013, 2013. a
Brodeau, L., Barnier, B., Treguier, A.-M., Penduff, T., and Gulev, S.: An ERA40-based atmospheric forcing for global ocean circulation models, Ocean Modell., 31, 88–104, https://doi.org/10.1016/j.ocemod.2009.10.005, 2010. a
Download
Short summary
Sea ice thickness varies considerably on spatial scales of several meters. However, contemporary climate models cannot resolve such scales yet. This is why sea ice models used in climate models include an ice thickness distribution (ITD) to account for this unresolved variability. Here, we explore with the ocean–sea ice model NEMO3.6-LIM3 the sensitivity of simulated mean Arctic and Antarctic sea ice states to the way the ITD is discretized.