Articles | Volume 12, issue 8
Geosci. Model Dev., 12, 3745–3758, 2019
https://doi.org/10.5194/gmd-12-3745-2019

Special issue: Nucleus for European Modelling of the Ocean - NEMO

Geosci. Model Dev., 12, 3745–3758, 2019
https://doi.org/10.5194/gmd-12-3745-2019

Model evaluation paper 27 Aug 2019

Model evaluation paper | 27 Aug 2019

On the discretization of the ice thickness distribution in the NEMO3.6-LIM3 global ocean–sea ice model

François Massonnet et al.

Related authors

An inter-comparison of the mass budget of the Arctic sea ice in CMIP6 models
Ann Keen, Ed Blockley, David A. Bailey, Jens Boldingh Debernard, Mitchell Bushuk, Steve Delhaye, David Docquier, Daniel Feltham, François Massonnet, Siobhan O'Farrell, Leandro Ponsoni, José M. Rodriguez, David Schroeder, Neil Swart, Takahiro Toyoda, Hiroyuki Tsujino, Martin Vancoppenolle, and Klaus Wyser
The Cryosphere, 15, 951–982, https://doi.org/10.5194/tc-15-951-2021,https://doi.org/10.5194/tc-15-951-2021, 2021
Short summary
The EC-Earth3 Earth System Model for the Climate Model Intercomparison Project 6
Ralf Döscher, Mario Acosta, Andrea Alessandri, Peter Anthoni, Almut Arneth, Thomas Arsouze, Tommi Bergmann, Raffaele Bernadello, Souhail Bousetta, Louis-Philippe Caron, Glenn Carver, Miguel Castrillo, Franco Catalano, Ivana Cvijanovic, Paolo Davini, Evelien Dekker, Francisco J. Doblas-Reyes, David Docquier, Pablo Echevarria, Uwe Fladrich, Ramon Fuentes-Franco, Matthias Gröger, Jost v. Hardenberg, Jenny Hieronymus, M. Pasha Karami, Jukka-Pekka Keskinen, Torben Koenigk, Risto Makkonen, Francois Massonnet, Martin Ménégoz, Paul A. Miller, Eduardo Moreno-Chamarro, Lars Nieradzik, Twan van Noije, Paul Nolan, Declan O’Donnell, Pirrka Ollinaho, Gijs van den Oord, Pablo Ortega, Oriol Tintó Prims, Arthur Ramos, Thomas Reerink, Clement Rousset, Yohan Ruprich-Robert, Philippe Le Sager, Torben Schmith, Roland Schrödner, Federico Serva, Valentina Sicardi, Marianne Sloth Madsen, Benjamin Smith, Tian Tian, Etienne Tourigny, Petteri Uotila, Martin Vancoppenolle, Shiyu Wang, David Wårlind, Ulrika Willén, Klaus Wyser, Shuting Yang, Xavier Yepes-Arbós, and Qiong Zhang
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2020-446,https://doi.org/10.5194/gmd-2020-446, 2021
Preprint under review for GMD
Short summary
Evaluation of sea-ice thickness from four reanalyses in the Antarctic Weddell Sea
Qian Shi, Qinghua Yang, Longjiang Mu, Jinfei Wang, François Massonnet, and Matthew R. Mazloff
The Cryosphere, 15, 31–47, https://doi.org/10.5194/tc-15-31-2021,https://doi.org/10.5194/tc-15-31-2021, 2021
Short summary
Benefits of sea ice thickness initialization for the Arctic decadal climate prediction skill in EC-Earth3
Tian Tian, Shuting Yang, Mehdi Pasha Karami, François Massonnet, Tim Kruschke, and Torben Koenigk
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2020-331,https://doi.org/10.5194/gmd-2020-331, 2020
Preprint under review for GMD
Short summary
Brief communication: Arctic sea ice thickness internal variability and its changes under historical and anthropogenic forcing
Guillian Van Achter, Leandro Ponsoni, François Massonnet, Thierry Fichefet, and Vincent Legat
The Cryosphere, 14, 3479–3486, https://doi.org/10.5194/tc-14-3479-2020,https://doi.org/10.5194/tc-14-3479-2020, 2020
Short summary

