Articles | Volume 12, issue 7
https://doi.org/10.5194/gmd-12-2781-2019
https://doi.org/10.5194/gmd-12-2781-2019
Development and technical paper
 | 
09 Jul 2019
Development and technical paper |  | 09 Jul 2019

A Python-enhanced urban land surface model SuPy (SUEWS in Python, v2019.2): development, deployment and demonstration

Ting Sun and Sue Grimmond

Related authors

Hybrid hydrological modeling for large alpine basins: a semi-distributed approach
Bu Li, Ting Sun, Fuqiang Tian, Mahmut Tudaji, Li Qin, and Guangheng Ni
Hydrol. Earth Syst. Sci., 28, 4521–4538, https://doi.org/10.5194/hess-28-4521-2024,https://doi.org/10.5194/hess-28-4521-2024, 2024
Short summary
WRF (v4.0)–SUEWS (v2018c) coupled system: development, evaluation and application
Ting Sun, Hamidreza Omidvar, Zhenkun Li, Ning Zhang, Wenjuan Huang, Simone Kotthaus, Helen C. Ward, Zhiwen Luo, and Sue Grimmond
Geosci. Model Dev., 17, 91–116, https://doi.org/10.5194/gmd-17-91-2024,https://doi.org/10.5194/gmd-17-91-2024, 2024
Short summary
SHAFTS (v2022.3): a deep-learning-based Python package for simultaneous extraction of building height and footprint from sentinel imagery
Ruidong Li, Ting Sun, Fuqiang Tian, and Guang-Heng Ni
Geosci. Model Dev., 16, 751–778, https://doi.org/10.5194/gmd-16-751-2023,https://doi.org/10.5194/gmd-16-751-2023, 2023
Short summary
Surface Urban Energy and Water Balance Scheme (v2020a) in vegetated areas: parameter derivation and performance evaluation using FLUXNET2015 dataset
Hamidreza Omidvar, Ting Sun, Sue Grimmond, Dave Bilesbach, Andrew Black, Jiquan Chen, Zexia Duan, Zhiqiu Gao, Hiroki Iwata, and Joseph P. McFadden
Geosci. Model Dev., 15, 3041–3078, https://doi.org/10.5194/gmd-15-3041-2022,https://doi.org/10.5194/gmd-15-3041-2022, 2022
Short summary
Dynamic Anthropogenic activitieS impacting Heat emissions (DASH v1.0): development and evaluation
Isabella Capel-Timms, Stefán Thor Smith, Ting Sun, and Sue Grimmond
Geosci. Model Dev., 13, 4891–4924, https://doi.org/10.5194/gmd-13-4891-2020,https://doi.org/10.5194/gmd-13-4891-2020, 2020
Short summary

Related subject area

Hydrology
Deep dive into hydrologic simulations at global scale: harnessing the power of deep learning and physics-informed differentiable models (δHBV-globe1.0-hydroDL)
Dapeng Feng, Hylke Beck, Jens de Bruijn, Reetik Kumar Sahu, Yusuke Satoh, Yoshihide Wada, Jiangtao Liu, Ming Pan, Kathryn Lawson, and Chaopeng Shen
Geosci. Model Dev., 17, 7181–7198, https://doi.org/10.5194/gmd-17-7181-2024,https://doi.org/10.5194/gmd-17-7181-2024, 2024
Short summary
PyEt v1.3.1: a Python package for the estimation of potential evapotranspiration
Matevž Vremec, Raoul A. Collenteur, and Steffen Birk
Geosci. Model Dev., 17, 7083–7103, https://doi.org/10.5194/gmd-17-7083-2024,https://doi.org/10.5194/gmd-17-7083-2024, 2024
Short summary
Prediction of hysteretic matric potential dynamics using artificial intelligence: application of autoencoder neural networks
Nedal Aqel, Lea Reusser, Stephan Margreth, Andrea Carminati, and Peter Lehmann
Geosci. Model Dev., 17, 6949–6966, https://doi.org/10.5194/gmd-17-6949-2024,https://doi.org/10.5194/gmd-17-6949-2024, 2024
Short summary
Regionalization in global hydrological models and its impact on runoff simulations: a case study using WaterGAP3 (v 1.0.0)
Jenny Kupzig, Nina Kupzig, and Martina Flörke
Geosci. Model Dev., 17, 6819–6846, https://doi.org/10.5194/gmd-17-6819-2024,https://doi.org/10.5194/gmd-17-6819-2024, 2024
Short summary
STORM v.2: A simple, stochastic rainfall model for exploring the impacts of climate and climate change at and near the land surface in gauged watersheds
Manuel F. Rios Gaona, Katerina Michaelides, and Michael Bliss Singer
Geosci. Model Dev., 17, 5387–5412, https://doi.org/10.5194/gmd-17-5387-2024,https://doi.org/10.5194/gmd-17-5387-2024, 2024
Short summary

Cited articles

Alexander, P. J., Bechtel, B., Chow, W. T. L., Fealy, R., and Mills, G.: Linking urban climate classification with an urban energy and water budget model: Multi-site and multi-seasonal evaluation, Urban Climate, 17, 196–215, https://doi.org/10.1016/j.uclim.2016.08.003, 2016. 
Alexander, P. J., Mills, G., and Fealy, R.: Using LCZ data to run an urban energy balance model, Urban Climate, 13, 14–37, https://doi.org/0.1016/j.uclim.2015.05.001, 2015. 
Ao, X., Grimmond, C., Chang, Y., Liu, D., Tang, Y., Hu, P., Wang, Y., Zou, J., and Tan, J.: Heat, water and carbon exchanges in the tall megacity of Shanghai: challenges and results, Int. J. Climatol., 36, 4608–4624, https://doi.org/10.1002/joc.4657, 2016. 
Ao, X., Grimmond, C., Ward, H. C., Gabey, A. M., Tan, J., Yang, X.-Q., Liu, D., Zhi, X., Liu, H., and Zhang, N.: Evaluation of the Surface Urban Energy and Water balance Scheme (SUEWS) at a dense urban site in Shanghai: Sensitivity to anthropogenic heat and irrigation, J. Hydrometeorol., 19, 1983–2005, https://doi.org/10.1175/JHM-D-18-0057.1, 2018. 
Bailey, D. H., Barszcz, E., Barton, J. T., Browning, D. S., Carter, R. L., Dagum, L., Fatoohi, R. A., Frederickson, P. O., Lasinski, T. A., Schreiber, R. S., Simon, H. D., Venkatakrishnan, V., and Weeratunga, S. K.: The Nas Parallel Benchmarks, International Journal of Supercomputing Applications, 5, 63–73, https://doi.org/10.1177/109434209100500306, 1991. 
Download
Short summary
A Python-enhanced urban land surface model, SuPy (SUEWS in Python), is presented with its development (the SUEWS interface modification, F2PY configuration and Python frontend implementation), cross-platform deployment (PyPI, Python Package Index) and demonstration (online tutorials in Jupyter notebooks for users of different levels). SuPy represents a significant enhancement that supports existing and new model applications, reproducibility and enhanced functionality.