Related subject area

Cryosphere
CrocO_v1.0: a particle filter to assimilate snowpack observations in a spatialised framework
Bertrand Cluzet, Matthieu Lafaysse, Emmanuel Cosme, Clément Albergel, Louis-François Meunier, and Marie Dumont
Geosci. Model Dev., 14, 1595–1614, https://doi.org/10.5194/gmd-14-1595-2021,https://doi.org/10.5194/gmd-14-1595-2021, 2021
Short summary
A fully coupled Arctic sea-ice–ocean–atmosphere model (ArcIOAM v1.0) based on C-Coupler2: model description and preliminary results
Shihe Ren, Xi Liang, Qizhen Sun, Hao Yu, L. Bruno Tremblay, Bo Lin, Xiaoping Mai, Fu Zhao, Ming Li, Na Liu, Zhikun Chen, and Yunfei Zhang
Geosci. Model Dev., 14, 1101–1124, https://doi.org/10.5194/gmd-14-1101-2021,https://doi.org/10.5194/gmd-14-1101-2021, 2021
Short summary
The Framework For Ice Sheet–Ocean Coupling (FISOC) V1.1
Rupert Gladstone, Benjamin Galton-Fenzi, David Gwyther, Qin Zhou, Tore Hattermann, Chen Zhao, Lenneke Jong, Yuwei Xia, Xiaoran Guo, Konstantinos Petrakopoulos, Thomas Zwinger, Daniel Shapero, and John Moore
Geosci. Model Dev., 14, 889–905, https://doi.org/10.5194/gmd-14-889-2021,https://doi.org/10.5194/gmd-14-889-2021, 2021
Short summary
Comparison of sea ice kinematics at different resolutions modeled with a grid hierarchy in the Community Earth System Model (version 1.2.1)
Shiming Xu, Jialiang Ma, Lu Zhou, Yan Zhang, Jiping Liu, and Bin Wang
Geosci. Model Dev., 14, 603–628, https://doi.org/10.5194/gmd-14-603-2021,https://doi.org/10.5194/gmd-14-603-2021, 2021
Short summary
Snow profile alignment and similarity assessment for aggregating, clustering, and evaluating snowpack model output for avalanche forecasting
Florian Herla, Simon Horton, Patrick Mair, and Pascal Haegeli
Geosci. Model Dev., 14, 239–258, https://doi.org/10.5194/gmd-14-239-2021,https://doi.org/10.5194/gmd-14-239-2021, 2021
Short summary

Cited articles

Barthélemy, A., Goosse, H., Fichefet, T., and Lecomte, O.: On the sensitivity of Antarctic sea ice model biases to atmospheric forcing uncertainties, Clim. Dynam., 51, 1585–1603, https://doi.org/10.1007/s00382-017-3972-7, 2017. a, b, c
Bitz, C. M. and Lipscomb, W. H.: An energy-conserving thermodynamic model of sea ice, J. Geophys. Res., 104, 15669–15677, https://doi.org/10.1029/1999JC900100, 1999. a
Bitz, C. M., Holland, M. M., Weaver, A. J., and Eby, M.: Simulating the ice-thickness distribution in a coupled climate model, J. Geophys. Res., 106, 2441–2463, https://doi.org/10.1029/1999JC000113, 2001. a, b, c, d
Bouillon, S., Fichefet, T., Legat, V., and Madec, G.: The elastic-viscous-plastic method revisited, Ocean Modell., 71, 2–12, https://doi.org/10.1016/j.ocemod.2013.05.013, 2013. a
Brodeau, L., Barnier, B., Treguier, A.-M., Penduff, T., and Gulev, S.: An ERA40-based atmospheric forcing for global ocean circulation models, Ocean Modell., 31, 88–104, https://doi.org/10.1016/j.ocemod.2009.10.005, 2010. a
Download
Short summary
Sea ice thickness varies considerably on spatial scales of several meters. However, contemporary climate models cannot resolve such scales yet. This is why sea ice models used in climate models include an ice thickness distribution (ITD) to account for this unresolved variability. Here, we explore with the ocean–sea ice model NEMO3.6-LIM3 the sensitivity of simulated mean Arctic and Antarctic sea ice states to the way the ITD is discretized.